Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2025 Feb 18:2024.01.11.575070. [Version 6] doi: 10.1101/2024.01.11.575070

Binding domain mutations provide insight into CTCF’s relationship with chromatin and its contribution to gene regulation

Catherine Do, Guimei Jiang, Giulia Cova, Christos C Katsifis, Domenic N Narducci, Theodore Sakellaropoulos, Raphael Vidal, Priscillia Lhoumaud, Aristotelis Tsirigos, Faye Fara D Regis, Nata Kakabadze, Elphege P Nora, Marcus Noyes, Anders S Hansen, Jane A Skok
PMCID: PMC10871189  PMID: 38370764

Summary

Here we used a series of CTCF mutations to explore CTCF’s relationship with chromatin and its contribution to gene regulation. CTCF’s impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF’s signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modelling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, however CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell’s ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF’s site-specific effects.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES