Abstract
The origin of the ethylene carbon skeleton in Penicillium digitatum appears to be intimately associated with the Krebs cycle acids, particularly the middle carbon atoms of dicarboxylic acids. Among the other compounds studied, certain carbon atoms of β-alanine, propionic acid, and methionine can be incorporated into the ethylene carbon skeleton presumably by way of an indirect route via the Krebs cycle acids. Carbon atoms of acrylic acid, particularly C-2, were also found to be incorporated into the ethylene skeleton. Inhibition of ethylene but not respiratory CO2 formation in the mold by cis-3-chloroacrylic acid at 1 × 10−3 m pointed to the possibility that acrylic acid may be related to the precursor for ethylene.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AURICH H. [On the beta-alanine-alpha-ketoglutarate transaminase from Neurospora crassa]. Hoppe Seylers Z Physiol Chem. 1961 Oct 25;326:25–33. doi: 10.1515/bchm2.1961.326.1.25. [DOI] [PubMed] [Google Scholar]
- Abeles F. B., Rubinstein B. Regulation of Ethylene Evolution and Leaf Abscission by Auxin. Plant Physiol. 1964 Nov;39(6):963–969. doi: 10.1104/pp.39.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLOCH K., CHAYKIN S., PHILLIPS A. H., DE WAARD A. Mevalonic acid pyrophosphate and isopentenylpyrophosphate. J Biol Chem. 1959 Oct;234:2595–2604. [PubMed] [Google Scholar]
- BROWN G. M., REYNOLDS J. J. BIOGENESIS OF THE WATER-SOLUBLE VITAMINS. Annu Rev Biochem. 1963;32:419–462. doi: 10.1146/annurev.bi.32.070163.002223. [DOI] [PubMed] [Google Scholar]
- BURG S. P., BURG E. A. BIOSYNTHESIS OF ETHYLENE. Nature. 1964 Aug 22;203:869–870. doi: 10.1038/203869a0. [DOI] [PubMed] [Google Scholar]
- BURG S. P., BURG E. A. ETHYLENE ACTION AND THE RIPENING OF FRUITS. Science. 1965 May 28;148(3674):1190–1196. doi: 10.1126/science.148.3674.1190. [DOI] [PubMed] [Google Scholar]
- Burg S. P., Clagett C. O. Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem Biophys Res Commun. 1967 Apr 20;27(2):125–130. doi: 10.1016/s0006-291x(67)80050-0. [DOI] [PubMed] [Google Scholar]
- GIBSON M. S. INCORPORATION OF PYRUVATE-C14 INTO ETHYLENE BY PENICILLIUM DIGITATUM SACC. Arch Biochem Biophys. 1964 Jul 20;106:312–316. doi: 10.1016/0003-9861(64)90193-6. [DOI] [PubMed] [Google Scholar]
- Gibson M. S., Young R. E. Acetate and other carboxylic acids as precursors of ethylene. Nature. 1966 Apr 30;210(5035):529–530. doi: 10.1038/210529b0. [DOI] [PubMed] [Google Scholar]
- HAYAISHI O., NISHIZUKA Y., TATIBANA M., TAKESHITA M., KUNO S. Enzymatic studies on the metabolism of beta-alanine. J Biol Chem. 1961 Mar;236:781–790. [PubMed] [Google Scholar]
- Henry K. R. Audiogenic seizure susceptibility induced in C57BL-6J mice by prior auditory exposure. Science. 1967 Nov 17;158(3803):938–940. doi: 10.1126/science.158.3803.938-a. [DOI] [PubMed] [Google Scholar]
- Herrett R. A., Kurtz A. N. cis-3-Chloroacrylic Acid: A New Cotton Defoliant and Crop Desiccant. Science. 1963 Sep 20;141(3586):1192–1193. doi: 10.1126/science.141.3586.1192. [DOI] [PubMed] [Google Scholar]
- KAZIRO Y., OCHOA S. THE METABOLISM OF PROPIONIC ACID. Adv Enzymol Relat Areas Mol Biol. 1964;26:283–378. doi: 10.1002/9780470122716.ch7. [DOI] [PubMed] [Google Scholar]
- Lieberman M., Kunishi A. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 1966 Mar;41(3):376–382. doi: 10.1104/pp.41.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mapson L. W., Wardale D. A. Biosynthesis of ethylene. Enzymes involved in its formation from methional. Biochem J. 1968 Apr;107(3):433–442. doi: 10.1042/bj1070433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAM CHANDRA G., SPENCER M. Ethylene production by subcellular particles from rat liver, rat intestinal mucosa and Penicillium digitatum. Nature. 1963 Jan 26;197:366–367. doi: 10.1038/197366a0. [DOI] [PubMed] [Google Scholar]
- REED D. J., WANG C. H. Glucose metabolism in Penicillium digitatum. Can J Microbiol. 1959 Feb;5(1):59–66. doi: 10.1139/m59-007. [DOI] [PubMed] [Google Scholar]
- ROBERTS E., AYENGAR P., POSNER I. Transamination of gamma-aminobutyric acid and beta-alanine in microorganisms. J Biol Chem. 1953 Jul;203(1):195–204. [PubMed] [Google Scholar]
- SPITZ M. IMMUNOELECTROPHORETIC PATTERN OF PHYTOHAEMAGGLUTININ. Nature. 1964 May 30;202:902–902. doi: 10.1038/202902a0. [DOI] [PubMed] [Google Scholar]
- Shimokawa K., Kasai Z. Ethylene formation from ethyl moiety of ethionine. Science. 1967 Jun 9;156(3780):1362–1363. doi: 10.1126/science.156.3780.1362. [DOI] [PubMed] [Google Scholar]
- Sprayberry B. A., Hall W. C., Miller C. S. Biogenesis of ethylene in Penicillium digitatum. Nature. 1965 Dec 25;208(5017):1322–1323. doi: 10.1038/2081322a0. [DOI] [PubMed] [Google Scholar]
- Thompson J. E., Tribe T. A., Spencer M. A non-enzymatic model for ethylene production from beta-alanine. Can J Biochem. 1966 Mar;44(3):389–391. doi: 10.1139/o66-046. [DOI] [PubMed] [Google Scholar]
- VAGELOS P. R., EARL J. M., STADTMAN E. R. Propionic acid metabolism. I. The purification and properties of acrylyl coenzme A aminase. J Biol Chem. 1959 Mar;234(3):490–497. [PubMed] [Google Scholar]
- WANG C. H., PERSYN A., KRACKOV J. Role of the Krebs cycle in ethylene biosynthesis. Nature. 1962 Sep 29;195:1306–1308. doi: 10.1038/1951306a0. [DOI] [PubMed] [Google Scholar]
- Yang S. F., Ku H. S., Pratt H. K. Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide. J Biol Chem. 1967 Nov 25;242(22):5274–5280. [PubMed] [Google Scholar]