Abstract
The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as non-syndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades, however less is known about their exact mechanisms in controlling precise gene regulation. In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contributes to congenital defects that affect the craniofacial complex.
Keywords: epigenetics, craniofacial, neural crest, chromatin, congenital birth defects
Introduction
The craniofacial skeleton houses and protects vital sensory organs providing the ability to see, hear, smell, eat and breathe while also providing ways to convey social interactions and communication between others through facial expressions. The formation of the craniofacial complex depends mostly on the proper development of a highly migratory, multipotent stem/progenitor population of cells termed neural crest cells (NCCs) (Bronner & LaBonne, 2012; Bronner & LeDouarin, 2012; Green et al., 2015; Le Douarin & Dupin, 2018; Simoes-Costa & Bronner, 2015). During gastrulation, NCCs are induced at the neural plate border, which separates the neural and non-neural ectoderm, by signaling from BMP and Wnt pathways. Specification involves a complex gene regulatory network (GRN) of transcription factors including the upregulation of the neural crest specifier genes Pax3, Pax7, FoxD3, Sox10 and Snail2. As neurulation occurs, morphogenetic movements resolve the NCCs to the dorsal neural tube. From there, they undergo an epithelial-to-mesenchymal transition (EMT) and delaminate from the neural epithelium and migrate in distinct streams throughout the embryo along the entire anterior-posterior axis. When NCCs reach their destination, they will begin differentiation toward many different derivatives throughout the body including melanocytes, cardiac muscle, neurons and glia, Schwann cells, chondrocytes and osteoblasts. The cranial NCCs subpopulation form the neurons and glia of the peripheral nervous system and the cells that populate the pharyngeal/branchial arches, which interact with endodermal and ectodermal components of the arches. Cranial NCCs require endothelin signaling to differentiate into cartilage and bone to form (Betancur et al., 2010; Sauka-Spengler & Bronner-Fraser, 2008; Sauka-Spengler & Bronner, 2010) the craniofacial structures in the skull, including the maxilla (upper jaw), mandible (lower jaw), frontonasal prominence, cranial base, external ear, middle ear and hyoid bone. All these tissues are innervated with NCC-derived sensory neurons from the trigeminal ganglia.
While the GRNs governing proper NCC development have been extensively studied and characterized, less is known about how the GRNs are precisely spatiotemporally regulated. Growing evidence supports the functional roles of epigenetic factors as important gatekeepers facilitating many aspects of neural crest development, including controlling the timely activation and/or repression of gene expression across developmental time. Importantly, alterations to the spatiotemporal activation or repression of NCC specific GRNs can result in congenital birth defects affecting neural crest derived tissues, as well as non-syndromic defects including cleft lip with or without cleft palate, heart defects, Hirschprung’s disease, and cancers including melanoma, neuroblastoma, and neurofibromatosis. Many congenital birth defects arise from abnormal neural crest development, however, a large majority of their etiologies remain unknown. In addition to genetic mutations, there are environmental factors that can have a significant influence on the genome and epigenome. Diet, for example can directly affect the epigenome, as evidenced by the Dutch famine studies (Heijmans et al., 2008; Tobi et al., 2009). Other environmental factors that can induce epigenomic changes include tobacco and alcohol use, psychological stress, specific minerals, certain medications (i.e. retinoic acid), cigarette smoke and infections (Marsit, 2015). The epigenetic regulators and the epigenome they govern during neural crest development are particularly sensitive due to the rapid transcriptional changes occurring during these stages of development. Teratogens can induce epigenetic changes that in turn affect neural crest development.
In this review, we discuss the role of epigenetic regulators during neural crest development, with specific focus on the formation of the craniofacial skeleton and how alterations to the functions of these factors lead to congenital diseases.
Mechanisms of Epigenetic Regulation
The term epigenetics is defined as mechanisms that lead to changes in gene expression by altering chromosome structure rather than changes in the DNA sequence (Berger, 2007). Negatively charged DNA is tightly wrapped around a core of histones consisting of two H2A histones, two H2B histones, two H3 histones and two H4 histones (Quina et al., 2006). This resulting protein octamer forms a nucleosome, the basic unit of chromatin (Allis & Jenuwein, 2016). How chromatin is arranged within chromosomes determines if the DNA is transcriptionally active. Chromatin packaged loosely indicates transcriptionally active euchromatin while densely bundled chromatin typically indicates a more transcriptionally inactive heterochromatin state (Bannister & Kouzarides, 2011).
Epigenetic modifiers include groups of “writers,” “erasers” and “readers” that change how chromatin is organized. These modifiers function through a variety of different mechanisms: (1) DNA modifications, (2) histone modifications; (3) through the formation of large protein complexes that can regulate higher-order chromatin via nucleosome positioning, chromatin dynamics and interactions; or (4) non-coding RNAs (Bannister & Kouzarides, 2011; Kouzarides, 2007). DNA modifications mostly consist of methylated CpG islands near promoter sequences. Histone modifications occur when different chemical marks are added to the tails extending off histones that influences what type of transcriptional machinery is recruited to that mark. Large protein complexes, for example, either Polycomb Repressive Complex or ATP-dependent chromatin remodeling complexes influence chromatin architecture through nucleosome rearrangements and DNA accessibility. While not specifically discussed further here, non-coding RNAs are functional RNA molecules that are transcribed but not translated into proteins associated with gene silencing. Non-coding RNAs (microRNAs and long non-coding RNAs) participate in DNA methylation, histone modifications, formation of heterochromatin and gene silencing. Across these different epigenetic mechanisms, depending on the specific type of regulator, modification or recruited transcriptional machinery, the outcome will lead to either gene activation or repression.
When epigenetic factors are mutated and their functional activity is compromised, abnormal activation or repression of gene expression can lead to cancers and disease states. Here, we focus on the function of epigenetic factors and their roles in facilitating proper neural crest development, formation of the craniofacial skeleton and neural crest specific diseases presenting with craniofacial anomalies associated with aberrant activity of these factors (Figure 1) and (Table 1). Below we highlight factors involved in DNA methylation, histone modification, and protein complexes that alter chromatin structure.
Figure 1. Epigenetic regulators spatiotemporally control gene regulatory networks during neural crest development and formation of the craniofacial skeleton.
Neural crest cells arise at the neural plate border during gastrulation (A). Through a dynamic process, these cells are specified, undergo epithelial-to-mesenchymal transitions, and migrate out to different areas along the anterior-posterior axis where they begin differentiating to different derivatives (A-B). The neural crest cells that migrate to the pharyngeal arches (PA) will differentiate toward chondrocytes, osteoblasts, to form the cartilage and bone of the facial structures as well as neurons and glia of the peripheral nervous system (B-D). These cell types and tissues integrate with one another to form the craniofacial complex and this process is highly conserved across vertebrates (D). Various gene regulatory networks are important along every step of neural crest and craniofacial development, from neural crest induction and specification to patterning of the pharyngeal arches to differentiation of different derivatives. Different epigenetic regulators have important roles in mediating the activation or repression of these different GRNs. These epigenetic regulators can directly influence the activation or repression of the transcription factors (TFs) in each GRN. For example, EZH2 represses the Hox gene family and activates osteogenic differentiation programs to facilitate bone formation (E). See Table 1 for references for each factor featured above.
Table 1. Epigenetic Factors involved in Craniofacial Development and Disease.
Bolded are those factors discussed more thoroughly in the text.
FACTOR | EPIGENETIC FUNCTION | FUNCTION DURING NCC DEVELOPMENT | DISEASE ASSOCIATION | REFERENCES |
---|---|---|---|---|
ARID1A | Member of SWI/SNF complex, repressor that binds chromatin | potential role in NCC formation, migration, differentiation | Coffin-Siris Syndrome | (Chandler & Magnuson, 2016; Gatchalian et al., 2018; Ho et al., 2009; Pagliaroli et al., 2021) |
ARID1B | Member of SWI/SNF complex, repressor that binds chromatin | potential role in NCC formation, migration, differentiation | Coffin-Siris Syndrome | (Gatchalian et al., 2018; Ho et al., 2009; Pagliaroli et al., 2021) |
ARID2 | Member of SWI/SNF-B complex, repressor that binds chromatin | osteoblast differentiation | Coffin-Siris Syndrome | (Bramswig et al., 2017; Xia et al., 2023; Xu et al., 2012) |
ASXL1 | Member of Polycomb Repressive Complex | generation of NCC, neuroectoderm specification | Bohring-Opitz syndrome | (Matheus et al., 2019; Zhao et al., 2021) |
ASXL2 | Member of Polycomb Repressive Complex | generation of NCC | Shashi-Pena Syndrome | (Shashi et al., 2016; Shashi et al., 2017) |
ASXL3 | Member of Polycomb repressive deubiquitination | generation of NCC, early nervous system development | Bainbridge-Ropers Syndrome | (Dinwiddie et al., 2013; Koboldt et al., 2018; Kuechler et al., 2017; Lichtig et al., 2020) |
ATRX | ATP-dependent chromatin remodeling | neural progenitor differentiation | Alpha thalassemia/mental retardation syndrome | (Berube et al., 2005; Bieluszewska et al., 2022; Dyer et al., 2017; Thienpont et al., 2007; Tillotson et al., 2023) |
BAF155 | Core structural subunit of BAF complex | NCC proliferation and differentiation | Nicolaides-Baraitser Syndrome | (Bi-Lin et al., 2021; Sousa et al., 2014) |
BAF170 | Core structural subunit of BAF complex | NCC proliferation and differentiation | Nicolaides-Baraitser Syndrome | (Bi-Lin et al., 2021; Sousa et al., 2014) |
BAZ1A | ATP-dependent Chromatin Remodeling | NCC formation and maintenance, migration, differentiation | CHARGE syndrome | (Baggiolini et al., 2021; Zaghlool et al., 2016) |
BAZ1B/WSTF | ATP-dependent Chromatin Remodeling | NCC formation and maintenance, migration, differentiation | Williams-Beuren Syndrome | (Barnett & Krebs, 2011; Barnett et al., 2012; Culver-Cochran & Chadwick, 2013; Lalli et al., 2016; Torres-Perez et al., 2023; Zanella et al., 2019) |
BRD2 | BET protein; binds acetylated histones, recruits transcriptional machinery | neural progenitor proliferation and differentiation; NCC migration | neural tube defects and craniofacial malformations | (Garcia-Gutierrez & Garcia-Dominguez, 2015; Garcia-Gutierrez et al., 2014; Gyuris et al., 2009; Shang et al., 2009; Tsume et al., 2012) |
BRD4 | BET protein; binds acetylated histones, recruits transcriptional machinery | NCC formation and maintenance, migration, differentiation | Cornelia de Lange Syndrome | (Garcia-Gutierrez & Garcia-Dominguez, 2021; Liang et al., 2021; Linares-Saldana et al., 2021) |
BRD7 | BET protein; binds acetylated histones, recruits transcriptional machinery | NCC formation by regulating NC transcription; controls osteogenic differentiation | craniofacial abnormalities | (Bajpai et al., 2010; Sinha et al., 2020) |
BRG1 | One of 2 ATPase cores belonging to the BAF complex | NCC induction/specification and neurogenesis | Coffin-Siris Syndrome | (Eroglu et al., 2006; Li et al., 2013; Lou et al., 2015; Tzeng et al., 2014) |
CBP | CREB Binding protein nuclear transcriptional co-activator | Expressed in NCC/developing craniofacial tissue | Rubinstein-Taybi Syndrome | (Petrij et al., 1995; Tanaka et al., 1997; Warner et al., 2002) |
CHD1 | Chromodomain helicase, DNA-Binding protein 1; ability to remodel chromatin structure and influence histone acetylation | NCC formation and differentiation | Pilarowski-Bjornsson Syndrome | (Pilarowski et al., 2018; Wyatt et al., 2021; Zepeda-Mendoza et al., 2019) |
CHD2 | Chromodomain helicase, DNA-Binding protein 2; ability to remodel chromatin structure and influence histone acetylation | neurogenesis | CHARGE syndrome | (Galizia et al., 2015; Kulkarni et al., 2008; Semba et al., 2017; Suls et al., 2013) |
CHD7 | Chromodomain helicase, DNA-Binding protein 7; ability to remodel chromatin structure and influence histone acetylation | maintain NCC multipotency, NCC specification | CHARGE syndrome | (Bajpai et al., 2010; Balow et al., 2013; Bosman et al., 2005; Chai et al., 2018; Fujita et al., 2014; Lalani et al., 2006; Sperry et al., 2014; Y. Sun et al., 2022) |
CTCF | Zn finger binding protein; regulates 3D organization of the genome; chromatin architecture | NCC proliferation and differentiation to facial derivatives | Neurodevelopmental Disorder with facial dysmorphism | (Adams et al., 2008; Bastaki et al., 2017; Gregor et al., 2013; Hori et al., 2017; Konrad et al., 2019; Min et al., 2019) |
DNMT3A | DNA methyltransferase 3A; DNA methylation of CpG Islands | NCC formation; NT-to-NCC fate transition in chick during NCC specification | Tatton-Brown-Rahman Syndrome | (Hu et al., 2012; Okano, Bell, et al., 1999; Smith et al., 2021; Yokoi et al., 2020) |
DNMT3B | DNA methyltransferase 3B; DNA methylation of CpG Islands | NCC formation and differentiation of PNS neurons in chick but maybe dispensable in mouse NCC development | Immunodeficiency, centromere instability facial anomalies syndrome | (Ehrlich et al., 2001; Hu, Strobl-Mazzulla, Simoes-Costa, et al., 2014; Jacques-Fricke et al., 2012; Jiang et al., 2005; Jin et al., 2008; Jin et al., 2009; Martins-Taylor et al., 2012; Nowialis et al., 2019; Okano, Bell, et al., 1999; Okano, Takebayashi, et al., 1999; Ueda et al., 2006) |
DPF2 | BAF complex subunit member double plant homeodomain finger 2 | potential role in NCC formation, migration, differentiation | Coffin-Siris Syndrome | (MacDonald et al., 2022; Vasileiou et al., 2018) |
EHMT1/GLP/KMT1D | Euchromatin histone methyltransferase 1; dimethylation of H3K9me2 | neurogenesis, NCC differentiation | Kleefstra Syndrome | (Balemans et al., 2014; Frega et al., 2019; Kleefstra et al., 2009; Martens et al., 2016) |
EHMT2/G9A/KMT1C | Euchromatin histone methyltransferase 2; dimethylation of H3K9me2 | neurogenesis; NCC differentiation | Kleefstra Syndrome | (Balemans et al., 2014; Higashihori et al., 2017; Ideno et al., 2020; N. Liu et al., 2015; Rai et al., 2010) |
EP300 | EP1A binding protein; lysine acetyltransferase (histones and nonhistones) | neurogenesis; NCC differentiation to craniofacial elements | Rubinstein-Taybi Syndrome | (Babu et al., 2018; Bartsch et al., 2010; Bhattacherjee et al., 2009; Hamilton et al., 2016; Saettini et al., 2022; Warner et al., 2002, 2006) |
EZH2 | enhancer of zeste homolog 2 (catalytic component of the Polycomb repressor complex; mono-di-tri methylation of H3K27) | NCC differentiation to craniofacial skeletal structures | Weaver syndrome | (Cohen et al., 2016; Dudakovic et al., 2015; H. Kim et al., 2018; Lui et al., 2018; Schwarz et al., 2014; Tatton-Brown et al., 2013) |
HDAC1 | Histone deacetylase | NCC proliferation and NCC differentiation of skeletal structures; PNS | craniofacial abnormalities with Copy number variations at 1p35 | (Ignatius et al., 2013; Milstone et al., 2017; Pillai et al., 2004; Rao & LaBonne, 2018) |
HDAC2 | Histone deacetylase | NCC proliferation and NCC differentiation of skeletal structures; PNS | craniofacial abnormalities with Copy number variations at 6q21-6q22.1 | (Hudson et al., 2014; Milstone et al., 2017) |
HDAC3 | Histone deacetylase | NCC proliferation and formation | chromatin remodeling disorders associated with craniofacial malformation | (Singh et al., 2013; Singh et al., 2011) |
HDAC4 | Histone deacetylase | NCC proliferation and differentiation to osteoblasts | Brachydactyly-Mental Retardation Syndrome, non-syndromic oral clefting | (DeLaurier et al., 2012; Ha et al., 2022; Park et al., 2006; Villavicencio-Lorini et al., 2013; Williams, Aldred, et al., 2010) |
HDAC8 | Histone deacetylase | NCC patterning and differentiation of craniofacial elements | Cornelia de Lange Syndrome; Wilson-Turner Syndrome | (Deardorff et al., 2012; Deardorff et al., 2016; Gao et al., 2018; Haberland et al., 2009; Harakalova et al., 2012; Kaiser et al., 2014; Lucia-Campos et al., 2022; Mio et al., 2021) |
KAT2A/GCN5 | Lysine histone acetyltransferase | NCC formation and differentiation | chromatin remodeling disorders associated with craniofacial malformation | (Dong et al., 2023; Pezoa et al., 2020; Sen et al., 2018) |
KAT2B/PCAF | Lysine histone acetyltransferase | NCC formation and differentiation | chromatin remodeling disorders associated with craniofacial malformation | (Sen et al., 2018) |
KAT6A | Lysine histone acetyltransferase | NCC formation, patterning and differentiation of skeletal/craniofacial structures by regulating gene expression patterns | KAT6A syndrome; Arboleda-Tham Syndrome; Pancraniosynostosis | (Arboleda et al., 2015; Bae et al., 2021; Crump et al., 2006; Marji et al., 2021; Miller et al., 2004; Satoh et al., 2017; Tham et al., 2015; Vanyai et al., 2019; Voss et al., 2012; Wiesel-Motiuk & Assaraf, 2020) |
KAT6B | Lysine histone acetyltransferase | NCC formation, patterning and differentiation of skeletal/craniofacial structures | Noonan syndrome, Ohdo Syndrome, Genitopatellar Syndrome | (Campeau et al., 2012; Clayton-Smith et al., 2011; Kraft et al., 2011; Sheikh et al., 2012; Simpson et al., 2012; Szakszon et al., 2013; Wiesel-Motiuk & Assaraf, 2020; Zhang et al., 2020) |
KDM1A | Lysine histone demethylase | NCC function unknown; adipogenesis, neurogenesis, distinct facial features | Cleft palate, facial dysmorphology; Kabuki syndrome-like | (Chong et al., 2016; Tunovic et al., 2014) |
KDM2A | Lysine histone demethylase | with BCOR---inhibits odontogenic differentiation of human stem cells from apical papilla (SCAPS) | no known disease association | (Dong et al., 2013; Fan et al., 2009) |
KDM2B | Lysine histone demethylase | unknown; may lead to NT closure defects; with BCOR and recruited to the promoter of AP2alpha for osteogenesis OFCD patients roots of canine teeth | no known disease association | (Fan et al., 2009; Fukuda et al., 2011) |
KDM4A | Lysine histone demethylase | NCC specification | no known disease association | (Strobl-Mazzulla et al., 2010) |
KDM5B | Lysine histone demethylase | neurogenesis; development of craniofacial structures | Intellectual developmental disorder with facial dysmorphia | (Albert et al., 2013; Faundes et al., 2018) |
KDM5C | Lysine histone demethylase | NCC migration and differentiation; neurogenesis | Claes-Jensen syndrome; X-linked intellectual disability with facial dysmorphia | (Hatch & Secombe, 2022; Iwase et al., 2016; Y. Kim et al., 2018; Ounap et al., 2012; Vallianatos et al., 2020) |
KDM6A/UTX | Lysine histone demethylase; can interact with TFs, chromatin remodeling enzymes; and chromatin remodeling complex | NCC development post migration and differentiation of skeletal/craniofacial elements | Kabuki Syndrome | (Guo et al., 2022; Khodaeian et al., 2021; Lederer et al., 2012; Lindgren et al., 2013; Miyake, Koshimizu, et al., 2013; Miyake, Mizuno, et al., 2013; Ng et al., 2010; Porntaveetus et al., 2018; Shpargel et al., 2017; Van Laarhoven et al., 2015) |
KDM6B | Lysine histone demethylase | NCC differentiation to craniofacial elements; osteogenic commitment; neurogenesis | Neurodevelopmental disorder; facial/skeletal dysmorphology | (Burgold et al., 2008; Estaras et al., 2012; Guo et al., 2022; Xu et al., 2013) |
KMT2A | Lysine methyltransferase | NCC function undefined | Wiedemann-Steiner Syndrome | (Jones et al., 2012; Luo et al., 2021; Strom et al., 2014; Sun et al., 2017; Vallianatos et al., 2020) |
KMT2D/MLL2 | Lysine methyltransferase; can interact with TFs, chromatin remodeling enzymes; and chromatin remodeling complex | NCC formation, cell dispersion prior to migration; later development post migration and differentiation of skeletal/craniofacial elements | Kabuki Syndrome | (Bogershausen et al., 2016; Khodaeian et al., 2021; Lederer et al., 2012; Miyake, Koshimizu, et al., 2013; Ng et al., 2010; Porntaveetus et al., 2018; Schwenty-Lara et al., 2020; Shpargel et al., 2020; Shpargel et al., 2017; Van Laarhoven et al., 2015) |
KMT3A/SETD2 | Lysine histone methyltransferase | Early NCC specification and migration | Luscan-Lumish Syndrome; Sotos Syndrome | (Lumish et al., 2015; Luscan et al., 2014; Roffers-Agarwal et al., 2021; Sotos et al., 1964; van Rij et al., 2018) |
KMT5B | Lysine histone methyltransferase | NCC function undefined; formation of the craniofacial skeletal elements; neurogenesis; differentiation | Intellectual development disorder with facial dysmorphism; overgrowth syndrome; craniosynostosis | (Angerilli et al., 2023; Eliyahu et al., 2022; Faundes et al., 2018; Timberlake et al., 2023) |
MBD5 | Methyl-CpG-binding domain protein | NCC function undefined; formation of the craniofacial skeletal elements; neurogenesis; differentiation | Intellectual development disorder with facial dysmorphism 2q23.1 microdeletion, MAND syndrome | (Bonnet et al., 2013; Jaillard et al., 2009; Mullegama et al., 2014; Talkowski et al., 2011; van Bon et al., 2010; Williams, Mullegama, et al., 2010) |
NSD1/KMT3B | Lysine histone methyltransferase | NCC migration | Sotos Syndrome; some cases of Weaver syndrome | (Douglas et al., 2003; Hirai et al., 2011; Jacques-Fricke & Gammill, 2014; Makeyev & Bayarsaihan, 2013; Rayasam et al., 2003; Rio et al., 2003; Turkmen et al., 2003; Visser et al., 2012) |
NSD2/KMT3G/WHSC1 | Lysine histone methyltransferase | NCC migration; patterning of craniofacial structures | Wolf-Hirschhorn syndrome; Rauch-Steindl Syndrome | (Boczek et al., 2018; Jiang et al., 2019; S. Liu et al., 2015; Mills et al., 2019, 2020; Rauch et al., 2001; Zanoni et al., 2021) |
NSD3 | Lysine histone methyltransferase | NCC formation, specification and migration | chromatin remodeling disorders associated with craniofacial malformation | (Jacques-Fricke & Gammill, 2014; Jacques-Fricke et al., 2021) |
PHC1/RAE28 | Member of the Polycomb Group of genes | NCC formation and craniofacial patterning | CATCH-22 Syndrome; DiGeorge Syndrome-like | (Isono et al., 2005; Shirai et al., 2002; Takihara et al., 1997; Wilson et al., 1993) |
PHC2 | Member of the Polycomb Group of genes | NCC formation and craniofacial patterning | Non-syndromic Cleft lip/palate | (Isono et al., 2005; Marc et al., 2023; Shirai et al., 2002; Takihara et al., 1997) |
PHF6 | Plant homeodomain finger protein; chromatin reader | NCC function undefined; expressed in pharyngeal arches; neurogenesis | Coffin-Siris Syndrome; Borjeson-Forssman-Lehmann Syndrome | (Brunskill et al., 2014; Carter et al., 2009; Garcia-Melendo et al., 2021; Kosho, Okamoto, et al., 2014; Lower et al., 2002; Todd et al., 2015; Zweier et al., 2014) |
PHF8 | Plant homeodomain finger protein; chromatin reader; demethylase | NCC formation and differentiation toward craniofacial skeletal derivatives; neurogenesis | Siderious X-linked intellectual disability syndrome with craniofacial dysmorphology | (Han et al., 2015; Qi et al., 2010; Siderius et al., 1999; Sobering et al., 2023; Sobering et al., 2022) |
PHF12 | Plant homeodomain finger protein; histone deactylase complex member | NCC EMT and migration | no known disease association | (Adams et al., 2008; Strobl-Mazzulla & Bronner, 2012; Yochum & Ayer, 2001) |
POGZ | Pogo transposable element with Zinc Finger Domain | NCC function undefined; neurogenesis | White-Sutton Syndrome | (Assia Batzir et al., 2020; Assia Batzir et al., 1993; Markenscoff-Papadimitriou et al., 2021; Stessman et al., 2016; X. Sun et al., 2022; White et al., 2016; Ye et al., 2015) |
PRDM3/MECOM | Histone methyltransferase | NCC craniofacial development; differentiation of NCC derivatives; chondrocyte differentiation | Non-syndromic Cleft lip/palate | (Ding et al., 2013; Shull et al., 2022; Shull et al., 2020) |
PRDM16 | Histone methyltransferase | NCC craniofacial development; differentiation of NCC derivatives; chondrocyte differentiation | Non-syndromic Cleft lip/palate; Pierre-Robin Syndrome-like; neurogenesis | (Bjork et al., 2010; Ding et al., 2013; Liu et al., 2012; Motch Perrine et al., 2020; Shaffer et al., 2016; Shull et al., 2022; Shull et al., 2020; Strassman et al., 2017; Warner et al., 2013; Wilderman et al., 2018) |
RING1B/RNF2 | Polycomb repressive complex 1 | craniofacial chondrocyte differentiation | (van der Velden et al., 2013) | |
SATB2 | Special AT-rich sequence binding protein 2; binds nuclear matrix attachment regions; chromatin reader | NCC craniofacial patterning and differentiation of osteoblasts | SATB2-associated syndrome | (Britanova et al., 2005; Britanova et al., 2006; Dobreva et al., 2006; Dobreva et al., 2003; FitzPatrick et al., 2003; Huang et al., 2022; Kikuiri et al., 2018; Rainger et al., 2014; Scott et al., 2019; Urquhart et al., 2009; Zarate et al., 2019; Zarate & Fish, 2017) |
SETBP1 | SET Binding Protein; chromatin reader; recruits complexes | NCC function undefined; neurogenesis; formation of craniofacial elements | Schinzel-Giedion Syndrome | (Acuna-Hidalgo et al., 2017; Cardo et al., 2023; Hoischen et al., 2010; Leone et al., 2020; Liu et al., 2018; Piazza et al., 2018) |
SETD1B | SET Domain Containing 1B; Histone Lysine methyltransferase | NCC function undefined; neurogenesis; formation of craniofacial elements | Intellectual development disorder with facial dysmorphia | (Hiraide et al., 2019; Hiraide et al., 2018; Labonne et al., 2016; Roston et al., 2021; Weerts et al., 2021) |
SETD5 | SET Domain Containing 5; Histone Lysine methyltransferase | NCC formation; formation of the craniofacial skeletal elements | Intellectual development disorder with facial dysmorphia; KBG Syndrome | (Crippa et al., 2020; Deliu et al., 2018; Fernandes et al., 2018; Gabellini et al., 2022; Garcia-Gutierrez & Garcia-Dominguez, 2021; Grozeva et al., 2014; Kellogg et al., 2013; Kuechler et al., 2015; Nakagawa et al., 2022; Nakagawa et al., 2020; Parenti et al., 2017; Powis et al., 2018; Rawlins et al., 2017; Sessa et al., 2019; Szczaluba et al., 2016; Zaghi et al., 2023) |
SIN3A | Swi-independent protein 3A; Scaffolding regulator complexes with HDAC | NCC EMT; neurogenesis; formation of craniofacial elements | Witteveen-Kolk Syndrome | (Balasubramanian et al., 2021; Grzenda et al., 2009; Narumi-Kishimoto et al., 2019; Strobl-Mazzulla & Bronner, 2012; Witteveen et al., 2016; Yochum & Ayer, 2001) |
SMARCA2 | Member of SWI/SNF complex, repressor that binds chromatin; chromatin reader | NCC function undefined; neurogenesis | Nicolaides-Baraitser Syndrome; Blepharophimosis Intellectual Disability Syndrome | (Cappuccio et al., 2020; Chater-Diehl et al., 2019; Sanchez & Rojas, 2017; Sousa et al., 2014; Tang et al., 2017; Van Houdt et al., 2012) |
SMARCB1 | Member of SWI/SNF complex, repressor that binds chromatin; chromatin reader | NCC formation; neurogenesis; formation of the craniofacial skeletal elements | Coffin-Siris Syndrome 3 | (Diets et al., 2019; Kosho, Miyake, et al., 2014; Kosho, Okamoto, et al., 2014; Santen et al., 2013; Tsurusaki et al., 2012; Tsurusaki et al., 2014; Vitte et al., 2017; Wieczorek et al., 2013) |
SMARCE1 | Member of SWI/SNF complex, repressor that binds chromatin; chromatin reader | NCC function undefined; potentially involved in NCC differentiation via TWIST1 | Coffin-Siris Syndrome; Oculoauriculofrontonasal syndrome | (Kosho, Okamoto, et al., 2014; Miyake et al., 2014; Tsurusaki et al., 2012; Yano et al., 2018) |
WSTF | Williams Syndrome Transcription Factor; subunit of ATP-dependent chromatin remodelers WINAC, WICH, B-WICH | NCC formation, NCC migration and maintenance | Williams Syndrome | (Barnett & Krebs, 2011, 2015; Barnett et al., 2012; Culver-Cochran & Chadwick, 2013; Cus et al., 2006; Lu et al., 1998) |
Negative regulation by DNA Methylation
DNA methylation occurs when cytosine nucleotides in cytosine-guanine sequences (CpGs) are methylated (Cheng & Blumenthal, 2008, 2022). These areas are surrounded by other CpGs, creating CpG islands and are often located within promoter regions of genes. Methylated CpGs recruit transcriptional repressors, preventing transcriptional activation by inhibiting DNA-transcription factor interactions (Moore et al., 2013). During development, DNA methylation of specific gene regulatory networks or pathways is critical during cell fate determination, specification and lineage commitments (reviewed in (Altun et al., 2010)).
The process of DNA methylation occurs through the activity of DNA methyltransferases including DNMT1, DNMT3A and DNMT3B. DNMT1 serves as a maintenance methyltransferase by maintaining the patterns of methylation on newly synthesized DNA during DNA replication and repair. DNMT3A and DNMT3B establish a de novo methylation patterns by generating newly methylated CpGs, at promoter regions of genes. Several animal studies have shown DNMT3A and DNMT3B are responsible for suppressing tissue specific gene regulatory networks to facilitate cell fate decisions. In mice, Dnmt3a and Dnmt3b are highly expressed in early undifferentiated embryonic stem cells and their expression gradually decrease as cells become more differentiated (Okano, Bell, et al., 1999; Okano et al., 1998). DNMT3A functions in chick development to repress neural fates (by suppressing neuronal genes Sox2 and Sox3) to promote neural crest specification (Hu et al., 2012). Zebrafish DNMT3B, in cooperation with G9a, regulates neurogenesis and formation of the craniofacial skeletal elements, brain and retina (Rai et al., 2010). Further, studies in human embryonic stem cells have shown that knockdown of DNMT3B accelerates neural and neural crest differentiation by increasing expression of neural crest specifier genes (Pax3, Pax7, FoxD3, Sox10 and Snail2) (Martins-Taylor et al., 2012).
While mutations in DNMT3A have been associated with acute myeloid leukemia, mutations in DNMT3A have now been identified in patients presenting with congenital syndromes including Tatton-Brown-Rahman syndrome (TBRS) (also termed DNMT3A overgrowth syndrome (DOS)) (Tatton-Brown et al., 2013). This autosomal dominant disease manifests with overgrowth, macrocephaly, characteristic facial features or facial dysmorphism and intellectual disability and autism (Tatton-Brown et al., 2013; Yokoi et al., 2020). A recent study characterized the functional and epigenetic phenotypes of patients presenting with DNMT3A-associated TBRS/DOS (Smith et al., 2021). Through whole genome bisulfite sequencing on patient derived peripheral blood cells, they found a focal hypomethylation phenotype. Complementary to their human data analysis, the authors generated a mouse model that phenocopied the disease aspects of the human TBRS/DOS syndrome including hypomethylation (Smith et al., 2021). Patients with mutations in DNMT3B present with immunodeficiency-centromeric instability-facial anomalies (ICF), characterized by a widened nasal bridge and hypotelorism, and neurological dysfunction (Ehrlich et al., 2001; Jiang et al., 2005; Jin et al., 2008; Tuck-Muller et al., 2000). These DNMT3B mutations are conserved, as mouse models carrying homologous mutations to those found in patients with ICF develop similar phenotypes including distinct craniofacial abnormalities (Ueda et al., 2006).
Though numerous studies support a strong role for DNMT3B in neural crest and craniofacial development, Jacques-Fricke et al demonstrated that conditional loss of DNMT3B in the murine neural crest with either the Wnt1-Cre or Sox10-Cre does not cause craniofacial phenotypes, only mild neural crest migration defects (Jacques-Fricke et al., 2012). This discrepancy could be because DNMT3B is required much earlier in neural crest development than the Cres used are active, or because DNMT3B is also strongly expressed in other non-neural crest tissues including the neural and embryonic ectoderm. These primary effects of DNMT3B loss in other tissues is having a secondary effect on neural crest development. A recent study by Nowialis et al suggests DNMT3B carries dual functionality in mediating methylation without its catalytic domain and can function as an accessory cofactor supporting the catalytic activities of other DNMTs, including DNMT3A’s enzymatic activities (Nowialis et al., 2019). Investigating the cell type-specific nature of specialized dual roles of DNMT3B and its accessory function are needed to determine its functions in non-neural crest tissues or whether its function in neural crest development is cell autonomous.
Dual Activating and Repressing Functions of Histone Modifications
The core histones making up the nucleosome have tails that can be modified through post-translational modifications, including methylation, acetylation, deacetylation, phosphorylation, ubiquitination and sumoylation (Bannister & Kouzarides, 2011; Berger, 2007; Kouzarides, 2007). These modifications facilitate either chromatin compaction or relaxation. The histone marks present during neurulation and neural crest development dynamically change over the course of developmental time. This correlates with the specification and lineage commitments that progenitor cells accrue as their cell fates are established (reviewed in (Hu, Strobl-Mazzulla, & Bronner, 2014)). The functions of the proteins that facilitate dynamic histone modifications varies spatiotemporally across different cell types during development.
Depending on the histone protein, the residue, or the number of methyl groups being catalytically added, histone methylation is associated with either activation or repression of gene expression. For example, in most cases H3K4me1 marks poised enhancers/promoters and transcriptional activation; H3K4me3 marks active promoters and transcriptional activation; H3K27me3 indicates inactive promoters and transcriptional repression; H3K9me1 and H3K9me3 mark heterochromatin and are associated with transcriptional repression (reviewed in (Bannister & Kouzarides, 2011)). The addition of methyl groups is achieved through the activity of histone methyltransferases while histone demethylases remove them. Below are some examples of histone methyltransferases and demethylases associated with congenital craniofacial defects and neural crest development.
KDM4A, a member of the Jumonji family of demethylases, catalytically reverts histone trimethylation of H3K9me3 and H3K36me3 (Tan et al., 2008). In chick, KDM4A directly interacts with promoter regions of Sox10 and Snail2 that are occupied by H3K9me3 to ensure neural crest specification (Strobl-Mazzulla et al., 2010). While no congenital craniofacial anomalies have been associated with KDM4A yet, human variants in another demethylase, KDM5B, have been associated with intellectual developmental disorder and facial dysmorphism (Faundes et al., 2018). In mice, loss of Kdm5b results in disorganized cranial nerves, defects in eye development, incidences of exencephaly as well as homeotic skeletal transformations as a result of aberrant accumulation of H3K4me3 at normally inactive genes encoding developmental regulators (Albert et al., 2013). Mutations in another histone demethylase, KDM5C which catalyzes the demethylation of H3K4me2/3, has been associated with Claes-Jensen X-linked intellectual disability syndrome with facial dysmorphia (Hatch & Secombe, 2022; Ounap et al., 2012; Vallianatos et al., 2020). In Xenopus laevis, KDM5C is important for neural crest specification and migration as well as neurogenesis (Y. Kim et al., 2018).
Patients with mutations in plant homeodomain finger protein, PHF8, have Siderious X-linked intellectual disability and craniofacial dysmorphology (Sobering et al., 2023; Sobering et al., 2022). PHF8 is a histone demethylase that targets reversal of H4K20me1 and H3K9me1 at transcription start sites to initiate transcription. In zebrafish, PHF8 is necessary for NCC formation and differentiation of craniofacial skeletal derivatives by directly regulating expression the transcription factor, MsxB (Qi et al., 2010). Another PHF family member, PHF12, promotes neural crest cell migration by establishing the NCC epithelial-to-mesenchymal transition (Adams et al., 2008; Strobl-Mazzulla & Bronner, 2012; Yochum & Ayer, 2001), yet no known human congenital disease has been associated with PHF12 as of yet.
The epigenetic etiologies of Kabuki Syndrome are of interest due to the identification of two histone methylation modifiers associated with the disease, histone demethylase KDM6A and histone methyltransferase KMT2D (also known as MLL2) (Bogershausen et al., 2016; Lederer et al., 2012; Miyake, Koshimizu, et al., 2013; Miyake, Mizuno, et al., 2013; Ng et al., 2010). Kabuki syndrome is a multiple congenital anomaly syndrome characterized by distinctive facial features, developmental delay, intellectual disability and cardiovascular and musculoskeletal abnormalities (Lederer et al., 2012; Miyake, Koshimizu, et al., 2013; Miyake, Mizuno, et al., 2013; Ng et al., 2010). Most Kabuki syndrome cases have been associated with KMT2D which catalyzes the methylation of H3K4 to activate transcription. Though less common, some Kabuki syndrome patients harbor mutations in KDM6A which functions to demethylate H3K27 and remove repressive marks (Miyake, Koshimizu, et al., 2013). Both kmt2d morphant and mutant zebrafish develop phenotypes to those observed in Kabuki Syndrome patients including microcephaly, palate defects, abnormal ear development and cardiac defects, while kdm6a zebrafish morphants only develop craniofacial phenotypes (Serrano et al., 2019; Van Laarhoven et al., 2015). In mice, KDM6A, mainly functions through demethylase-independent transcriptional mechanisms to maintain neural crest stem-cell progenitor states and NCC viability to promote neural crest differentiation toward osteochondroprogenitor cell fates (Shpargel et al., 2017). Loss of KMT2D causes similar craniofacial malformations as those in KDM6A mutant mice, with some differences, such as a fully penetrate cleft palate, mandibular hypoplasia, and defects in cranial base ossification, suggesting KMT2D functions in later stages of NCC differentiation (Schwenty-Lara et al., 2020; Shpargel et al., 2020).
Two euchromatin histone methyltransferases, EHMT1 (also known as GLP) and EHMT2 (also known as G9a) are associated with Kleefstra syndrome (Kleefstra et al., 2009). These two histone methyltransferases promote the demethylation of H3K9 to H3K9me2. EHMT1 mutant mice phenocopied the disease characteristics of Kleefstra syndrome patients, particularly in the development of the brachycephalic crania, shorter or bent nose, and hypotelorism (Balemans et al., 2014). EHMT1 controls H3K9me2 to repress osteoblastic developmental programs (Balemans et al., 2014; N. Liu et al., 2015). Like EHMT1, EHMT2/G9a also regulates osteogenic differentiation during craniofacial development, though through opposing mechanisms. Neural crest specific ablation of G9a in mice causes craniofacial defects mimicking those present in Kleefstra syndrome, including hypoplasia of the lower jaw (Higashihori et al., 2017). G9a catalyzes the methylation of Twist to repress expression of progenitor state genes and facilitate osteogenic programs (Higashihori et al., 2017). Additionally, G9a directly activates Runx2 to promote osteoblast differentiation (Ideno et al., 2020). G9a can also cooperate with other epigenetic regulators and transcription factors to facilitate spatiotemporal activation and repression of developmental programs (Rai et al., 2010). The changes in function or gene targets of G9a depend on timing, tissue specificity, and the expression of other binding partners.
One other member of the histone methyltransferase family that has been studied more recently in neural crest development are the PRDM or positive regulatory domain methyltransferases, PRDM3 (also called MECOM) and PRDM16. Both PRDM3 and PRDM16 have been associated with development of non-syndromic cleft lip and palate as well as variation in normal facial morphology (Jugessur et al., 2010; Liu et al., 2012; Shaffer et al., 2016). PRDM16 is also considered a Pierre Robin Syndrome (PRS) loci, based on phenotypes observed in mutant mouse models that closely resemble the phenotypes observed in patients with PRS (mandibular hypoplasia, tongue displacement and cleft palate) (Bjork et al., 2010; Shull et al., 2022; Shull et al., 2020; Strassman et al., 2017). PRDM3 and PRDM16 are expressed in neural crest derived tissues, including the facial processes and exhibit intrinsic methyltransferase activity by modifying H3K9me3 and H3K4me3 (Baizabal et al., 2018; Pinheiro et al., 2012; Shull et al., 2020; Zhou et al., 2016). In zebrafish, PRDM3 and PRDM16 drive craniofacial chondrocyte differentiation, albeit through opposition functions, whereby PRDM3 acts a traditional repressor of gene expression while PRDM16 serves more as an activator of gene expression (Shull et al., 2022). Both share similar gene targets, including factors involved in Wnt/β-catenin signaling (Shull et al., 2022). An epigenomic atlas of human embryonic craniofacial development and identified a significantly enriched super-enhancer region encompassing the PRDM16 gene suggesting many important functions of this gene (and its paralog, PRDM3) in contributing to the spatiotemporal regulation of many gene regulatory networks in craniofacial development (Wilderman et al., 2018).
Histone acetylation, or the addition of acetyl groups to lysine residues on histone tails through the activity of histone acetyltransferases (HATs), allows for chromatin relaxation, increased DNA accessibility to transcription factors and active transcription. Histone deacetylases (HDACs) directly antagonize the activity of HATs by removing acetyl groups causing chromatin compaction and repression of gene expression. With their corresponding effects on gene expression, HATs have also been identified as co-transcriptional activators, while HDACs have been identified as transcriptional co-repressors (Bannister & Kouzarides, 2011; Kouzarides, 2007). As with the other histone modifiers described above, the dynamic nature of HATs and HDACs and their influences on gene expression suggests their importance in spatiotemporally controlling gene regulatory networks necessary for developmental processes.
The lysine acetyltransferase, KAT6A was identified with patients presenting with Arboleda-Tham Syndrome (also termed KAT6A syndrome), characterized by developmental delay, intellectual disability, and distinct facial features (Arboleda et al., 2015; Bae et al., 2021; Satoh et al., 2017; Tham et al., 2015). De novo mutations in KAT6A have also been associated with pan-craniosynostosis (Marji et al., 2021). Kat6a mutant mice develop phenotypes similar to those observed in humans, including palate defects and abnormal facial structures (Voss et al., 2012). KAT6A acetylates H3K9 and controls the expression of the transcription factor TBX1 and subsequently neural crest migration (Voss et al., 2012). Loss of Kat6a in mice alters expression of craniofacial patterning genes, including members of the DLX gene family (Dlx1/2/3/4/5), genes regulated by Dlx factors (Barx1, Gbx2, Osr2, and Sim2), and genes important for osteoblast differentiation (Runx2, Pax9 and Nkx3-1) (Vanyai et al., 2019). In zebrafish, kat6a (also called moz), along with hox genes, specifies and patterns neural crest cells toward specific skeletal structures (Crump et al., 2006). KAT6A’s paralog, KAT6B, is associated with several congenital diseases with facial dysmorphia (Noonan Syndrome, Ohdo Syndrome, and Genitopatellar Syndrome) (Campeau et al., 2012; Clayton-Smith et al., 2011; Simpson et al., 2012; Szakszon et al., 2013; Wiesel-Motiuk & Assaraf, 2020). Like KAT6A, KAT6B activates osteogenic differentiation by interacting with RUNX2 through the C-terminal serine/methionine domains (Pelletier et al., 2002). Two other histone acetyltransferases, KAT2A (also known as GCN5) and KAT2B (also known as PCAF) control craniofacial chondrocyte differentiation and maturation programs through direct histone acetylation of H3K9 as well as through non-histone acetyltransferase activity and indirect control of the mTORC1 pathway (Dong et al., 2023; Pezoa et al., 2020; Sen et al., 2018).
Like HATs, histone deacetylases, HDACs, have important roles in controlling neural crest EMT and migration. The transcriptional repressor, Snail2, interacts with an HDAC/Sin3A repressive complex via an adaptor protein PHD12, to repress expression of the adhesion molecule Cad6B in premigratory neural crest cells (Strobl-Mazzulla & Bronner, 2012). HDACs are important later in development in regulating downstream differentiation of neural crest cells toward different craniofacial derivatives. In zebrafish, loss of hdac1 results in decreased hoxb3a, dlx2, and dlx3-expressing posterior pharyngeal arch precursors that are specified due to increased apoptosis of these cells. Anterior pharyngeal arch precursors survive but have limited differentiation capacity as evidenced by failure of chondrocyte precursors in these regions to terminally differentiate (Ignatius et al., 2013; Pillai et al., 2004). In mice, HDAC1 and HDAC2 are necessary for neural crest proliferation, development in the pharyngeal arches and formation of the craniofacial structures by repressing cyclin-dependent kinase inhibitors (Milstone et al., 2017). These studies provide mechanistic insight into the etiology of some patients with craniofacial abnormalities with unknown origin in chromosomal regions. For example, copy number variations at 1p35, a region encompassing HDAC1 and 6q21-22, a region encompassing HDAC2 were found in patients with craniofacial malformations, perhaps due to altered neural crest cell proliferation and differentiation potential (Hudson et al., 2014; Rao & LaBonne, 2018).
HDAC4 has been associated Brachydactyly-Mental Retardation Syndrome and non-syndromic clefts (Park et al., 2006; Villavicencio-Lorini et al., 2013; Williams, Aldred, et al., 2010). In zebrafish, hdac4 is highly expressed in migratory cranial neural crest cells and knockdown of hdac4 reduces cranial neural crest cell populations that reach the pharyngeal arches which ultimately impairs differentiation and formation of the cartilaginous craniofacial structures (DeLaurier et al., 2012). In mice, loss of Hdac4 alters frontal bone formation due to decreased proliferative capacity of osteoblast precursors as a result of dysregulated cell cycle-related genes (Ha et al., 2022). Similarly, loss of Hdac8, both globally and specifically in murine neural crest cells impairs cranial morphogenesis with ossification defects in the frontal and interparietal bones (Haberland et al., 2009). HDAC8 represses aberrant expression of homeobox transcription factors Otx2 and Lhx1 necessary for patterning portions of the neural crest derived calvaria (Haberland et al., 2009). Mutations in HDAC8 have been identified in patients with Cornelia de Lange Syndrome and Wilson-Turner Syndrome, both associated with slow and delayed developmental growth and abnormal formation of the craniofacial complex (Deardorff et al., 2012; Deardorff et al., 2016; Gao et al., 2018; Harakalova et al., 2012; Kaiser et al., 2014; Lucia-Campos et al., 2022; Mio et al., 2021; Shaffer et al., 2016).
In summary, histone modifications, either through lysine methyltransferases, lysine demethylases, HATs or HDACs, have important roles in controlling methylation and acetylation patterns of different histone marks necessary to facilitate proper spatiotemporal activation or repression of neural crest gene regulatory networks. As described above, their activities have numerous effects on neural crest development from proliferation, specification, migration and differentiation. Alterations in their activity can hinder neural crest development and result in congenital craniofacial birth defects.
Large Protein Complexes Influence Chromatin Structure: Polycomb Repressive Complex
The polycomb repressive complex, PRC1 and PRC2, are well studied transcriptional repressor complexes. Both PRC1 and PRC2 are multimeric protein complexes that function to suppress gene expression (Piunti & Shilatifard, 2021, 2022). One well known protein component of PRC2 is EZH2 or enhancer of zest homolog 2. EZH2 carries the catalytic activity of PRC2 by initiating mono-di-tri methylation of H3K27 (O’Carroll et al., 2001; Rea et al., 2000). Conditional ablation of Ezh2 in pre-migratory murine neural crest cells leads to a de-repression of Hox genes in cranial neural crest cells (H. Kim et al., 2018; Schwarz et al., 2014). This misexpression of Hox genes maintains cranial neural crest cells in a pre-differentiation state, thereby suppressing activation of osteochondroprogenitor programs, affecting subsequent cartilage and bone formation (Schwarz et al., 2014). Numerous other studies have demonstrated the importance of EZH2 in regulating osteochondroprogenitor differentiation programs (Camilleri et al., 2018; Dudakovic et al., 2018; Dudakovic et al., 2015; Dudakovic et al., 2020). Mutations in EZH2 have been identified in patients with Weaver Overgrowth Syndrome, a genetic condition that causes bone overgrowth (Cohen et al., 2016; Lui et al., 2018; Tatton-Brown et al., 2013).
Ring1b/Rnf2, which functions as an E3 ubiquitin ligase in the PRC1 complex, controls craniofacial chondrocyte differentiation (van der Velden et al., 2013). Zebrafish ring1b mutants do not develop cranial cartilage or bone due to impaired chondrocyte differentiation. Other PRC proteins, PHC1 and PHC2, are important in neural crest cell formation and patterning craniofacial skeletal elements by regulating Hox expression (Isono et al., 2005; Marc et al., 2023). These two factors have also been associated with congenital diseases including CATCH-22 syndrome (PHC1) as well as patients presenting with DiGeorge Syndrome like phenotypes (PHC1) and non-syndromic cleft lip and palate (PHC2) (Marc et al., 2023; Shirai et al., 2002; Takihara et al., 1997; Wilson et al., 1993). ASXL proteins (Additional sex combs-like) ASXL1/2/3, which serve as scaffolds in the PRC complex, have important roles in early neural crest development, from generation of neural crest to delamination and emigration (Lichtig et al., 2020; Matheus et al., 2019). Patients with mutations in ASXL genes have been linked to Bohring-Opitz Syndrome (ASXL1), Shashi-Pena Syndrome (ASXL2) and Bainbridge-Ropers Syndrome (ASXL3) (Dinwiddie et al., 2013; Koboldt et al., 2018; Kuechler et al., 2017; Shashi et al., 2016; Shashi et al., 2017; Zhao et al., 2021). These neurodevelopmental disorders are different from one another, but share similar phenotypes including dramatic craniofacial defects, microcephaly and developmental delay and severe intellectual disability. In Xenopus laevis, knockdown of ASXL3 disrupts neural cell fate specification and the phenotype of the mutant animals resembles the phenotypes observed in Bainbridge-Ropers patients (Lichtig et al., 2020).
Large Protein Complexes Influence Chromatin Structure: ATP-Dependent Chromatin Remodeling Complexes
ATP-dependent chromatin remodeling complexes control gene expression by altering the position or structure of chromatin in an ATP-dependent manner. These complexes remodel and reposition chromatin to create nucleosome free regions that allow transcription factors access to the DNA and initiate transcription (Bannister & Kouzarides, 2011; Kouzarides, 2007). One ATP-dependent chromatin remodeling complex, the SWI/SNF complex consists of several components that function together to drive gene expression, these include ARID1A and ARID1B, BRG1 (SMARCA4), BRM, BAF155, BAF157, as well as SMARCA2, SMARCB1 and SMARCE1, among others (Cenik & Shilatifard, 2021; Sokpor et al., 2017). Independent loss of each separate component of the complex has profound effects on neural crest development and formation of the craniofacial complex. The majority of patients presenting with Coffin-Siris Syndrome carry mutations in one of the SWI/SNF chromatin remodeling complex subunits, particularly in the subunits found in ARID1A and ARID1B (Diets et al., 2019; Kosho, Miyake, et al., 2014; Kosho, Okamoto, et al., 2014; Miyake et al., 2014; Pagliaroli et al., 2021; Santen et al., 2013; Tsurusaki et al., 2012; Tsurusaki et al., 2014; Tzeng et al., 2014; Wieczorek et al., 2013; Xia et al., 2023). This disease is characterized by developmental disability, distinct facial features and abnormalities of the fifth fingers or toes (Tsurusaki et al., 2012; Vasileiou et al., 2018). Loss of Arid1a in neural crest cells causes severe craniofacial defects in mice, including shortened snouts, low set ears and reduced ventral cranial bones (Chandler & Magnuson, 2016). Recently, Pagliaroli et al utilized ARID1B haploinsufficient Coffin-Siris patient-derived iPSCs to model cranial neural crest development. In this study, ARID1B was active only during the first stage of neural crest formation, coinciding with neuroectoderm specification (Pagliaroli et al., 2021). ARID1B regulates the exit from pluripotency and lineage commitment by inactivating NANOG and SOX2 gene regulatory networks. In control iPSCs, ARID1A maintains the pluripotency state but at the onset of differentiation, cells transition from ARID1A to ARID1B to trigger the pluripotency exit and begin differentiation toward specific cell types. However, in iPSCs derived from Coffin-Siris patients, the cells fail to perform the ARID1A/ARID1B switch and instead maintain an ARID1A-dependent pluripotency state throughout all stages of cranial neural crest formation, impairing differentiation of neural crest derivatives (Pagliaroli et al., 2021).
Mutations in BRG1 is also associated with Coffin-Siris Syndrome (Miyake et al., 2014; Tsurusaki et al., 2012; Tsurusaki et al., 2014; Tzeng et al., 2014). BRG1 is the ATPase subunit of the SWI/SNF Brg1/Brahman associated factor (BAF) complex. Loss of Brg1 in neural crest cells leads to aberrant survival, migration and differentiation. Brg1 is necessary for maintaining a multipotent reservoir of neural crest cells primed for differentiation (Li et al., 2013). In zebrafish brg1 is necessary for neural crest induction and specification as expression of neural crest specifiers are severely affected in brg1 morphants, while mutants have more pronounced craniofacial abnormalities (Eroglu et al., 2006). Additionally, Brg1 may control chondrocyte differentiation through interactions between Med14 a component of the Mediator complex and BAF complex (Lou et al., 2015).
Loss of BAF155/BAF170, the core subunits required for the assembly, stability, and function of the BAF complex in neural crest cells, leads to a variety of neural crest defects, including cardiac outflow tract defects and craniofacial abnormalities by controlling expression of pathways essential for neural crest survival, migration, proliferation and differentiation (Bi-Lin et al., 2021). Though their functions are currently less defined, new evidence suggests different members of the SWI/SNF complex that can bind and read chromatin, SMARCA2, SMARCB1 and SMARCE1 control neural crest formation and differentiation of different craniofacial structures (Diets et al., 2019; Kosho, Okamoto, et al., 2014; Sanchez & Rojas, 2017; Sousa et al., 2014; Tang et al., 2017; Van Houdt et al., 2012; Vitte et al., 2017; Yano et al., 2018).
Another ATP-dependent chromatin domain helicase DNA-binding domain member, CHD7 has been well characterized in neural crest development. Mutations in CHD7 are present in patients with CHARGE syndrome (Lalani et al., 2006). CHD7 cooperates with PBAF (polybromo- and BRG1-associated factor-containing complex) to promote neural crest gene expression (activation of Sox9, Twist, and Slug) and neural crest cell migration (Bajpai et al., 2010). Knockdown or overexpression of CHD7 in Xenopus embryos recapitulates the major phenotypes in CHARGE syndrome (Bajpai et al., 2010). Loss of Chd7 in mice leads to craniofacial defects including frontal and occipital bone dysplasia, hypoplasia of the maxillary shelves and mandible, and a cleft palate (Bosman et al., 2005; Hurd et al., 2010; Sperry et al., 2014). A zebrafish chd7 genetic mutant recapitulates the craniofacial and cardiovascular defects that co-occur in patients with CHARGE syndrome and further showed disrupted chondrocyte cellular organization and stacking within cartilage structures (Y. Sun et al., 2022). The variety of CHD7 mutant animal models for CHARGE syndrome will help delineate the molecular functions of CHD7 and how alterations to its activity contribute to the etiology of CHARGE syndrome.
The Function of Other Epigenetic Regulators
There are other epigenetic regulators that are important for craniofacial development and do not fall into the above categories. For example, the special AT-rich sequence binding protein 2 is a chromatin reader that binds nuclear matrix-attachment regions to activate transcription (Britanova et al., 2005; Dobreva et al., 2003). In humans, translocations that involve the chromosomal region 2q32-q33 have been found to encompass the SATB2 gene (Urquhart et al., 2009; Zarate & Fish, 2017). These translocations are associated with cleft palate (FitzPatrick et al., 2003). Other mutations in SATB2 have now been associated with SATB2-associated syndrome which is characterized by intellectual disability, developmental delay with craniofacial and dental abnormalities (Huang et al., 2022; Kikuiri et al., 2018; Rainger et al., 2014; Scott et al., 2019; Urquhart et al., 2009; Zarate et al., 2019; Zarate & Fish, 2017). Satb2 mutant mice have both craniofacial abnormalities that resemble the phenotypes of humans with translocations in SATB2, as well as defects in osteoblast differentiation (Dobreva et al., 2006). SATB2 regulates skeletal patterning by controlling expression of Hox genes and later drives osteogenic programs by directly regulating the expression of Runx2 and ATF4 as well as other craniofacial patterning genes (Pax9, Msx1, Alx4, and Lhx7). These studies implicate two functions of SATB2 during neural crest development, one early to promote neural crest cell survival and later, to drive osteogenic differentiation programs during the formation of craniofacial structures.
Conclusions and Future Challenges for the Field
The formation of the craniofacial complex relies on precise activation and or repression of different gene regulatory network and signaling cascades during cranial neural crest cell development. Epigenetic factors control the upstream transcriptional networks that govern the complex process of craniofacial development. Because these factors control genomic access to important developmental transcriptional and signaling genes, alterations to the timely orchestration of these events can compromise neural crest cell development and ultimately contribute to the etiology of congenial birth defects that affect the craniofacial skeleton. These birth defects include, but are not limited to the ones highlighted here, CHARGE Syndrome, Coffin-Siris syndrome, Keefstra Syndrome, Weaver Syndrome, Kabuki Syndrome, as well as non-syndromic craniofacial abnormalities including cleft lip and palate, among others. While there are other factors associated with the development of these diseases, there is growing evidence suggesting the importance of epigenetic regulators and how their altered activity contributes to these congenital diseases. In this review, we discussed the functions of epigenetic modifiers and the vastly growing number of syndromes with mutations specifically associated with these chromatin remodelers. We also discussed the ongoing work to delineate the functions of these factors during normal development and how alterations to their activities contributes to developmental disorders affecting neural crest development and formation of the craniofacial skeleton.
The influence of environmental factors on the genome and epigenome during embryonic and fetal development can have drastic consequences on the development of highly sensitive tissues including the neural crest and subsequently neural crest derived tissues, particularly the craniofacial skeleton. Understanding how such environmental stressors impact the epigenome is necessary to understand how they influence craniofacial development. Defining what extent environmental and teratogenic factors have on neural crest and craniofacial development will be important for determining how outside factors can influence the epigenome, which could in turn be used to provide therapeutic or environmental intervention during a pregnancy. While this represents a challenge it is also presents a therapeutic opportunity. Treatment options that modify methylation (i.e. folic acid) and other modifications can be delivered to the pregnant mother to provide a positive effect on the developing embryo and fetus. While outside stressors influence embryonic and fetal development, it is also interesting to think about how environmental factors impact facial morphology later in life, especially given the changes in facial structure that can occur from early postnatal development, adolescence and into aging adulthood.
Given the widespread and varying functionality of epigenetic factors across different stages of neural crest development, that correlate with the gene expression changes needed to facilitate the transitions from early neural crest specification to differentiation of different derivatives, it makes sense that different progenitor cell populations, cell lineages and tissues are associated with different combinations of epigenetic modifications over the course of their differentiation trajectories. The dynamic changes in and the factors that control the deposition of the marks in neural crest cells and the craniofacial specific derivatives have only started to be elucidated. Further investigating these functions will provide us with a greater understanding of how alterations to these factors and their epigenetic activities leads to congenital craniofacial birth defects. New advances in epigenetic technologies will allow for a deeper investigation into the mechanisms of epigenetic function, including Cleavage Under Targets and Release Using Nuclease (CUT&RUN), single cell Multiomics, ATAC-seq, and HiC-seq to assess enhancer-promoter interactions and 3D chromatin architecture in the context of neural crest development and craniofacial skeletal biology. These sequencing technologies can be used in both human control samples versus syndromic patient-derived samples, as well as with animal models (genetic mutants as compared to wildtype). These studies will greatly expand our understanding of how epigenetic regulators control these gene regulatory networks from a mechanistic standpoint.
Acknowledgements
This work is supported by the National Institute of Dental and Craniofacial Research (R01 DE024034 to KBA and K99/R00 DE031349 to LCS). Research in this area of study is constantly expanding and cannot be entirely encompassed in a single review. We apologize to researchers whose work we inadvertently omitted or were not able to discuss due to space limitations.
Footnotes
Data Availability
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Conflict of Interest Statement
The authors declare no competing interests.
REFERENCES
- Acuna-Hidalgo R, Deriziotis P, Steehouwer M, Gilissen C, Graham SA, van Dam S, Hoover-Fong J, Telegrafi AB, Destree A, Smigiel R, Lambie LA, Kayserili H, Altunoglu U, Lapi E, Uzielli ML, Aracena M, Nur BG, Mihci E, Moreira LM, Borges Ferreira V, Horovitz DD, da Rocha KM, Jezela-Stanek A, Brooks AS, Reutter H, Cohen JS, Fatemi A, Smitka M, Grebe TA, Di Donato N, Deshpande C, Vandersteen A, Marques Lourenco C, Dufke A, Rossier E, Andre G, Baumer A, Spencer C, McGaughran J, Franke L, Veltman JA, De Vries BB, Schinzel A, Fisher SE, Hoischen A, & van Bon BW (2017, Mar). Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies. PLoS Genet, 13(3), e1006683. 10.1371/journal.pgen.1006683 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams MS, Gammill LS, & Bronner-Fraser M (2008, Apr). Discovery of transcription factors and other candidate regulators of neural crest development. Dev Dyn, 237(4), 1021–1033. 10.1002/dvdy.21513 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albert M, Schmitz SU, Kooistra SM, Malatesta M, Morales Torres C, Rekling JC, Johansen JV, Abarrategui I, & Helin K (2013, Apr). The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3. PLoS Genet, 9(4), e1003461. 10.1371/journal.pgen.1003461 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allis CD, & Jenuwein T (2016, Aug). The molecular hallmarks of epigenetic control. Nat Rev Genet, 17(8), 487–500. 10.1038/nrg.2016.59 [DOI] [PubMed] [Google Scholar]
- Altun G, Loring JF, & Laurent LC (2010, Jan 1). DNA methylation in embryonic stem cells. J Cell Biochem, 109(1), 1–6. 10.1002/jcb.22374 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Angerilli A, Tait J, Berges J, Shcherbakova I, Pokrovsky D, Schauer T, Smialowski P, Hsam O, Mentele E, Nicetto D, & Rupp RA (2023, Jul). The histone H4K20 methyltransferase SUV4-20H1/KMT5B is required for multiciliated cell differentiation in Xenopus. Life Sci Alliance, 6(7). 10.26508/lsa.202302023 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arboleda VA, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo CF, Manning MA, Kwan A, Hudgins L, Barthelemy F, Miceli MC, Quintero-Rivera F, Kantarci S, Strom SP, Deignan JL, Center UCG, Grody WW, Vilain E, & Nelson SF (2015, Mar 5). De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet, 96(3), 498–506. 10.1016/j.ajhg.2015.01.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assia Batzir N, Posey JE, Song X, Akdemir ZC, Rosenfeld JA, Brown CW, Chen E, Holtrop SG, Mizerik E, Nieto Moreno M, Payne K, Raas-Rothschild A, Scott R, Vernon HJ, Zadeh N, Baylor-Hopkins Center for Mendelian, G., Lupski JR, & Sutton VR. (2020, Jan). Phenotypic expansion of POGZ-related intellectual disability syndrome (White-Sutton syndrome). Am J Med Genet A, 182(1), 38–52. 10.1002/ajmg.a.61380 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assia Batzir N, White J, & Sutton VR (1993). White-Sutton Syndrome. In Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, & Amemiya A (Eds.), GeneReviews((R)). https://www.ncbi.nlm.nih.gov/pubmed/34529370 [PubMed] [Google Scholar]
- Babu A, Kamaraj M, Basu M, Mukherjee D, Kapoor S, Ranjan S, Swamy MM, Kaypee S, Scaria V, Kundu TK, & Sachidanandan C (2018, Apr). Chemical and genetic rescue of an ep300 knockdown model for Rubinstein Taybi Syndrome in zebrafish. Biochim Biophys Acta Mol Basis Dis, 1864(4 Pt A), 1203–1215. 10.1016/j.bbadis.2018.01.029 [DOI] [PubMed] [Google Scholar]
- Bae S, Yang A, Kim J, Lee HJ, & Park HK (2021, Dec 20). Identification of a novel KAT6A variant in an infant presenting with facial dysmorphism and developmental delay: a case report and literature review. BMC Med Genomics, 14(1), 297. 10.1186/s12920-021-01148-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baggiolini A, Callahan SJ, Montal E, Weiss JM, Trieu T, Tagore MM, Tischfield SE, Walsh RM, Suresh S, Fan Y, Campbell NR, Perlee SC, Saurat N, Hunter MV, Simon-Vermot T, Huang TH, Ma Y, Hollmann T, Tickoo SK, Taylor BS, Khurana E, Koche RP, Studer L, & White RM (2021, Sep 3). Developmental chromatin programs determine oncogenic competence in melanoma. Science, 373(6559), eabc1048. 10.1126/science.abc1048 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baizabal JM, Mistry M, Garcia MT, Gomez N, Olukoya O, Tran D, Johnson MB, Walsh CA, & Harwell CC (2018, Jun 6). The Epigenetic State of PRDM16-Regulated Enhancers in Radial Glia Controls Cortical Neuron Position. Neuron, 98(5), 945–962 e948. 10.1016/j.neuron.2018.04.033 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, & Wysocka J (2010, Feb 18). CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463(7283), 958–962. 10.1038/nature08733 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balasubramanian M, Dingemans AJM, Albaba S, Richardson R, Yates TM, Cox H, Douzgou S, Armstrong R, Sansbury FH, Burke KB, Fry AE, Ragge N, Sharif S, Foster A, De Sandre-Giovannoli A, Elouej S, Vasudevan P, Mansour S, Wilson K, Stewart H, Heide S, Nava C, Keren B, Demirdas S, Brooks AS, Vincent M, Isidor B, Kury S, Schouten M, Leenders E, Chung WK, Haeringen AV, Scheffner T, Debray FG, White SM, Palafoll MIV, Pfundt R, Newbury-Ecob R, & Kleefstra T (2021, Apr). Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype. Eur J Hum Genet, 29(4), 625–636. 10.1038/s41431-020-00769-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balemans MC, Ansar M, Oudakker AR, van Caam AP, Bakker B, Vitters EL, van der Kraan PM, de Bruijn DR, Janssen SM, Kuipers AJ, Huibers MM, Maliepaard EM, Walboomers XF, Benevento M, Nadif Kasri N, Kleefstra T, Zhou H, Van der Zee CE, & van Bokhoven H (2014, Feb 15). Reduced Euchromatin histone methyltransferase 1 causes developmental delay, hypotonia, and cranial abnormalities associated with increased bone gene expression in Kleefstra syndrome mice. Dev Biol, 386(2), 395–407. 10.1016/j.ydbio.2013.12.016 [DOI] [PubMed] [Google Scholar]
- Balow SA, Pierce LX, Zentner GE, Conrad PA, Davis S, Sabaawy HE, McDermott BM Jr., & Scacheri PC (2013, Oct 1). Knockdown of fbxl10/kdm2bb rescues chd7 morphant phenotype in a zebrafish model of CHARGE syndrome. Dev Biol, 382(1), 57–69. 10.1016/j.ydbio.2013.07.026 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bannister AJ, & Kouzarides T (2011, Mar). Regulation of chromatin by histone modifications. Cell Res, 21(3), 381–395. 10.1038/cr.2011.22 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnett C, & Krebs JE (2011, Feb). WSTF does it all: a multifunctional protein in transcription, repair, and replication. Biochem Cell Biol, 89(1), 12–23. 10.1139/O10-114 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnett C, & Krebs JE (2015, Aug). Addendum to "WSTF does it all: a multifunctional protein in transcription, repair, and replication". Biochem Cell Biol, 93(4), 421. 10.1139/bcb-2015-0078 [DOI] [PubMed] [Google Scholar]
- Barnett C, Yazgan O, Kuo HC, Malakar S, Thomas T, Fitzgerald A, Harbour W, Henry JJ, & Krebs JE (2012, Sep-Dec). Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis. Mech Dev, 129(9-12), 324–338. 10.1016/j.mod.2012.06.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartsch O, Labonte J, Albrecht B, Wieczorek D, Lechno S, Zechner U, & Haaf T (2010, Jan). Two patients with EP300 mutations and facial dysmorphism different from the classic Rubinstein-Taybi syndrome. Am J Med Genet A, 152A(1), 181–184. 10.1002/ajmg.a.33153 [DOI] [PubMed] [Google Scholar]
- Bastaki F, Nair P, Mohamed M, Malik EM, Helmi M, Al-Ali MT, & Hamzeh AR (2017, Jun 15). Identification of a novel CTCF mutation responsible for syndromic intellectual disability - a case report. BMC Med Genet, 18(1), 68. 10.1186/s12881-017-0429-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger SL (2007, May 24). The complex language of chromatin regulation during transcription. Nature, 447(7143), 407–412. 10.1038/nature05915 [DOI] [PubMed] [Google Scholar]
- Berube NG, Mangelsdorf M, Jagla M, Vanderluit J, Garrick D, Gibbons RJ, Higgs DR, Slack RS, & Picketts DJ (2005, Feb). The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J Clin Invest, 115(2), 258–267. 10.1172/JCI22329 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betancur P, Bronner-Fraser M, & Sauka-Spengler T (2010). Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol, 26, 581–603. 10.1146/annurev.cellbio.042308.113245 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhattacherjee V, Horn KH, Singh S, Webb CL, Pisano MM, & Greene RM (2009). CBP/p300 and associated transcriptional co-activators exhibit distinct expression patterns during murine craniofacial and neural tube development. Int J Dev Biol, 53(7), 1097–1104. 10.1387/ijdb.072489vb [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bi-Lin KW, Seshachalam PV, Tuoc T, Stoykova A, Ghosh S, & Singh MK (2021, Mar). Critical role of the BAF chromatin remodeling complex during murine neural crest development. PLoS Genet, 17(3), e1009446. 10.1371/journal.pgen.1009446 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bieluszewska A, Wulfridge P, Doherty J, Ren W, & Sarma K (2022, Sep 9). ATRX histone binding and helicase activities have distinct roles in neuronal differentiation. Nucleic Acids Res, 50(16), 9162–9174. 10.1093/nar/gkac683 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjork BC, Turbe-Doan A, Prysak M, Herron BJ, & Beier DR (2010, Mar 1). Prdm16 is required for normal palatogenesis in mice. Hum Mol Genet, 19(5), 774–789. 10.1093/hmg/ddp543 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boczek NJ, Lahner CA, Nguyen TM, Ferber MJ, Hasadsri L, Thorland EC, Niu Z, & Gavrilova RH (2018, Dec). Developmental delay and failure to thrive associated with a loss-of-function variant in WHSC1 (NSD2). Am J Med Genet A, 176(12), 2798–2802. 10.1002/ajmg.a.40498 [DOI] [PubMed] [Google Scholar]
- Bogershausen N, Gatinois V, Riehmer V, Kayserili H, Becker J, Thoenes M, Simsek-Kiper PO, Barat-Houari M, Elcioglu NH, Wieczorek D, Tinschert S, Sarrabay G, Strom TM, Fabre A, Baynam G, Sanchez E, Nurnberg G, Altunoglu U, Capri Y, Isidor B, Lacombe D, Corsini C, Cormier-Daire V, Sanlaville D, Giuliano F, Le Quan Sang KH, Kayirangwa H, Nurnberg P, Meitinger T, Boduroglu K, Zoll B, Lyonnet S, Tzschach A, Verloes A, Di Donato N, Touitou I, Netzer C, Li Y, Genevieve D, Yigit G, & Wollnik B (2016, Sep). Mutation Update for Kabuki Syndrome Genes KMT2D and KDM6A and Further Delineation of X-Linked Kabuki Syndrome Subtype 2. Hum Mutat, 37(9), 847–864. 10.1002/humu.23026 [DOI] [PubMed] [Google Scholar]
- Bonnet C, Ali Khan A, Bresso E, Vigouroux C, Beri M, Lejczak S, Deemer B, Andrieux J, Philippe C, Moncla A, Giurgea I, Devignes MD, Leheup B, & Jonveaux P (2013, Dec). Extended spectrum of MBD5 mutations in neurodevelopmental disorders. Eur J Hum Genet, 21(12), 1457–1461. 10.1038/ejhg.2013.22 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, & Steel KP (2005, Nov 15). Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet, 14(22), 3463–3476. 10.1093/hmg/ddi375 [DOI] [PubMed] [Google Scholar]
- Bramswig NC, Caluseriu O, Ludecke HJ, Bolduc FV, Noel NC, Wieland T, Surowy HM, Christen HJ, Engels H, Strom TM, & Wieczorek D (2017, Mar). Heterozygosity for ARID2 loss-of-function mutations in individuals with a Coffin-Siris syndrome-like phenotype. Hum Genet, 136(3), 297–305. 10.1007/s00439-017-1757-z [DOI] [PubMed] [Google Scholar]
- Britanova O, Akopov S, Lukyanov S, Gruss P, & Tarabykin V (2005, Feb). Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur J Neurosci, 21(3), 658–668. 10.1111/j.1460-9568.2005.03897.x [DOI] [PubMed] [Google Scholar]
- Britanova O, Depew MJ, Schwark M, Thomas BL, Miletich I, Sharpe P, & Tarabykin V (2006, Oct). Satb2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development. Am J Hum Genet, 79(4), 668–678. 10.1086/508214 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bronner ME, & LaBonne C (2012, Jun 1). Preface: the neural crest--from stem cell formation to migration and differentiation. Dev Biol, 366(1), 1. 10.1016/j.ydbio.2012.03.011 [DOI] [PubMed] [Google Scholar]
- Bronner ME, & LeDouarin NM (2012, Jun 1). Development and evolution of the neural crest: an overview. Dev Biol, 366(1), 2–9. 10.1016/j.ydbio.2011.12.042 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunskill EW, Potter AS, Distasio A, Dexheimer P, Plassard A, Aronow BJ, & Potter SS (2014, Jul 15). A gene expression atlas of early craniofacial development. Dev Biol, 391(2), 133–146. 10.1016/j.ydbio.2014.04.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, Natoli G, & Testa G (2008, Aug 21). The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One, 3(8), e3034. 10.1371/journal.pone.0003034 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camilleri ET, Dudakovic A, Riester SM, Galeano-Garces C, Paradise CR, Bradley EW, McGee-Lawrence ME, Im HJ, Karperien M, Krych AJ, Westendorf JJ, Larson AN, & van Wijnen AJ (2018, Dec 7). Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. J Biol Chem, 293(49), 19001–19011. 10.1074/jbc.RA118.003909 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campeau PM, Kim JC, Lu JT, Schwartzentruber JA, Abdul-Rahman OA, Schlaubitz S, Murdock DM, Jiang MM, Lammer EJ, Enns GM, Rhead WJ, Rowland J, Robertson SP, Cormier-Daire V, Bainbridge MN, Yang XJ, Gingras MC, Gibbs RA, Rosenblatt DS, Majewski J, & Lee BH (2012, Feb 10). Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome. Am J Hum Genet, 90(2), 282–289. 10.1016/j.ajhg.2011.11.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cappuccio G, Sayou C, Tanno PL, Tisserant E, Bruel AL, Kennani SE, Sa J, Low KJ, Dias C, Havlovicova M, Hancarova M, Eichler EE, Devillard F, Moutton S, Van-Gils J, Dubourg C, Odent S, Gerard B, Piton A, Yamamoto T, Okamoto N, Firth H, Metcalfe K, Moh A, Chapman KA, Aref-Eshghi E, Kerkhof J, Torella A, Nigro V, Perrin L, Piard J, Le Guyader G, Jouan T, Thauvin-Robinet C, Duffourd Y, George-Abraham JK, Buchanan CA, Williams D, Kini U, Wilson K, Telethon Undiagnosed Diseases, P., Sousa SB, Hennekam RCM, Sadikovic B, Thevenon J, Govin J, Vitobello A, & Brunetti-Pierri N (2020, Nov). De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides-Baraitser syndrome. Genet Med, 22(11), 1838–1850. 10.1038/s41436-020-0898-y [DOI] [PubMed] [Google Scholar]
- Cardo LF, de la Fuente DC, & Li M (2023, Feb 20). Impaired neurogenesis and neural progenitor fate choice in a human stem cell model of SETBP1 disorder. Mol Autism, 14(1), 8. 10.1186/s13229-023-00540-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter MT, Picketts DJ, Hunter AG, & Graham GE (2009, Feb). Further clinical delineation of the Borjeson-Forssman-Lehmann syndrome in patients with PHF6 mutations. Am J Med Genet A, 149A(2), 246–250. 10.1002/ajmg.a.32624 [DOI] [PubMed] [Google Scholar]
- Cenik BK, & Shilatifard A (2021, Jan). COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet, 22(1), 38–58. 10.1038/s41576-020-0278-0 [DOI] [PubMed] [Google Scholar]
- Chai M, Sanosaka T, Okuno H, Zhou Z, Koya I, Banno S, Andoh-Noda T, Tabata Y, Shimamura R, Hayashi T, Ebisawa M, Sasagawa Y, Nikaido I, Okano H, & Kohyama J (2018, Jan 15). Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes Dev, 32(2), 165–180. 10.1101/gad.301887.117 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler RL, & Magnuson T (2016, Mar 1). The SWI/SNF BAF-A complex is essential for neural crest development. Dev Biol, 411(1), 15–24. 10.1016/j.ydbio.2016.01.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chater-Diehl E, Ejaz R, Cytrynbaum C, Siu MT, Turinsky A, Choufani S, Goodman SJ, Abdul-Rahman O, Bedford M, Dorrani N, Engleman K, Flores-Daboub J, Genevieve D, Mendoza-Londono R, Meschino W, Perrin L, Safina N, Townshend S, Scherer SW, Anagnostou E, Piton A, Deardorff M, Brudno M, Chitayat D, & Weksberg R (2019, Jul 9). New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides-Baraitser syndrome. BMC Med Genomics, 12(1), 105. 10.1186/s12920-019-0555-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng X, & Blumenthal RM (2008, Mar). Mammalian DNA methyltransferases: a structural perspective. Structure, 16(3), 341–350. 10.1016/j.str.2008.01.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng X, & Blumenthal RM (2022, Aug). Mediating and maintaining methylation while minimizing mutation: Recent advances on mammalian DNA methyltransferases. Curr Opin Struct Biol, 75, 102433. 10.1016/j.sbi.2022.102433 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chong JX, Yu JH, Lorentzen P, Park KM, Jamal SM, Tabor HK, Rauch A, Saenz MS, Boltshauser E, Patterson KE, Nickerson DA, & Bamshad MJ (2016, Aug). Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet Med, 18(8), 788–795. 10.1038/gim.2015.161 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton-Smith J, O’Sullivan J, Daly S, Bhaskar S, Day R, Anderson B, Voss AK, Thomas T, Biesecker LG, Smith P, Fryer A, Chandler KE, Kerr B, Tassabehji M, Lynch SA, Krajewska-Walasek M, McKee S, Smith J, Sweeney E, Mansour S, Mohammed S, Donnai D, & Black G (2011, Nov 11). Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet, 89(5), 675–681. 10.1016/j.ajhg.2011.10.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen AS, Yap DB, Lewis ME, Chijiwa C, Ramos-Arroyo MA, Tkachenko N, Milano V, Fradin M, McKinnon ML, Townsend KN, Xu J, Van Allen MI, Ross CJ, Dobyns WB, Weaver DD, & Gibson WT (2016, Mar). Weaver Syndrome-Associated EZH2 Protein Variants Show Impaired Histone Methyltransferase Function In Vitro. Hum Mutat, 37(3), 301–307. 10.1002/humu.22946 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crippa M, Bestetti I, Maitz S, Weiss K, Spano A, Masciadri M, Smithson S, Larizza L, Low K, Cohen L, & Finelli P (2020). SETD5 Gene Haploinsufficiency in Three Patients With Suspected KBG Syndrome. Front Neurol, 11, 631. 10.3389/fneur.2020.00631 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crump JG, Swartz ME, Eberhart JK, & Kimmel CB (2006, Jul). Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face. Development, 133(14), 2661–2669. 10.1242/dev.02435 [DOI] [PubMed] [Google Scholar]
- Culver-Cochran AE, & Chadwick BP (2013, Oct 29). Loss of WSTF results in spontaneous fluctuations of heterochromatin formation and resolution, combined with substantial changes to gene expression. BMC Genomics, 14, 740. 10.1186/1471-2164-14-740 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cus R, Maurus D, & Kuhl M (2006, Apr). Cloning and developmental expression of WSTF during Xenopus laevis embryogenesis. Gene Expr Patterns, 6(4), 340–346. 10.1016/j.modgep.2005.10.001 [DOI] [PubMed] [Google Scholar]
- Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, Cole KE, De Baere E, Decroos C, Di Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirashima K, Hullings M, Ishikawa Y, Jaulin C, Kaur M, Kiyono T, Lombardi PM, Magnaghi-Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Siu VM, Suzuki Y, Takagaki K, Wilde JJ, Willems PJ, Prigent C, Gillessen-Kaesbach G, Christianson DW, Kaiser FJ, Jackson LG, Hirota T, Krantz ID, & Shirahige K (2012, Sep 13). HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature, 489(7415), 313–317. 10.1038/nature11316 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deardorff MA, Porter NJ, & Christianson DW (2016, Nov). Structural aspects of HDAC8 mechanism and dysfunction in Cornelia de Lange syndrome spectrum disorders. Protein Sci, 25(11), 1965–1976. 10.1002/pro.3030 [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeLaurier A, Nakamura Y, Braasch I, Khanna V, Kato H, Wakitani S, Postlethwait JH, & Kimmel CB (2012, Jun 7). Histone deacetylase-4 is required during early cranial neural crest development for generation of the zebrafish palatal skeleton. BMC Dev Biol, 12, 16. 10.1186/1471-213X-12-16 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deliu E, Arecco N, Morandell J, Dotter CP, Contreras X, Girardot C, Kasper EL, Kozlova A, Kishi K, Chiaradia I, Noh KM, & Novarino G (2018, Dec). Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition. Nat Neurosci, 21(12), 1717–1727. 10.1038/s41593-018-0266-2 [DOI] [PubMed] [Google Scholar]
- Diets IJ, Prescott T, Champaigne NL, Mancini GMS, Krossnes B, Fric R, Kocsis K, Jongmans MCJ, & Kleefstra T (2019, Mar). A recurrent de novo missense pathogenic variant in SMARCB1 causes severe intellectual disability and choroid plexus hyperplasia with resultant hydrocephalus. Genet Med, 21(3), 572–579. 10.1038/s41436-018-0079-4 [DOI] [PubMed] [Google Scholar]
- Ding HL, Clouthier DE, & Artinger KB (2013, Jan). Redundant roles of PRDM family members in zebrafish craniofacial development. Dev Dyn, 242(1), 67–79. 10.1002/dvdy.23895 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinwiddie DL, Soden SE, Saunders CJ, Miller NA, Farrow EG, Smith LD, & Kingsmore SF (2013, Sep 17). De novo frameshift mutation in ASXL3 in a patient with global developmental delay, microcephaly, and craniofacial anomalies. BMC Med Genomics, 6, 32. 10.1186/1755-8794-6-32 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G, & Grosschedl R (2006, Jun 2). SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell, 125(5), 971–986. 10.1016/j.cell.2006.05.012 [DOI] [PubMed] [Google Scholar]
- Dobreva G, Dambacher J, & Grosschedl R (2003, Dec 15). SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev, 17(24), 3048–3061. 10.1101/gad.1153003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong R, Yao R, Du J, Wang S, & Fan Z (2013, Nov 1). Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla. Exp Cell Res, 319(18), 2874–2882. 10.1016/j.yexcr.2013.07.008 [DOI] [PubMed] [Google Scholar]
- Dong Z, He W, Lin G, Chen X, Cao S, Guan T, Sun Y, Zhang Y, Qi M, Guo B, Zhou Z, Zhuo R, Wu R, Liu M, & Liu Y (2023, Mar). Histone acetyltransferase KAT2A modulates neural stem cell differentiation and proliferation by inducing degradation of the transcription factor PAX6. J Biol Chem, 299(3), 103020. 10.1016/j.jbc.2023.103020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas J, Hanks S, Temple IK, Davies S, Murray A, Upadhyaya M, Tomkins S, Hughes HE, Cole TR, & Rahman N (2003, Jan). NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes. Am J Hum Genet, 72(1), 132–143. 10.1086/345647 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudakovic A, Camilleri ET, Paradise CR, Samsonraj RM, Gluscevic M, Paggi CA, Begun DL, Khani F, Pichurin O, Ahmed FS, Elsayed R, Elsalanty M, McGee-Lawrence ME, Karperien M, Riester SM, Thaler R, Westendorf JJ, & van Wijnen AJ (2018, Aug 17). Enhancer of zeste homolog 2 (Ezh2) controls bone formation and cell cycle progression during osteogenesis in mice. J Biol Chem, 293(33), 12894–12907. 10.1074/jbc.RA118.002983 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudakovic A, Camilleri ET, Xu F, Riester SM, McGee-Lawrence ME, Bradley EW, Paradise CR, Lewallen EA, Thaler R, Deyle DR, Larson AN, Lewallen DG, Dietz AB, Stein GS, Montecino MA, Westendorf JJ, & van Wijnen AJ (2015, Nov 13). Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2. J Biol Chem, 290(46), 27604–27617. 10.1074/jbc.M115.672345 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudakovic A, Samsonraj RM, Paradise CR, Galeano-Garces C, Mol MO, Galeano-Garces D, Zan P, Galvan ML, Hevesi M, Pichurin O, Thaler R, Begun DL, Kloen P, Karperien M, Larson AN, Westendorf JJ, Cool SM, & van Wijnen AJ (2020, Jun 5). Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. J Biol Chem, 295(23), 7877–7893. 10.1074/jbc.RA119.011685 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyer MA, Qadeer ZA, Valle-Garcia D, & Bernstein E (2017, Mar 1). ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harb Perspect Med, 7(3). 10.1101/cshperspect.a026567 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, Weemaes CM, Smeets D, Sperling K, Belohradsky BH, Tommerup N, Misek DE, Rouillard JM, Kuick R, & Hanash SM (2001, Dec 1). DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet, 10(25), 2917–2931. 10.1093/hmg/10.25.2917 [DOI] [PubMed] [Google Scholar]
- Eliyahu A, Barel O, Greenbaum L, Zaks Hoffer G, Goldberg Y, Raas-Rothschild A, Singer A, Bar-Joseph I, Kunik V, Javasky E, Staretz-Chacham O, Pode-Shakked N, Bazak L, Ruhrman-Shahar N, Pras E, Frydman M, Shohat M, & Pode-Shakked B (2022). Refining the Phenotypic Spectrum of KMT5B-Associated Developmental Delay. Front Pediatr, 10, 844845. 10.3389/fped.2022.844845 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eroglu B, Wang G, Tu N, Sun X, & Mivechi NF (2006, Oct). Critical role of Brg1 member of the SWI/SNF chromatin remodeling complex during neurogenesis and neural crest induction in zebrafish. Dev Dyn, 235(10), 2722–2735. 10.1002/dvdy.20911 [DOI] [PubMed] [Google Scholar]
- Estaras C, Akizu N, Garcia A, Beltran S, de la Cruz X, & Martinez-Balbas MA (2012, Aug). Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development, 139(15), 2681–2691. 10.1242/dev.078345 [DOI] [PubMed] [Google Scholar]
- Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, Shi S, & Wang CY (2009, Aug). BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol, 11(8), 1002–1009. 10.1038/ncb1913 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faundes V, Newman WG, Bernardini L, Canham N, Clayton-Smith J, Dallapiccola B, Davies SJ, Demos MK, Goldman A, Gill H, Horton R, Kerr B, Kumar D, Lehman A, McKee S, Morton J, Parker MJ, Rankin J, Robertson L, Temple IK, Clinical Assessment of the Utility of, S., Evaluation as a Service, S., Deciphering Developmental Disorders, S., & Banka, S. (2018, Jan 4). Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders. Am J Hum Genet, 102(1), 175–187. 10.1016/j.ajhg.2017.11.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandes IR, Cruz ACP, Ferrasa A, Phan D, Herai RH, & Muotri AR (2018, May). Genetic variations on SETD5 underlying autistic conditions. Dev Neurobiol, 78(5), 500–518. 10.1002/dneu.22584 [DOI] [PubMed] [Google Scholar]
- FitzPatrick DR, Carr IM, McLaren L, Leek JP, Wightman P, Williamson K, Gautier P, McGill N, Hayward C, Firth H, Markham AF, Fantes JA, & Bonthron DT (2003, Oct 1). Identification of SATB2 as the cleft palate gene on 2q32-q33. Hum Mol Genet, 12(19), 2491–2501. 10.1093/hmg/ddg248 [DOI] [PubMed] [Google Scholar]
- Frega M, Linda K, Keller JM, Gumus-Akay G, Mossink B, van Rhijn JR, Negwer M, Klein Gunnewiek T, Foreman K, Kompier N, Schoenmaker C, van den Akker W, van der Werf I, Oudakker A, Zhou H, Kleefstra T, Schubert D, van Bokhoven H, & Nadif Kasri N (2019, Oct 30). Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun, 10(1), 4928. 10.1038/s41467-019-12947-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujita K, Ogawa R, Kawawaki S, & Ito K (2014, Aug). Roles of chromatin remodelers in maintenance mechanisms of multipotency of mouse trunk neural crest cells in the formation of neural crest-derived stem cells. Mech Dev, 133, 126–145. 10.1016/j.mod.2014.05.001 [DOI] [PubMed] [Google Scholar]
- Fukuda T, Tokunaga A, Sakamoto R, & Yoshida N (2011, Mar). Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci, 46(3), 614–624. 10.1016/j.mcn.2011.01.001 [DOI] [PubMed] [Google Scholar]
- Gabellini C, Pucci C, De Cesari C, Martini D, Di Lauro C, Digregorio M, Norton W, Zippo A, Sessa A, Broccoli V, & Andreazzoli M (2022, Dec 22). CRISPR/Cas9-Induced Inactivation of the Autism-Risk Gene setd5 Leads to Social Impairments in Zebrafish. Int J Mol Sci, 24(1). 10.3390/ijms24010167 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galizia EC, Myers CT, Leu C, de Kovel CG, Afrikanova T, Cordero-Maldonado ML, Martins TG, Jacmin M, Drury S, Krishna Chinthapalli V, Muhle H, Pendziwiat M, Sander T, Ruppert AK, Moller RS, Thiele H, Krause R, Schubert J, Lehesjoki AE, Nurnberg P, Lerche H, Euro ECC, Palotie A, Coppola A, Striano S, Gaudio LD, Boustred C, Schneider AL, Lench N, Jocic-Jakubi B, Covanis A, Capovilla G, Veggiotti P, Piccioli M, Parisi P, Cantonetti L, Sadleir LG, Mullen SA, Berkovic SF, Stephani U, Helbig I, Crawford AD, Esguerra CV, Kasteleijn-Nolst Trenite DG, Koeleman BP, Mefford HC, Scheffer IE, & Sisodiya SM (2015, May). CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain, 138(Pt 5), 1198–1207. 10.1093/brain/awv052 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao X, Huang Z, Fan Y, Sun Y, Liu H, Wang L, Gu XF, & Yu Y (2018). A Functional Mutation in HDAC8 Gene as Novel Diagnostic Marker for Cornelia De Lange Syndrome. Cell Physiol Biochem, 47(6), 2388–2395. 10.1159/000491613 [DOI] [PubMed] [Google Scholar]
- Garcia-Gutierrez P, & Garcia-Dominguez M (2015, Apr). Pleiotrophin fights Brd2 for neuronal differentiation. Neural Regen Res, 10(4), 544–546. 10.4103/1673-5374.155416 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Gutierrez P, & Garcia-Dominguez M (2021). BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci, 8, 709232. 10.3389/fmolb.2021.709232 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Gutierrez P, Juarez-Vicente F, Wolgemuth DJ, & Garcia-Dominguez M (2014, Jun 1). Pleiotrophin antagonizes Brd2 during neuronal differentiation. J Cell Sci, 127(Pt 11), 2554–2564. 10.1242/jcs.147462 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Melendo C, Roe E, Rodriguez-Santiago B, Amat-Samaranch V, Cubiro X, Puig L, & Boronat S (2021, Jul). A case report of PHF6 mosaicism: Beyond the classic Borjeson-Forssman-Lehmann syndrome. Pediatr Dermatol, 38(4), 919–925. 10.1111/pde.14636 [DOI] [PubMed] [Google Scholar]
- Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR, & Hargreaves DC (2018, Dec 3). A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun, 9(1), 5139. 10.1038/s41467-018-07528-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green SA, Simoes-Costa M, & Bronner ME (2015, Apr 23). Evolution of vertebrates as viewed from the crest. Nature, 520(7548), 474–482. 10.1038/nature14436 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregor A, Oti M, Kouwenhoven EN, Hoyer J, Sticht H, Ekici AB, Kjaergaard S, Rauch A, Stunnenberg HG, Uebe S, Vasileiou G, Reis A, Zhou H, & Zweier C (2013, Jul 11). De novo mutations in the genome organizer CTCF cause intellectual disability. Am J Hum Genet, 93(1), 124–131. 10.1016/j.ajhg.2013.05.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grozeva D, Carss K, Spasic-Boskovic O, Parker MJ, Archer H, Firth HV, Park SM, Canham N, Holder SE, Wilson M, Hackett A, Field M, Floyd JA, Consortium UK, Hurles M, & Raymond FL (2014, Apr 3). De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. Am J Hum Genet, 94(4), 618–624. 10.1016/j.ajhg.2014.03.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grzenda A, Lomberk G, Zhang JS, & Urrutia R (2009, Jun-Aug). Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta, 1789(6-8), 443–450. 10.1016/j.bbagrm.2009.05.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo T, Han X, He J, Feng J, Jing J, Janeckova E, Lei J, Ho TV, Xu J, & Chai Y (2022, Feb 25). KDM6B interacts with TFDP1 to activate P53 signaling in regulating mouse palatogenesis. Elife, 11. 10.7554/eLife.74595 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gyuris A, Donovan DJ, Seymour KA, Lovasco LA, Smilowitz NR, Halperin AL, Klysik JE, & Freiman RN (2009, May). The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim Biophys Acta, 1789(5), 413–421. 10.1016/j.bbagrm.2009.03.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ha N, Sun J, Bian Q, Wu D, & Wang X (2022). Hdac4 Regulates the Proliferation of Neural Crest-Derived Osteoblasts During Murine Craniofacial Development. Front Physiol, 13, 819619. 10.3389/fphys.2022.819619 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haberland M, Mokalled MH, Montgomery RL, & Olson EN (2009, Jul 15). Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev, 23(14), 1625–1630. 10.1101/gad.1809209 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton MJ, Newbury-Ecob R, Holder-Espinasse M, Yau S, Lillis S, Hurst JA, Clement E, Reardon W, Joss S, Hobson E, Blyth M, Al-Shehhi M, Lynch SA, Suri M, & Study DDD (2016, Oct). Rubinstein-Taybi syndrome type 2: report of nine new cases that extend the phenotypic and genotypic spectrum. Clin Dysmorphol, 25(4), 135–145. 10.1097/MCD.0000000000000143 [DOI] [PubMed] [Google Scholar]
- Han Q, Yang P, Wu Y, Meng S, Sui L, Zhang L, Yu L, Tang Y, Jiang H, Xuan D, Kaplan DL, Kim SH, Tu Q, & Chen J (2015, Aug). Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing. Tissue Eng Part A, 21(15-16), 2156–2165. 10.1089/ten.TEA.2014.0484 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harakalova M, van den Boogaard MJ, Sinke R, van Lieshout S, van Tuil MC, Duran K, Renkens I, Terhal PA, de Kovel C, Nijman IJ, van Haelst M, Knoers NV, van Haaften G, Kloosterman W, Hennekam RC, Cuppen E, & Ploos van Amstel HK (2012, Aug). X-exome sequencing identifies a HDAC8 variant in a large pedigree with X-linked intellectual disability, truncal obesity, gynaecomastia, hypogonadism and unusual face. J Med Genet, 49(8), 539–543. 10.1136/jmedgenet-2012-100921 [DOI] [PubMed] [Google Scholar]
- Hatch HAM, & Secombe J (2022, Dec). Molecular and cellular events linking variants in the histone demethylase KDM5C to the intellectual disability disorder Claes-Jensen syndrome. FEBS J, 289(24), 7776–7787. 10.1111/febs.16204 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, & Lumey LH (2008, Nov 4). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A, 105(44), 17046–17049. 10.1073/pnas.0806560105 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higashihori N, Lehnertz B, Sampaio A, Underhill TM, Rossi F, & Richman JM (2017, Sep). Methyltransferase G9A Regulates Osteogenesis via Twist Gene Repression. J Dent Res, 96(10), 1136–1144. 10.1177/0022034517716438 [DOI] [PubMed] [Google Scholar]
- Hirai N, Matsune K, & Ohashi H (2011, Dec). Craniofacial and oral features of Sotos syndrome: differences in patients with submicroscopic deletion and mutation of NSD1 gene. Am J Med Genet A, 155A(12), 2933–2939. 10.1002/ajmg.a.33969 [DOI] [PubMed] [Google Scholar]
- Hiraide T, Hattori A, Ieda D, Hori I, Saitoh S, Nakashima M, & Saitsu H (2019, Sep). De novo variants in SETD1B cause intellectual disability, autism spectrum disorder, and epilepsy with myoclonic absences. Epilepsia Open, 4(3), 476–481. 10.1002/epi4.12339 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiraide T, Nakashima M, Yamoto K, Fukuda T, Kato M, Ikeda H, Sugie Y, Aoto K, Kaname T, Nakabayashi K, Ogata T, Matsumoto N, & Saitsu H (2018, Jan). De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Hum Genet, 137(1), 95–104. 10.1007/s00439-017-1863-y [DOI] [PubMed] [Google Scholar]
- Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J, & Crabtree GR (2009, Mar 31). An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A, 106(13), 5181–5186. 10.1073/pnas.0812889106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M, de Vries P, de Reuver R, Wieskamp N, Mortier G, Devriendt K, Amorim MZ, Revencu N, Kidd A, Barbosa M, Turner A, Smith J, Oley C, Henderson A, Hayes IM, Thompson EM, Brunner HG, de Vries BB, & Veltman JA (2010, Jun). De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet, 42(6), 483–485. 10.1038/ng.581 [DOI] [PubMed] [Google Scholar]
- Hori I, Kawamura R, Nakabayashi K, Watanabe H, Higashimoto K, Tomikawa J, Ieda D, Ohashi K, Negishi Y, Hattori A, Sugio Y, Wakui K, Hata K, Soejima H, Kurosawa K, & Saitoh S (2017, Dec). CTCF deletion syndrome: clinical features and epigenetic delineation. J Med Genet, 54(12), 836–842. 10.1136/jmedgenet-2017-104854 [DOI] [PubMed] [Google Scholar]
- Hu N, Strobl-Mazzulla P, Sauka-Spengler T, & Bronner ME (2012, Nov 1). DNA methyltransferase3A as a molecular switch mediating the neural tube-to-neural crest fate transition. Genes Dev, 26(21), 2380–2385. 10.1101/gad.198747.112 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu N, Strobl-Mazzulla PH, & Bronner ME (2014, Dec 15). Epigenetic regulation in neural crest development. Dev Biol, 396(2), 159–168. 10.1016/j.ydbio.2014.09.034 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu N, Strobl-Mazzulla PH, Simoes-Costa M, Sanchez-Vasquez E, & Bronner ME (2014, Dec 16). DNA methyltransferase 3B regulates duration of neural crest production via repression of Sox10. Proc Natl Acad Sci U S A, 111(50), 17911–17916. 10.1073/pnas.1318408111 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang X, Chen Q, Luo W, Pakvasa M, Zhang Y, Zheng L, Li S, Yang Z, Zeng H, Liang F, Zhang F, Hu DA, Qin KH, Wang EJ, Qin DS, Reid RR, He TC, Athiviraham A, El Dafrawy M, & Zhang H (2022, Jan). SATB2: A versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes Dis, 9(1), 95–107. 10.1016/j.gendis.2020.10.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson C, Schwanke C, Johnson JP, Elias AF, Phillips S, Schwalbe T, Tunby M, & Xu D (2014, Aug). Confirmation of 6q21-6q22.1 deletion in acro-cardio-facial syndrome and further delineation of this contiguous gene deletion syndrome. Am J Med Genet A, 164A(8), 2109–2113. 10.1002/ajmg.a.36548 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurd EA, Poucher HK, Cheng K, Raphael Y, & Martin DM (2010, Sep). The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development, 137(18), 3139–3150. 10.1242/dev.047894 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ideno H, Nakashima K, Komatsu K, Araki R, Abe M, Arai Y, Kimura H, Shinkai Y, Tachibana M, & Nifuji A (2020, Aug). G9a is involved in the regulation of cranial bone formation through activation of Runx2 function during development. Bone, 137, 115332. 10.1016/j.bone.2020.115332 [DOI] [PubMed] [Google Scholar]
- Ignatius MS, Unal Eroglu A, Malireddy S, Gallagher G, Nambiar RM, & Henion PD (2013). Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development. PLoS One, 8(5), e63218. 10.1371/journal.pone.0063218 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isono K, Fujimura Y, Shinga J, Yamaki M, J OW, Takihara Y, Murahashi Y, Takada Y, Mizutani-Koseki Y, & Koseki H (2005, Aug). Mammalian polyhomeotic homologues Phc2 and Phc1 act in synergy to mediate polycomb repression of Hox genes. Mol Cell Biol, 25(15), 6694–6706. 10.1128/MCB.25.15.6694-6706.2005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwase S, Brookes E, Agarwal S, Badeaux AI, Ito H, Vallianatos CN, Tomassy GS, Kasza T, Lin G, Thompson A, Gu L, Kwan KY, Chen C, Sartor MA, Egan B, Xu J, & Shi Y (2016, Feb 9). A Mouse Model of X-linked Intellectual Disability Associated with Impaired Removal of Histone Methylation. Cell Rep, 14(5), 1000–1009. 10.1016/j.celrep.2015.12.091 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacques-Fricke BT, & Gammill LS (2014, Dec 15). Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity. Mol Biol Cell, 25(25), 4174–4186. 10.1091/mbc.E13-12-0744 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacques-Fricke BT, Roffers-Agarwal J, & Gammill LS (2012). DNA methyltransferase 3b is dispensable for mouse neural crest development. PLoS One, 7(10), e47794. 10.1371/journal.pone.0047794 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacques-Fricke BT, Roffers-Agarwal J, Hussein AO, Yoder KJ, Gearhart MD, & Gammill LS (2021, Jul). Profiling NSD3-dependent neural crest gene expression reveals known and novel candidate regulatory factors. Dev Biol, 475, 118–130. 10.1016/j.ydbio.2021.02.015 [DOI] [PubMed] [Google Scholar]
- Jaillard S, Dubourg C, Gerard-Blanluet M, Delahaye A, Pasquier L, Dupont C, Henry C, Tabet AC, Lucas J, Aboura A, David V, Benzacken B, Odent S, & Pipiras E (2009, Dec). 2q23.1 microdeletion identified by array comparative genomic hybridisation: an emerging phenotype with Angelman-like features? J Med Genet, 46(12), 847–855. 10.1136/jmg.2008.058156 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang Y, Sun H, Lin Q, Wang Z, Wang G, Wang J, Jiang F, & Yao R (2019, Aug 5). De novo truncating variant in NSD2gene leading to atypical Wolf-Hirschhorn syndrome phenotype. BMC Med Genet, 20(1), 134. 10.1186/s12881-019-0863-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang YL, Rigolet M, Bourc’his D, Nigon F, Bokesoy I, Fryns JP, Hulten M, Jonveaux P, Maraschio P, Megarbane A, Moncla A, & Viegas-Pequignot E (2005, Jan). DNMT3B mutations and DNA methylation defect define two types of ICF syndrome. Hum Mutat, 25(1), 56–63. 10.1002/humu.20113 [DOI] [PubMed] [Google Scholar]
- Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, Fields CR, Delmas AL, Liu X, Qiu J, & Robertson KD (2008, Mar 1). DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet, 17(5), 690–709. 10.1093/hmg/ddm341 [DOI] [PubMed] [Google Scholar]
- Jin B, Yao B, Li JL, Fields CR, Delmas AL, Liu C, & Robertson KD (2009, Sep 15). DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Res, 69(18), 7412–7421. 10.1158/0008-5472.CAN-09-0116 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones WD, Dafou D, McEntagart M, Woollard WJ, Elmslie FV, Holder-Espinasse M, Irving M, Saggar AK, Smithson S, Trembath RC, Deshpande C, & Simpson MA (2012, Aug 10). De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am J Hum Genet, 91(2), 358–364. 10.1016/j.ajhg.2012.06.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jugessur A, Shi M, Gjessing HK, Lie RT, Wilcox AJ, Weinberg CR, Christensen K, Boyles AL, Daack-Hirsch S, Nguyen TT, Christiansen L, Lidral AC, & Murray JC (2010, Jul 9). Maternal genes and facial clefts in offspring: a comprehensive search for genetic associations in two population-based cleft studies from Scandinavia. PLoS One, 5(7), e11493. 10.1371/journal.pone.0011493 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser FJ, Ansari M, Braunholz D, Concepcion Gil-Rodriguez M, Decroos C, Wilde JJ, Fincher CT, Kaur M, Bando M, Amor DJ, Atwal PS, Bahlo M, Bowman CM, Bradley JJ, Brunner HG, Clark D, Del Campo M, Di Donato N, Diakumis P, Dubbs H, Dyment DA, Eckhold J, Ernst S, Ferreira JC, Francey LJ, Gehlken U, Guillen-Navarro E, Gyftodimou Y, Hall BD, Hennekam R, Hudgins L, Hullings M, Hunter JM, Yntema H, Innes AM, Kline AD, Krumina Z, Lee H, Leppig K, Lynch SA, Mallozzi MB, Mannini L, McKee S, Mehta SG, Micule I, Care4Rare Canada C, Mohammed S, Moran E, Mortier GR, Moser JA, Noon SE, Nozaki N, Nunes L, Pappas JG, Penney LS, Perez-Aytes A, Petersen MB, Puisac B, Revencu N, Roeder E, Saitta S, Scheuerle AE, Schindeler KL, Siu VM, Stark Z, Strom SP, Thiese H, Vater I, Willems P, Williamson K, Wilson LC, University of Washington Center for Mendelian, G., Hakonarson H, Quintero-Rivera F, Wierzba J, Musio A, Gillessen-Kaesbach G, Ramos FJ, Jackson LG, Shirahige K, Pie J, Christianson DW, Krantz ID, Fitzpatrick DR, & Deardorff MA (2014, Jun 1). Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance. Hum Mol Genet, 23(11), 2888–2900. 10.1093/hmg/ddu002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellogg G, Sum J, & Wallerstein R (2013, Jun). Deletion of 3p25.3 in a patient with intellectual disability and dysmorphic features with further definition of a critical region. Am J Med Genet A, 161A(6), 1405–1408. 10.1002/ajmg.a.35876 [DOI] [PubMed] [Google Scholar]
- Khodaeian M, Jafarinia E, Bitarafan F, Shafeii S, Almadani N, Daneshmand MA, & Garshasbi M (2021, Apr). Kabuki Syndrome: Identification of Two Novel Variants in KMT2D and KDM6A. Mol Syndromol, 12(2), 118–126. 10.1159/000513199 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikuiri T, Mishima H, Imura H, Suzuki S, Matsuzawa Y, Nakamura T, Fukumoto S, Yoshimura Y, Watanabe S, Kinoshita A, Yamada T, Shindoh M, Sugita Y, Maeda H, Yawaka Y, Mikoya T, Natsume N, & Yoshiura KI (2018, Dec). Patients with SATB2-associated syndrome exhibiting multiple odontomas. Am J Med Genet A, 176(12), 2614–2622. 10.1002/ajmg.a.40670 [DOI] [PubMed] [Google Scholar]
- Kim H, Langohr IM, Faisal M, McNulty M, Thorn C, & Kim J (2018). Ablation of Ezh2 in neural crest cells leads to aberrant enteric nervous system development in mice. PLoS One, 13(8), e0203391. 10.1371/journal.pone.0203391 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y, Jeong Y, Kwon K, Ismail T, Lee HK, Kim C, Park JW, Kwon OS, Kang BS, Lee DS, Park TJ, Kwon T, & Lee HS (2018, Dec 6). Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. Epigenetics Chromatin, 11(1), 72. 10.1186/s13072-018-0241-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, van Dooren M, Willemsen MH, Pfundt R, Turner A, Wilson M, McGaughran J, Rauch A, Zenker M, Adam MP, Innes M, Davies C, Lopez AG, Casalone R, Weber A, Brueton LA, Navarro AD, Bralo MP, Venselaar H, Stegmann SP, Yntema HG, van Bokhoven H, & Brunner HG (2009, Sep). Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet, 46(9), 598–606. 10.1136/jmg.2008.062950 [DOI] [PubMed] [Google Scholar]
- Koboldt DC, Mihalic Mosher T, Kelly BJ, Sites E, Bartholomew D, Hickey SE, McBride K, Wilson RK, & White P (2018, Jun). A de novo nonsense mutation in ASXL3 shared by siblings with Bainbridge-Ropers syndrome. Cold Spring Harb Mol Case Stud, 4(3). 10.1101/mcs.a002410 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konrad EDH, Nardini N, Caliebe A, Nagel I, Young D, Horvath G, Santoro SL, Shuss C, Ziegler A, Bonneau D, Kempers M, Pfundt R, Legius E, Bouman A, Stuurman KE, Ounap K, Pajusalu S, Wojcik MH, Vasileiou G, Le Guyader G, Schnelle HM, Berland S, Zonneveld-Huijssoon E, Kersten S, Gupta A, Blackburn PR, Ellingson MS, Ferber MJ, Dhamija R, Klee EW, McEntagart M, Lichtenbelt KD, Kenney A, Vergano SA, Abou Jamra R, Platzer K, Ella Pierpont M, Khattar D, Hopkin RJ, Martin RJ, Jongmans MCJ, Chang VY, Martinez-Agosto JA, Kuismin O, Kurki MI, Pietilainen O, Palotie A, Maarup TJ, Johnson DS, Venborg Pedersen K, Laulund LW, Lynch SA, Blyth M, Prescott K, Canham N, Ibitoye R, Brilstra EH, Shinawi M, Fassi E, Study DDD, Sticht H, Gregor A, Van Esch H, & Zweier C (2019, Dec). CTCF variants in 39 individuals with a variable neurodevelopmental disorder broaden the mutational and clinical spectrum. Genet Med, 21(12), 2723–2733. 10.1038/s41436-019-0585-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosho T, Miyake N, & Carey JC (2014, Sep). Coffin-Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing. Am J Med Genet C Semin Med Genet, 166C(3), 241–251. 10.1002/ajmg.c.31415 [DOI] [PubMed] [Google Scholar]
- Kosho T, Okamoto N, & Coffin-Siris Syndrome International C (2014, Sep). Genotype-phenotype correlation of Coffin-Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A. Am J Med Genet C Semin Med Genet, 166C(3), 262–275. 10.1002/ajmg.c.31407 [DOI] [PubMed] [Google Scholar]
- Kouzarides T (2007, Feb 23). Chromatin modifications and their function. Cell, 128(4), 693–705. 10.1016/j.cell.2007.02.005 [DOI] [PubMed] [Google Scholar]
- Kraft M, Cirstea IC, Voss AK, Thomas T, Goehring I, Sheikh BN, Gordon L, Scott H, Smyth GK, Ahmadian MR, Trautmann U, Zenker M, Tartaglia M, Ekici A, Reis A, Dorr HG, Rauch A, & Thiel CT (2011, Sep). Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest, 121(9), 3479–3491. 10.1172/JCI43428 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuechler A, Czeschik JC, Graf E, Grasshoff U, Huffmeier U, Busa T, Beck-Woedl S, Faivre L, Riviere JB, Bader I, Koch J, Reis A, Hehr U, Rittinger O, Sperl W, Haack TB, Wieland T, Engels H, Prokisch H, Strom TM, Ludecke HJ, & Wieczorek D (2017, Feb). Bainbridge-Ropers syndrome caused by loss-of-function variants in ASXL3: a recognizable condition. Eur J Hum Genet, 25(2), 183–191. 10.1038/ejhg.2016.165 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuechler A, Zink AM, Wieland T, Ludecke HJ, Cremer K, Salviati L, Magini P, Najafi K, Zweier C, Czeschik JC, Aretz S, Endele S, Tamburrino F, Pinato C, Clementi M, Gundlach J, Maylahn C, Mazzanti L, Wohlleber E, Schwarzmayr T, Kariminejad R, Schlessinger A, Wieczorek D, Strom TM, Novarino G, & Engels H (2015, Jun). Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. Eur J Hum Genet, 23(6), 753–760. 10.1038/ejhg.2014.165 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulkarni S, Nagarajan P, Wall J, Donovan DJ, Donell RL, Ligon AH, Venkatachalam S, & Quade BJ (2008, May 1). Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. Am J Med Genet A, 146A(9), 1117–1127. 10.1002/ajmg.a.32178 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labonne JD, Lee KH, Iwase S, Kong IK, Diamond MP, Layman LC, Kim CH, & Kim HG (2016, Jul). An atypical 12q24.31 microdeletion implicates six genes including a histone demethylase KDM2B and a histone methyltransferase SETD1B in syndromic intellectual disability. Hum Genet, 135(7), 757–771. 10.1007/s00439-016-1668-4 [DOI] [PubMed] [Google Scholar]
- Lalani SR, Safiullah AM, Fernbach SD, Harutyunyan KG, Thaller C, Peterson LE, McPherson JD, Gibbs RA, White LD, Hefner M, Davenport SL, Graham JM, Bacino CA, Glass NL, Towbin JA, Craigen WJ, Neish SR, Lin AE, & Belmont JW (2006, Feb). Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet, 78(2), 303–314. 10.1086/500273 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lalli MA, Jang J, Park JH, Wang Y, Guzman E, Zhou H, Audouard M, Bridges D, Tovar KR, Papuc SM, Tutulan-Cunita AC, Huang Y, Budisteanu M, Arghir A, & Kosik KS (2016, Apr 1). Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet, 25(7), 1294–1306. 10.1093/hmg/ddw010 [DOI] [PubMed] [Google Scholar]
- Le Douarin NM, & Dupin E (2018, Dec 1). The "beginnings" of the neural crest. Dev Biol, 444 Suppl 1, S3–S13. 10.1016/j.ydbio.2018.07.019 [DOI] [PubMed] [Google Scholar]
- Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, Maystadt I, Dallapiccola B, & Verellen-Dumoulin C (2012, Jan 13). Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet, 90(1), 119–124. 10.1016/j.ajhg.2011.11.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leone MP, Palumbo P, Palumbo O, Di Muro E, Chetta M, Laforgia N, Resta N, Stella A, Castellana S, Mazza T, Castori M, Carella M, & Bukvic N (2020, May 27). The recurrent SETBP1 c.2608G > A, p.(Gly870Ser) variant in a patient with Schinzel-Giedion syndrome: an illustrative case of the utility of whole exome sequencing in a critically ill neonate. Ital J Pediatr, 46(1), 74. 10.1186/s13052-020-00839-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W, Xiong Y, Shang C, Twu KY, Hang CT, Yang J, Han P, Lin CY, Lin CJ, Tsai FC, Stankunas K, Meyer T, Bernstein D, Pan M, & Chang CP (2013, Jan 29). Brg1 governs distinct pathways to direct multiple aspects of mammalian neural crest cell development. Proc Natl Acad Sci U S A, 110(5), 1738–1743. 10.1073/pnas.1218072110 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang Y, Tian J, & Wu T (2021, Dec). BRD4 in physiology and pathology: “BET” on its partners. Bioessays, 43(12), e2100180. 10.1002/bies.202100180 [DOI] [PubMed] [Google Scholar]
- Lichtig H, Artamonov A, Polevoy H, Reid CD, Bielas SL, & Frank D (2020). Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. Front Physiol, 11, 75. 10.3389/fphys.2020.00075 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linares-Saldana R, Kim W, Bolar NA, Zhang H, Koch-Bojalad BA, Yoon S, Shah PP, Karnay A, Park DS, Luppino JM, Nguyen SC, Padmanabhan A, Smith CL, Poleshko A, Wang Q, Li L, Srivastava D, Vahedi G, Eom GH, Blobel GA, Joyce EF, & Jain R (2021, Oct). BRD4 orchestrates genome folding to promote neural crest differentiation. Nat Genet, 53(10), 1480–1492. 10.1038/s41588-021-00934-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindgren AM, Hoyos T, Talkowski ME, Hanscom C, Blumenthal I, Chiang C, Ernst C, Pereira S, Ordulu Z, Clericuzio C, Drautz JM, Rosenfeld JA, Shaffer LG, Velsher L, Pynn T, Vermeesch J, Harris DJ, Gusella JF, Liao EC, & Morton CC (2013, May). Haploinsufficiency of KDM6A is associated with severe psychomotor retardation, global growth restriction, seizures and cleft palate. Hum Genet, 132(5), 537–552. 10.1007/s00439-013-1263-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu F, van der Lijn F, Schurmann C, Zhu G, Chakravarty MM, Hysi PG, Wollstein A, Lao O, de Bruijne M, Ikram MA, van der Lugt A, Rivadeneira F, Uitterlinden AG, Hofman A, Niessen WJ, Homuth G, de Zubicaray G, McMahon KL, Thompson PM, Daboul A, Puls R, Hegenscheid K, Bevan L, Pausova Z, Medland SE, Montgomery GW, Wright MJ, Wicking C, Boehringer S, Spector TD, Paus T, Martin NG, Biffar R, & Kayser M (2012, Sep). A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet, 8(9), e1002932. 10.1371/journal.pgen.1002932 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J, Zhao Z, Zhou X, Li J, Li H, Zheng Y, Chen S, Cai T, Gao S, & Zhu B (2015, Feb 15). Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev, 29(4), 379–393. 10.1101/gad.254425.114 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S, Higashihori N, Yahiro K, & Moriyama K (2015, Mar 13). Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis. Biochem Biophys Res Commun, 458(3), 525–530. 10.1016/j.bbrc.2015.01.148 [DOI] [PubMed] [Google Scholar]
- Liu WL, He ZX, Li F, Ai R, & Ma HW (2018, Mar). Schinzel-Giedion syndrome: a novel case, review and revised diagnostic criteria. J Genet, 97(1), 35–46. https://www.ncbi.nlm.nih.gov/pubmed/29666323 [PubMed] [Google Scholar]
- Lou X, Burrows JT, & Scott IC (2015, Nov 9). Med14 cooperates with brg1 in the differentiation of skeletogenic neural crest. BMC Dev Biol, 15, 41. 10.1186/s12861-015-0090-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lower KM, Turner G, Kerr BA, Mathews KD, Shaw MA, Gedeon AK, Schelley S, Hoyme HE, White SM, Delatycki MB, Lampe AK, Clayton-Smith J, Stewart H, van Ravenswaay CM, de Vries BB, Cox B, Grompe M, Ross S, Thomas P, Mulley JC, & Gecz J (2002, Dec). Mutations in PHF6 are associated with Borjeson-Forssman-Lehmann syndrome. Nat Genet, 32(4), 661–665. 10.1038/ng1040 [DOI] [PubMed] [Google Scholar]
- Lu X, Meng X, Morris CA, & Keating MT (1998, Dec 1). A novel human gene, WSTF, is deleted in Williams syndrome. Genomics, 54(2), 241–249. 10.1006/geno.1998.5578 [DOI] [PubMed] [Google Scholar]
- Lucia-Campos C, Valenzuela I, Latorre-Pellicer A, Ros-Pardo D, Gil-Salvador M, Arnedo M, Puisac B, Castells N, Plaja A, Tenes A, Cusco I, Trujillano L, Ramos FJ, Tizzano EF, Gomez-Puertas P, & Pie J (2022, Aug 8). A Novel Intragenic Duplication in the HDAC8 Gene Underlying a Case of Cornelia de Lange Syndrome. Genes (Basel), 13(8). 10.3390/genes13081413 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lui JC, Barnes KM, Dong L, Yue S, Graber E, Rapaport R, Dauber A, Nilsson O, & Baron J (2018, Apr 1). Ezh2 Mutations Found in the Weaver Overgrowth Syndrome Cause a Partial Loss of H3K27 Histone Methyltransferase Activity. J Clin Endocrinol Metab, 103(4), 1470–1478. 10.1210/jc.2017-01948 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lumish HS, Wynn J, Devinsky O, & Chung WK (2015, Nov). Brief Report: SETD2 Mutation in a Child with Autism, Intellectual Disabilities and Epilepsy. J Autism Dev Disord, 45(11), 3764–3770. 10.1007/s10803-015-2484-8 [DOI] [PubMed] [Google Scholar]
- Luo S, Bi B, Zhang W, Zhou R, Chen W, Zhao P, Huang Y, Yuan L, & He X (2021, Oct). Three de novo variants in KMT2A (MLL) identified by whole exome sequencing in patients with Wiedemann-Steiner syndrome. Mol Genet Genomic Med, 9(10), e1798. 10.1002/mgg3.1798 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luscan A, Laurendeau I, Malan V, Francannet C, Odent S, Giuliano F, Lacombe D, Touraine R, Vidaud M, Pasmant E, & Cormier-Daire V (2014, Aug). Mutations in SETD2 cause a novel overgrowth condition. J Med Genet, 51(8), 512–517. 10.1136/jmedgenet-2014-102402 [DOI] [PubMed] [Google Scholar]
- MacDonald SK, Marshall AE, Lemire G, Hartley T, Care4Rare Canada, C., Kernohan KD, & Boycott KM. (2022, Aug). A novel intragenic DPF2 deletion identified by genome sequencing in an adult with clinical features of Coffin-Siris syndrome. Am J Med Genet A, 188(8), 2493–2496. 10.1002/ajmg.a.62849 [DOI] [PubMed] [Google Scholar]
- Makeyev AV, & Bayarsaihan D (2013, May). ChIP-Chip Identifies SEC23A, CFDP1, and NSD1 as TFII-I Target Genes in Human Neural Crest Progenitor Cells. Cleft Palate Craniofac J, 50(3), 347–350. 10.1597/12-069 [DOI] [PubMed] [Google Scholar]
- Marc S, Mizeranschi AE, Paul C, Otava G, Savici J, Sicoe B, Torda I, Hutu I, Mircu C, Ilie DE, Carabas M, & Boldura OM (2023, May 22). Simultaneous Occurrence of Hypospadias and Bilateral Cleft Lip and Jaw in a Crossbred Calf: Clinical, Computer Tomographic, and Genomic Characterization. Animals (Basel), 13(10). 10.3390/ani13101709 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marji FP, Hall JA, Anstadt E, Madan-Khetarpal S, Goldstein JA, & Losee JE (2021, Mar). A Novel Frameshift Mutation in KAT6A Is Associated with Pancraniosynostosis. J Pediatr Genet, 10(1), 81–84. 10.1055/s-0040-1710330 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markenscoff-Papadimitriou E, Binyameen F, Whalen S, Price J, Lim K, Ypsilanti AR, Catta-Preta R, Pai EL, Mu X, Xu D, Pollard KS, Nord AS, State MW, & Rubenstein JL (2021, Dec 7). Autism risk gene POGZ promotes chromatin accessibility and expression of clustered synaptic genes. Cell Rep, 37(10), 110089. 10.1016/j.celrep.2021.110089 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsit CJ (2015, Jan 1). Influence of environmental exposure on human epigenetic regulation. J Exp Biol, 218(Pt 1), 71–79. 10.1242/jeb.106971 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martens MB, Frega M, Classen J, Epping L, Bijvank E, Benevento M, van Bokhoven H, Tiesinga P, Schubert D, & Nadif Kasri N (2016, Oct 21). Euchromatin histone methyltransferase 1 regulates cortical neuronal network development. Sci Rep, 6, 35756. 10.1038/srep35756 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martins-Taylor K, Schroeder DI, LaSalle JM, Lalande M, & Xu RH (2012, Jan 1). Role of DNMT3B in the regulation of early neural and neural crest specifiers. Epigenetics, 7(1), 71–82. 10.4161/epi.7.1.18750 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matheus F, Rusha E, Rehimi R, Molitor L, Pertek A, Modic M, Feederle R, Flatley A, Kremmer E, Geerlof A, Rishko V, Rada-Iglesias A, & Drukker M (2019, May 14). Pathological ASXL1 Mutations and Protein Variants Impair Neural Crest Development. Stem Cell Reports, 12(5), 861–868. 10.1016/j.stemcr.2019.03.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller CT, Maves L, & Kimmel CB (2004, May). moz regulates Hox expression and pharyngeal segmental identity in zebrafish. Development, 131(10), 2443–2461. 10.1242/dev.01134 [DOI] [PubMed] [Google Scholar]
- Mills A, Bearce E, Cella R, Kim SW, Selig M, Lee S, & Lowery LA (2019). Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis. Front Physiol, 10, 431. 10.3389/fphys.2019.00431 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills A, Bearce E, Cella R, Kim SW, Selig M, Lee S, & Lowery LA (2020). Corrigendum: Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis. Front Physiol, 11, 644596. 10.3389/fphys.2020.644596 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milstone ZJ, Lawson G, & Trivedi CM (2017, Dec). Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis. Dev Dyn, 246(12), 1015–1026. 10.1002/dvdy.24563 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Min H, Kim HP, & Shin JO (2019). Depletion of CTCF induces craniofacial malformations in mouse embryos. Am J Transl Res, 11(9), 6102–6109. https://www.ncbi.nlm.nih.gov/pubmed/31632578 [PMC free article] [PubMed] [Google Scholar]
- Mio C, Passon N, Fogolari F, Cesario C, Novelli A, Pittini C, & Damante G (2021, Sep). A novel de novo HDAC8 missense mutation causing Cornelia de Lange syndrome. Mol Genet Genomic Med, 9(9), e1612. 10.1002/mgg3.1612 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyake N, Koshimizu E, Okamoto N, Mizuno S, Ogata T, Nagai T, Kosho T, Ohashi H, Kato M, Sasaki G, Mabe H, Watanabe Y, Yoshino M, Matsuishi T, Takanashi J, Shotelersuk V, Tekin M, Ochi N, Kubota M, Ito N, Ihara K, Hara T, Tonoki H, Ohta T, Saito K, Matsuo M, Urano M, Enokizono T, Sato A, Tanaka H, Ogawa A, Fujita T, Hiraki Y, Kitanaka S, Matsubara Y, Makita T, Taguri M, Nakashima M, Tsurusaki Y, Saitsu H, Yoshiura K, Matsumoto N, & Niikawa N (2013, Sep). MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A, 161A(9), 2234–2243. 10.1002/ajmg.a.36072 [DOI] [PubMed] [Google Scholar]
- Miyake N, Mizuno S, Okamoto N, Ohashi H, Shiina M, Ogata K, Tsurusaki Y, Nakashima M, Saitsu H, Niikawa N, & Matsumoto N (2013, Jan). KDM6A point mutations cause Kabuki syndrome. Hum Mutat, 34(1), 108–110. 10.1002/humu.22229 [DOI] [PubMed] [Google Scholar]
- Miyake N, Tsurusaki Y, & Matsumoto N (2014, Sep). Numerous BAF complex genes are mutated in Coffin-Siris syndrome. Am J Med Genet C Semin Med Genet, 166C(3), 257–261. 10.1002/ajmg.c.31406 [DOI] [PubMed] [Google Scholar]
- Moore LD, Le T, & Fan G (2013, Jan). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23–38. 10.1038/npp.2012.112 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Motch Perrine SM, Wu M, Holmes G, Bjork BC, Jabs EW, & Richtsmeier JT (2020, Dec 5). Phenotypes, Developmental Basis, and Genetics of Pierre Robin Complex. J Dev Biol, 8(4). 10.3390/jdb8040030 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullegama SV, Rosenfeld JA, Orellana C, van Bon BW, Halbach S, Repnikova EA, Brick L, Li C, Dupuis L, Rosello M, Aradhya S, Stavropoulos DJ, Manickam K, Mitchell E, Hodge JC, Talkowski ME, Gusella JF, Keller K, Zonana J, Schwartz S, Pyatt RE, Waggoner DJ, Shaffer LG, Lin AE, de Vries BB, Mendoza-Londono R, & Elsea SH (2014, Jan). Reciprocal deletion and duplication at 2q23.1 indicates a role for MBD5 in autism spectrum disorder. Eur J Hum Genet, 22(1), 57–63. 10.1038/ejhg.2013.67 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa T, Hattori S, Hosoi T, & Nakayama K (2022). Neurobehavioral characteristics of mice with SETD5 mutations as models of IDD23 and KBG syndromes. Front Genet, 13, 1022339. 10.3389/fgene.2022.1022339 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa T, Hattori S, Nobuta R, Kimura R, Nakagawa M, Matsumoto M, Nagasawa Y, Funayama R, Miyakawa T, Inada T, Osumi N, Nakayama KI, & Nakayama K (2020, Apr 24). The Autism-Related Protein SETD5 Controls Neural Cell Proliferation through Epigenetic Regulation of rDNA Expression. iScience, 23(4), 101030. 10.1016/j.isci.2020.101030 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narumi-Kishimoto Y, Araki N, Migita O, Kawai T, Okamura K, Nakabayashi K, Kaname T, Ozawa Y, Ozawa H, Takada F, & Hata K (2019, Sep). Novel SIN3A mutation identified in a Japanese patient with Witteveen-Kolk syndrome. Eur J Med Genet, 62(9), 103547. 10.1016/j.ejmg.2018.09.014 [DOI] [PubMed] [Google Scholar]
- Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, & Shendure J (2010, Sep). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet, 42(9), 790–793. 10.1038/ng.646 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowialis P, Lopusna K, Opavska J, Haney SL, Abraham A, Sheng P, Riva A, Natarajan A, Guryanova O, Simpson M, Hlady R, Xie M, & Opavsky R (2019, Sep 26). Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions. Nat Commun, 10(1), 4374. 10.1038/s41467-019-12355-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, & Jenuwein T (2001, Jul). The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol, 21(13), 4330–4336. 10.1128/MCB.21.13.4330-4336.2001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okano M, Bell DW, Haber DA, & Li E (1999, Oct 29). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99(3), 247–257. 10.1016/s0092-8674(00)81656-6 [DOI] [PubMed] [Google Scholar]
- Okano M, Takebayashi S, Okumura K, & Li E (1999). Assignment of cytosine-5 DNA methyltransferases Dnmt3a and Dnmt3b to mouse chromosome bands 12A2-A3 and 2H1 by in situ hybridization. Cytogenet Cell Genet, 86(3-4), 333–334. 10.1159/000015331 [DOI] [PubMed] [Google Scholar]
- Okano M, Xie S, & Li E (1998, Jul). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet, 19(3), 219–220. 10.1038/890 [DOI] [PubMed] [Google Scholar]
- Ounap K, Puusepp-Benazzouz H, Peters M, Vaher U, Rein R, Proos A, Field M, & Reimand T (2012, Mar). A novel c.2T > C mutation of the KDM5C/JARID1C gene in one large family with X-linked intellectual disability. Eur J Med Genet, 55(3), 178–184. 10.1016/j.ejmg.2012.01.004 [DOI] [PubMed] [Google Scholar]
- Pagliaroli L, Porazzi P, Curtis AT, Scopa C, Mikkers HMM, Freund C, Daxinger L, Deliard S, Welsh SA, Offley S, Ott CA, Calabretta B, Brugmann SA, Santen GWE, & Trizzino M (2021, Nov 9). Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders. Nat Commun, 12(1), 6469. 10.1038/s41467-021-26810-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parenti I, Teresa-Rodrigo ME, Pozojevic J, Ruiz Gil S, Bader I, Braunholz D, Bramswig NC, Gervasini C, Larizza L, Pfeiffer L, Ozkinay F, Ramos F, Reiz B, Rittinger O, Strom TM, Watrin E, Wendt K, Wieczorek D, Wollnik B, Baquero-Montoya C, Pie J, Deardorff MA, Gillessen-Kaesbach G, & Kaiser FJ (2017, Mar). Mutations in chromatin regulators functionally link Cornelia de Lange syndrome and clinically overlapping phenotypes. Hum Genet, 136(3), 307–320. 10.1007/s00439-017-1758-y [DOI] [PubMed] [Google Scholar]
- Park JW, Cai J, McIntosh I, Jabs EW, Fallin MD, Ingersoll R, Hetmanski JB, Vekemans M, Attie-Bitach T, Lovett M, Scott AF, & Beaty TH (2006, Jul). High throughput SNP and expression analyses of candidate genes for non-syndromic oral clefts. J Med Genet, 43(7), 598–608. 10.1136/jmg.2005.040162 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pelletier N, Champagne N, Stifani S, & Yang XJ (2002, Apr 18). MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene, 21(17), 2729–2740. 10.1038/sj.onc.1205367 [DOI] [PubMed] [Google Scholar]
- Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ, & et al. (1995, Jul 27). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376(6538), 348–351. 10.1038/376348a0 [DOI] [PubMed] [Google Scholar]
- Pezoa SA, Artinger KB, & Niswander LA (2020, Aug 1). GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol, 464(1), 24–34. 10.1016/j.ydbio.2020.05.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piazza R, Magistroni V, Redaelli S, Mauri M, Massimino L, Sessa A, Peronaci M, Lalowski M, Soliymani R, Mezzatesta C, Pirola A, Banfi F, Rubio A, Rea D, Stagno F, Usala E, Martino B, Campiotti L, Merli M, Passamonti F, Onida F, Morotti A, Pavesi F, Bregni M, Broccoli V, Baumann M, & Gambacorti-Passerini C (2018, Jun 6). SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub. Nat Commun, 9(1), 2192. 10.1038/s41467-018-04462-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pilarowski GO, Vernon HJ, Applegate CD, Boukas L, Cho MT, Gurnett CA, Benke PJ, Beaver E, Heeley JM, Medne L, Krantz ID, Azage M, Niyazov D, Henderson LB, Wentzensen IM, Baskin B, Sacoto MJG, Bowman GD, & Bjornsson HT (2018, Aug). Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability. J Med Genet, 55(8), 561–566. 10.1136/jmedgenet-2017-104759 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pillai R, Coverdale LE, Dubey G, & Martin CC (2004, Nov). Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev Dyn, 231(3), 647–654. 10.1002/dvdy.20168 [DOI] [PubMed] [Google Scholar]
- Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, Mittler G, Genoud C, Goyama S, Kurokawa M, Son J, Reinberg D, Lachner M, & Jenuwein T (2012, Aug 31). Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell, 150(5), 948–960. 10.1016/j.cell.2012.06.048 [DOI] [PubMed] [Google Scholar]
- Piunti A, & Shilatifard A (2021, May). The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol, 22(5), 326–345. 10.1038/s41580-021-00341-1 [DOI] [PubMed] [Google Scholar]
- Piunti A, & Shilatifard A (2022, Jun). Author Correction: The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol, 23(6), 444. 10.1038/s41580-022-00495-6 [DOI] [PubMed] [Google Scholar]
- Porntaveetus T, Abid MF, Theerapanon T, Srichomthong C, Ohazama A, Kawasaki K, Kawasaki M, Suphapeetiporn K, Sharpe PT, & Shotelersuk V (2018). Expanding the Oro-Dental and Mutational Spectra of Kabuki Syndrome and Expression of KMT2D and KDM6A in Human Tooth Germs. Int J Biol Sci, 14(4), 381–389. 10.7150/ijbs.23517 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powis Z, Farwell Hagman KD, Mroske C, McWalter K, Cohen JS, Colombo R, Serretti A, Fatemi A, David KL, Reynolds J, Immken L, Nagakura H, Cunniff CM, Payne K, Barbaro-Dieber T, Gripp KW, Baker L, Stamper T, Aleck KA, Jordan ES, Hersh JH, Burton J, Wentzensen IM, Guillen Sacoto MJ, Willaert R, Cho MT, Petrik I, Huether R, & Tang S (2018, Apr). Expansion and further delineation of the SETD5 phenotype leading to global developmental delay, variable dysmorphic features, and reduced penetrance. Clin Genet, 93(4), 752–761. 10.1111/cge.13132 [DOI] [PubMed] [Google Scholar]
- Qi HH, Sarkissian M, Hu GQ, Wang Z, Bhattacharjee A, Gordon DB, Gonzales M, Lan F, Ongusaha PP, Huarte M, Yaghi NK, Lim H, Garcia BA, Brizuela L, Zhao K, Roberts TM, & Shi Y (2010, Jul 22). Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature, 466(7305), 503–507. 10.1038/nature09261 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quina AS, Buschbeck M, & Di Croce L (2006, Nov 30). Chromatin structure and epigenetics. Biochem Pharmacol, 72(11), 1563–1569. 10.1016/j.bcp.2006.06.016 [DOI] [PubMed] [Google Scholar]
- Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, & Jones DA (2010, Feb 5). Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Biol Chem, 285(6), 4110–4121. 10.1074/jbc.M109.073676 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rainger JK, Bhatia S, Bengani H, Gautier P, Rainger J, Pearson M, Ansari M, Crow J, Mehendale F, Palinkasova B, Dixon MJ, Thompson PJ, Matarin M, Sisodiya SM, Kleinjan DA, & Fitzpatrick DR (2014, May 15). Disruption of SATB2 or its long-range cis-regulation by SOX9 causes a syndromic form of Pierre Robin sequence. Hum Mol Genet, 23(10), 2569–2579. 10.1093/hmg/ddt647 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao A, & LaBonne C (2018, Aug 8). Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest. Development, 145(15). 10.1242/dev.163386 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauch A, Schellmoser S, Kraus C, Dorr HG, Trautmann U, Altherr MR, Pfeiffer RA, & Reis A (2001, Apr 1). First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype-phenotype correlation. Am J Med Genet, 99(4), 338–342. 10.1002/ajmg.1203 [DOI] [PubMed] [Google Scholar]
- Rawlins LE, Stals KL, Eason JD, & Turnpenny PD (2017, Apr). De novo SETD5 nonsense mutation associated with diaphragmatic hernia and severe cerebral cortical dysplasia. Clin Dysmorphol, 26(2), 95–97. 10.1097/MCD.0000000000000144 [DOI] [PubMed] [Google Scholar]
- Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L, Lerouge T, Hager GL, Chambon P, & Losson R (2003, Jun 16). NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J, 22(12), 3153–3163. 10.1093/emboj/cdg288 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, & Jenuwein T (2000, Aug 10). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406(6796), 593–599. 10.1038/35020506 [DOI] [PubMed] [Google Scholar]
- Rio M, Clech L, Amiel J, Faivre L, Lyonnet S, Le Merrer M, Odent S, Lacombe D, Edery P, Brauner R, Raoul O, Gosset P, Prieur M, Vekemans M, Munnich A, Colleaux L, & Cormier-Daire V (2003, Jun). Spectrum of NSD1 mutations in Sotos and Weaver syndromes. J Med Genet, 40(6), 436–440. 10.1136/jmg.40.6.436 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roffers-Agarwal J, Lidberg KA, & Gammill LS (2021, Oct). The lysine methyltransferase SETD2 is a dynamically expressed regulator of early neural crest development. Genesis, 59(10), e23448. 10.1002/dvg.23448 [DOI] [PubMed] [Google Scholar]
- Roston A, Evans D, Gill H, McKinnon M, Isidor B, Cogne B, Mwenifumbo J, van Karnebeek C, An J, Jones SJM, Farrer M, Demos M, Connolly M, Gibson WT, Study C, & Study E (2021, Mar). SETD1B-associated neurodevelopmental disorder. J Med Genet, 58(3), 196–204. 10.1136/jmedgenet-2019-106756 [DOI] [PubMed] [Google Scholar]
- Saettini F, Fazio G, Bonati MT, Moratto D, Massa V, Di Fede E, Castiglioni S, Marchetti D, Chiarini M, Sottini A, Iascone M, Cazzaniga G, Imberti L, Biondi A, Gervasini C, & Badolato R (2022, Jul). Identical EP300 variant leading to Rubinstein-Taybi syndrome with different clinical and immunologic phenotype. Am J Med Genet A, 188(7), 2129–2134. 10.1002/ajmg.a.62719 [DOI] [PubMed] [Google Scholar]
- Sanchez AI, & Rojas JA (2017). A SMARCA2 Mutation in the First Case Report of Nicolaides-Baraitser Syndrome in Latin America: Genotype-Phenotype Correlation. Case Rep Genet, 2017, 8639617. 10.1155/2017/8639617 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santen GW, Aten E, Vulto-van Silfhout AT, Pottinger C, van Bon BW, van Minderhout IJ, Snowdowne R, van der Lans CA, Boogaard M, Linssen MM, Vijfhuizen L, van der Wielen MJ, Vollebregt MJ, Coffin-Siris C, Breuning MH, Kriek M, van Haeringen A, den Dunnen JT, Hoischen A, Clayton-Smith J, de Vries BB, Hennekam RC, & van Belzen MJ (2013, Nov). Coffin-Siris syndrome and the BAF complex: genotype-phenotype study in 63 patients. Hum Mutat, 34(11), 1519–1528. 10.1002/humu.22394 [DOI] [PubMed] [Google Scholar]
- Satoh C, Maekawa R, Kinoshita A, Mishima H, Doi M, Miyazaki M, Fukuda M, Takahashi H, Kondoh T, & Yoshiura KI (2017). Three brothers with a nonsense mutation in KAT6A caused by parental germline mosaicism. Hum Genome Var, 4, 17045. 10.1038/hgv.2017.45 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sauka-Spengler T, & Bronner-Fraser M (2008, Jul). A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol, 9(7), 557–568. 10.1038/nrm2428 [DOI] [PubMed] [Google Scholar]
- Sauka-Spengler T, & Bronner M (2010, Oct 29). Snapshot: neural crest. Cell, 143(3), 486–486 e481. 10.1016/j.cell.2010.10.025 [DOI] [PubMed] [Google Scholar]
- Schwarz D, Varum S, Zemke M, Scholer A, Baggiolini A, Draganova K, Koseki H, Schubeler D, & Sommer L (2014, Feb). Ezh2 is required for neural crest-derived cartilage and bone formation. Development, 141(4), 867–877. 10.1242/dev.094342 [DOI] [PubMed] [Google Scholar]
- Schwenty-Lara J, Nehl D, & Borchers A (2020, Jan 15). The histone methyltransferase KMT2D, mutated in Kabuki syndrome patients, is required for neural crest cell formation and migration. Hum Mol Genet, 29(2), 305–319. 10.1093/hmg/ddz284 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J, Adams C, Beetstra S, & Zarate YA (2019, Mar). SATB2-associated syndrome (SAS) and associated dental findings. Spec Care Dentist, 39(2), 220–224. 10.1111/scd.12340 [DOI] [PubMed] [Google Scholar]
- Semba Y, Harada A, Maehara K, Oki S, Meno C, Ueda J, Yamagata K, Suzuki A, Onimaru M, Nogami J, Okada S, Akashi K, & Ohkawa Y (2017, Sep 6). Chd2 regulates chromatin for proper gene expression toward differentiation in mouse embryonic stem cells. Nucleic Acids Res, 45(15), 8758–8772. 10.1093/nar/gkx475 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen R, Pezoa SA, Carpio Shull L, Hernandez-Lagunas L, Niswander LA, & Artinger KB (2018, Nov 12). Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice. J Dev Biol, 6(4). 10.3390/jdb6040027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano MLA, Demarest BL, Tone-Pah-Hote T, Tristani-Firouzi M, & Yost HJ (2019, Sep). Inhibition of Notch signaling rescues cardiovascular development in Kabuki Syndrome. PLoS Biol, 17(9), e3000087. 10.1371/journal.pbio.3000087 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sessa A, Fagnocchi L, Mastrototaro G, Massimino L, Zaghi M, Indrigo M, Cattaneo S, Martini D, Gabellini C, Pucci C, Fasciani A, Belli R, Taverna S, Andreazzoli M, Zippo A, & Broccoli V (2019, Oct 23). SETD5 Regulates Chromatin Methylation State and Preserves Global Transcriptional Fidelity during Brain Development and Neuronal Wiring. Neuron, 104(2), 271–289 e213. 10.1016/j.neuron.2019.07.013 [DOI] [PubMed] [Google Scholar]
- Shaffer JR, Orlova E, Lee MK, Leslie EJ, Raffensperger ZD, Heike CL, Cunningham ML, Hecht JT, Kau CH, Nidey NL, Moreno LM, Wehby GL, Murray JC, Laurie CA, Laurie CC, Cole J, Ferrara T, Santorico S, Klein O, Mio W, Feingold E, Hallgrimsson B, Spritz RA, Marazita ML, & Weinberg SM (2016, Aug). Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology. PLoS Genet, 12(8), e1006149. 10.1371/journal.pgen.1006149 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shang E, Wang X, Wen D, Greenberg DA, & Wolgemuth DJ (2009, Apr). Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn, 238(4), 908–917. 10.1002/dvdy.21911 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shashi V, Pena LD, Kim K, Burton B, Hempel M, Schoch K, Walkiewicz M, McLaughlin HM, Cho M, Stong N, Hickey SE, Shuss CM, Undiagnosed Diseases N, Freemark MS, Bellet JS, Keels MA, Bonner MJ, El-Dairi M, Butler M, Kranz PG, Stumpel CT, Klinkenberg S, Oberndorff K, Alawi M, Santer R, Petrovski S, Kuismin O, Korpi-Heikkila S, Pietilainen O, Aarno P, Kurki MI, Hoischen A, Need AC, Goldstein DB, & Kortum F (2016, Oct 6). De Novo Truncating Variants in ASXL2 Are Associated with a Unique and Recognizable Clinical Phenotype. Am J Hum Genet, 99(4), 991–999. 10.1016/j.ajhg.2016.08.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shashi V, Pena LDM, Kim K, Burton B, Hempel M, Schoch K, Walkiewicz M, McLaughlin HM, Cho M, Stong N, Hickey SE, Shuss CM, Undiagnosed Diseases N, Freemark MS, Bellet JS, Keels MA, Bonner MJ, El-Dairi M, Butler M, Kranz PG, Stumpel C, Klinkenberg S, Oberndorff K, Alawi M, Santer R, Petrovski S, Kuismin O, Korpi-Heikkila S, Pietilainen O, Aarno P, Kurki MI, Hoischen A, Need AC, Goldstein DB, & Kortum F (2017, Jan 5). De Novo Truncating Variants in ASXL2 Are Associated with a Unique and Recognizable Clinical Phenotype. Am J Hum Genet, 100(1), 179. 10.1016/j.ajhg.2016.12.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheikh BN, Dixon MP, Thomas T, & Voss AK (2012, Jan 15). Querkopf is a key marker of self-renewal and multipotency of adult neural stem cells. J Cell Sci, 125(Pt 2), 295–309. 10.1242/jcs.077271 [DOI] [PubMed] [Google Scholar]
- Shirai M, Osugi T, Koga H, Kaji Y, Takimoto E, Komuro I, Hara J, Miwa T, Yamauchi-Takihara K, & Takihara Y (2002, Jul). The Polycomb-group gene Rae28 sustains Nkx2.5/Csx expression and is essential for cardiac morphogenesis. J Clin Invest, 110(2), 177–184. 10.1172/JCI14839 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shpargel KB, Mangini CL, Xie G, Ge K, & Magnuson T (2020, Jul 17). The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology. Development, 147(21). 10.1242/dev.187997 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shpargel KB, Starmer J, Wang C, Ge K, & Magnuson T (2017, Oct 24). UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc Natl Acad Sci U S A, 114(43), E9046–E9055. 10.1073/pnas.1705011114 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shull LC, Lencer ES, Kim HM, Goyama S, Kurokawa M, Costello JC, Jones K, & Artinger KB (2022, Feb 15). PRDM paralogs antagonistically balance Wnt/beta-catenin activity during craniofacial chondrocyte differentiation. Development, 149(4). 10.1242/dev.200082 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shull LC, Sen R, Menzel J, Goyama S, Kurokawa M, & Artinger KB (2020, May 15). The conserved and divergent roles of Prdm3 and Prdm16 in zebrafish and mouse craniofacial development. Dev Biol, 461(2), 132–144. 10.1016/j.ydbio.2020.02.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siderius LE, Hamel BC, van Bokhoven H, de Jager F, van den Helm B, Kremer H, Heineman-de Boer JA, Ropers HH, & Mariman EC (1999, Jul 30). X-linked mental retardation associated with cleft lip/palate maps to Xp11.3-q21.3. Am J Med Genet, 85(3), 216–220. https://www.ncbi.nlm.nih.gov/pubmed/10398231 [PubMed] [Google Scholar]
- Simoes-Costa M, & Bronner ME (2015, Jan 15). Establishing neural crest identity: a gene regulatory recipe. Development, 142(2), 242–257. 10.1242/dev.105445 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson MA, Deshpande C, Dafou D, Vissers LE, Woollard WJ, Holder SE, Gillessen-Kaesbach G, Derks R, White SM, Cohen-Snuijf R, Kant SG, Hoefsloot LH, Reardon W, Brunner HG, Bongers EM, & Trembath RC (2012, Feb 10). De novo mutations of the gene encoding the histone acetyltransferase KAT6B cause Genitopatellar syndrome. Am J Hum Genet, 90(2), 290–294. 10.1016/j.ajhg.2011.11.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh N, Gupta M, Trivedi CM, Singh MK, Li L, & Epstein JA (2013, May 15). Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression. Dev Biol, 377(2), 333–344. 10.1016/j.ydbio.2013.03.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh N, Trivedi CM, Lu M, Mullican SE, Lazar MA, & Epstein JA (2011, Nov 11). Histone deacetylase 3 regulates smooth muscle differentiation in neural crest cells and development of the cardiac outflow tract. Circ Res, 109(11), 1240–1249. 10.1161/CIRCRESAHA.111.255067 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinha S, Biswas M, Chatterjee SS, Kumar S, & Sengupta A (2020, Apr 28). Pbrm1 Steers Mesenchymal Stromal Cell Osteolineage Differentiation by Integrating PBAF-Dependent Chromatin Remodeling and BMP/TGF-beta Signaling. Cell Rep, 31(4), 107570. 10.1016/j.celrep.2020.107570 [DOI] [PubMed] [Google Scholar]
- Smith AM, LaValle TA, Shinawi M, Ramakrishnan SM, Abel HJ, Hill CA, Kirkland NM, Rettig MP, Helton NM, Heath SE, Ferraro F, Chen DY, Adak S, Semenkovich CF, Christian DL, Martin JR, Gabel HW, Miller CA, & Ley TJ (2021, Jul 27). Functional and epigenetic phenotypes of humans and mice with DNMT3A Overgrowth Syndrome. Nat Commun, 12(1), 4549. 10.1038/s41467-021-24800-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobering AK, Bryant LM, Li D, McGaughran J, Maystadt I, Moortgat S, Graham JM Jr., van Haeringen A, Ruivenkamp C, Cuperus R, Vogt J, Morton J, Brasch-Andersen C, Steenhof M, Hansen LK, Adler E, Lyonnet S, Pingault V, Sandrine M, Ziegler A, Donald T, Nelson B, Holt B, Petryna O, Firth H, McWalter K, Zyskind J, Telegrafi A, Juusola J, Person R, Bamshad MJ, Earl D, University of Washington Center for Mendelian, G., Chun-Hui Tsai A, Yearwood KR, Marco E, Nowak C, Douglas J, Hakonarson H, & Bhoj EJ. (2023, Jan 12). Erratum: Variants in PHF8 cause a spectrum of X-linked neurodevelopmental disorders and facial dysmorphology. HGG Adv, 4(1), 100168. 10.1016/j.xhgg.2022.100168 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobering AK, Bryant LM, Li D, McGaughran J, Maystadt I, Moortgat S, Graham JM Jr., van Haeringen A, Ruivenkamp C, Cuperus R, Vogt J, Morton J, Brasch-Andersen C, Steenhof M, Hansen LK, Adler E, Lyonnet S, Pingault V, Sandrine M, Ziegler A, Donald T, Nelson B, Holt B, Petryna O, Firth H, McWalter K, Zyskind J, Telegrafi A, Juusola J, Person R, Bamshad MJ, Earl D, University of Washington Center for Mendelian, G., Tsai AC, Yearwood KR, Marco E, Nowak C, Douglas J, Hakonarson H, & Bhoj EJ (2022, Jul 14). Variants in PHF8 cause a spectrum of X-linked neurodevelopmental disorders and facial dysmorphology. HGG Adv, 3(3), 100102. 10.1016/j.xhgg.2022.100102 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokpor G, Xie Y, Rosenbusch J, & Tuoc T (2017). Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders. Front Mol Neurosci, 10, 243. 10.3389/fnmol.2017.00243 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sotos JF, Dodge PR, Muirhead D, Crawford JD, & Talbot NB (1964, Jul 16). Cerebral Gigantism in Childhood. A Syndrome of Excessively Rapid Growth and Acromegalic Features and a Nonprogressive Neurologic Disorder. N Engl J Med, 271, 109–116. 10.1056/NEJM196407162710301 [DOI] [PubMed] [Google Scholar]
- Sousa SB, Hennekam RC, & Nicolaides-Baraitser Syndrome International C (2014, Sep). Phenotype and genotype in Nicolaides-Baraitser syndrome. Am J Med Genet C Semin Med Genet, 166C(3), 302–314. 10.1002/ajmg.c.31409 [DOI] [PubMed] [Google Scholar]
- Sperry ED, Hurd EA, Durham MA, Reamer EN, Stein AB, & Martin DM (2014, Sep). The chromatin remodeling protein CHD7, mutated in CHARGE syndrome, is necessary for proper craniofacial and tracheal development. Dev Dyn, 243(9), 1055–1066. 10.1002/dvdy.24156 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, Wang T, Hoekzema K, Vives L, Vogel I, Brunner HG, van der Burgt I, Ockeloen CW, Schuurs-Hoeijmakers JH, Klein Wassink-Ruiter JS, Stumpel C, Stevens SJC, Vles HS, Marcelis CM, van Bokhoven H, Cantagrel V, Colleaux L, Nicouleau M, Lyonnet S, Bernier RA, Gerdts J, Coe BP, Romano C, Alberti A, Grillo L, Scuderi C, Nordenskjold M, Kvarnung M, Guo H, Xia K, Piton A, Gerard B, Genevieve D, Delobel B, Lehalle D, Perrin L, Prieur F, Thevenon J, Gecz J, Shaw M, Pfundt R, Keren B, Jacquette A, Schenck A, Eichler EE, & Kleefstra T (2016, Mar 3). Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. Am J Hum Genet, 98(3), 541–552. 10.1016/j.ajhg.2016.02.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strassman A, Schnutgen F, Dai Q, Jones JC, Gomez AC, Pitstick L, Holton NE, Moskal R, Leslie ER, von Melchner H, Beier DR, & Bjork BC (2017, Jul 1). Generation of a multipurpose Prdm16 mouse allele by targeted gene trapping. Dis Model Mech, 10(7), 909–922. 10.1242/dmm.029561 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strobl-Mazzulla PH, & Bronner ME (2012, Sep 17). A PHD12-Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. J Cell Biol, 198(6), 999–1010. 10.1083/jcb.201203098 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strobl-Mazzulla PH, Sauka-Spengler T, & Bronner-Fraser M (2010, Sep 14). Histone demethylase JmjD2A regulates neural crest specification. Dev Cell, 19(3), 460–468. 10.1016/j.devcel.2010.08.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strom SP, Lozano R, Lee H, Dorrani N, Mann J, OĽague PF, Mans N, Deignan JL, Vilain E, Nelson SF, Grody WW, & Quintero-Rivera F (2014, May 1). De Novo variants in the KMT2A (MLL) gene causing atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by clinical exome sequencing. BMC Med Genet, 15, 49. 10.1186/1471-2350-15-49 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suls A, Jaehn JA, Kecskes A, Weber Y, Weckhuysen S, Craiu DC, Siekierska A, Djemie T, Afrikanova T, Gormley P, von Spiczak S, Kluger G, Iliescu CM, Talvik T, Talvik I, Meral C, Caglayan HS, Giraldez BG, Serratosa J, Lemke JR, Hoffman-Zacharska D, Szczepanik E, Barisic N, Komarek V, Hjalgrim H, Moller RS, Linnankivi T, Dimova P, Striano P, Zara F, Marini C, Guerrini R, Depienne C, Baulac S, Kuhlenbaumer G, Crawford AD, Lehesjoki AE, de Witte PA, Palotie A, Lerche H, Esguerra CV, De Jonghe P, Helbig I, & Euro ERESC (2013, Nov 7). De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet, 93(5), 967–975. 10.1016/j.ajhg.2013.09.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun X, Cheng L, & Sun Y (2022, Jun 1). Autism-associated protein POGZ controls ESCs and ESC neural induction by association with esBAF. Mol Autism, 13(1), 24. 10.1186/s13229-022-00502-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun Y, Hu G, Liu H, Zhang X, Huang Z, Yan H, Wang L, Fan Y, Gu X, & Yu Y (2017, Feb). Further delineation of the phenotype of truncating KMT2A mutations: The extended Wiedemann-Steiner syndrome. Am J Med Genet A, 173(2), 510–514. 10.1002/ajmg.a.38025 [DOI] [PubMed] [Google Scholar]
- Sun Y, Kumar SR, Wong CED, Tian Z, Bai H, Crump JG, Bajpai R, & Lien CL (2022). Craniofacial and cardiac defects in chd7 zebrafish mutants mimic CHARGE syndrome. Front Cell Dev Biol, 10, 1030587. 10.3389/fcell.2022.1030587 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szakszon K, Salpietro C, Kakar N, Knegt AC, Olah E, Dallapiccola B, & Borck G (2013, Apr). De novo mutations of the gene encoding the histone acetyltransferase KAT6B in two patients with Say-Barber/Biesecker/Young-Simpson syndrome. Am J Med Genet A, 161A(4), 884–888. 10.1002/ajmg.a.35848 [DOI] [PubMed] [Google Scholar]
- Szczaluba K, Brzezinska M, Kot J, Rydzanicz M, Walczak A, Stawinski P, Werner B, & Ploski R (2016, Sep). SETD5 loss-of-function mutation as a likely cause of a familial syndromic intellectual disability with variable phenotypic expression. Am J Med Genet A, 170(9), 2322–2327. 10.1002/ajmg.a.37832 [DOI] [PubMed] [Google Scholar]
- Takihara Y, Tomotsune D, Shirai M, Katoh-Fukui Y, Nishii K, Motaleb MA, Nomura M, Tsuchiya R, Fujita Y, Shibata Y, Higashinakagawa T, & Shimada K (1997, Oct). Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development, 124(19), 3673–3682. 10.1242/dev.124.19.3673 [DOI] [PubMed] [Google Scholar]
- Talkowski ME, Mullegama SV, Rosenfeld JA, van Bon BW, Shen Y, Repnikova EA, Gastier-Foster J, Thrush DL, Kathiresan S, Ruderfer DM, Chiang C, Hanscom C, Ernst C, Lindgren AM, Morton CC, An Y, Astbury C, Brueton LA, Lichtenbelt KD, Ades LC, Fichera M, Romano C, Innis JW, Williams CA, Bartholomew D, Van Allen MI, Parikh A, Zhang L, Wu BL, Pyatt RE, Schwartz S, Shaffer LG, de Vries BB, Gusella JF, & Elsea SH (2011, Oct 7). Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet, 89(4), 551–563. 10.1016/j.ajhg.2011.09.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan H, Wu S, Wang J, & Zhao ZK (2008, Dec). The JMJD2 members of histone demethylase revisited. Mol Biol Rep, 35(4), 551–556. 10.1007/s11033-007-9121-3 [DOI] [PubMed] [Google Scholar]
- Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroishi T, & Ishii S (1997, Sep 16). Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci U S A, 94(19), 10215–10220. 10.1073/pnas.94.19.10215 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang S, Hughes E, Lascelles K, Euro, E. R. E. S. m. a. e. w. g., Simpson, M. A., & Pal, D. K. (2017, Jan). New SMARCA2 mutation in a patient with Nicolaides-Baraitser syndrome and myoclonic astatic epilepsy. Am J Med Genet A, 173(1), 195–199. 10.1002/ajmg.a.37935 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatton-Brown K, Murray A, Hanks S, Douglas J, Armstrong R, Banka S, Bird LM, Clericuzio CL, Cormier-Daire V, Cushing T, Flinter F, Jacquemont ML, Joss S, Kinning E, Lynch SA, Magee A, McConnell V, Medeira A, Ozono K, Patton M, Rankin J, Shears D, Simon M, Splitt M, Strenger V, Stuurman K, Taylor C, Titheradge H, Van Maldergem L, Temple IK, Cole T, Seal S, Childhood Overgrowth C, & Rahman N (2013, Dec). Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype. Am J Med Genet A, 161A(12), 2972–2980. 10.1002/ajmg.a.36229 [DOI] [PubMed] [Google Scholar]
- Tham E, Lindstrand A, Santani A, Malmgren H, Nesbitt A, Dubbs HA, Zackai EH, Parker MJ, Millan F, Rosenbaum K, Wilson GN, & Nordgren A (2015, Mar 5). Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am J Hum Genet, 96(3), 507–513. 10.1016/j.ajhg.2015.01.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thienpont B, de Ravel T, Van Esch H, Van Schoubroeck D, Moerman P, Vermeesch JR, Fryns JP, Froyen G, Lacoste C, Badens C, & Devriendt K (2007, Oct). Partial duplications of the ATRX gene cause the ATR-X syndrome. Eur J Hum Genet, 15(10), 1094–1097. 10.1038/sj.ejhg.5201878 [DOI] [PubMed] [Google Scholar]
- Tillotson R, Yan K, Ruston J, de Young T, Cordova A, Turcotte-Cardin V, Yee Y, Taylor C, Visuvanathan S, Babbs C, Ivakine EA, Sled JG, Nieman BJ, Picketts DJ, & Justice MJ (2023, May 12). A new mouse model of ATR-X syndrome carrying a common patient mutation exhibits neurological and morphological defects. Hum Mol Genet. 10.1093/hmg/ddad075 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Timberlake AT, McGee S, Allington G, Kiziltug E, Wolfe EM, Stiegler AL, Boggon TJ, Sanyoura M, Morrow M, Wenger TL, Fernandes EM, Caluseriu O, Persing JA, Jin SC, Lifton RP, Kahle KT, & Kruszka P (2023, May 4). De novo variants implicate chromatin modification, transcriptional regulation, and retinoic acid signaling in syndromic craniosynostosis. Am J Hum Genet, 110(5), 846–862. 10.1016/j.ajhg.2023.03.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, & Heijmans BT (2009, Nov 1). DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet, 18(21), 4046–4053. 10.1093/hmg/ddp353 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd MA, Ivanochko D, & Picketts DJ (2015, Jun 19). PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein. Genes (Basel), 6(2), 325–352. 10.3390/genes6020325 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres-Perez JV, Anagianni S, Mech AM, Havelange W, Garcia-Gonzalez J, Fraser SE, Vallortigara G, & Brennan CH (2023, Jan 20). baz1b loss-of-function in zebrafish produces phenotypic alterations consistent with the domestication syndrome. iScience, 26(1), 105704. 10.1016/j.isci.2022.105704 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsume M, Kimura-Yoshida C, Mochida K, Shibukawa Y, Amazaki S, Wada Y, Hiramatsu R, Shimokawa K, & Matsuo I (2012, Sep 7). Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochem Biophys Res Commun, 425(4), 762–768. 10.1016/j.bbrc.2012.07.149 [DOI] [PubMed] [Google Scholar]
- Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, Kaname T, Naritomi K, Kawame H, Wakui K, Fukushima Y, Homma T, Kato M, Hiraki Y, Yamagata T, Yano S, Mizuno S, Sakazume S, Ishii T, Nagai T, Shiina M, Ogata K, Ohta T, Niikawa N, Miyatake S, Okada I, Mizuguchi T, Doi H, Saitsu H, Miyake N, & Matsumoto N (2012, Mar 18). Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet, 44(4), 376–378. 10.1038/ng.2219 [DOI] [PubMed] [Google Scholar]
- Tsurusaki Y, Okamoto N, Ohashi H, Mizuno S, Matsumoto N, Makita Y, Fukuda M, Isidor B, Perrier J, Aggarwal S, Dalal AB, Al-Kindy A, Liebelt J, Mowat D, Nakashima M, Saitsu H, Miyake N, & Matsumoto N (2014, Jun). Coffin-Siris syndrome is a SWI/SNF complex disorder. Clin Genet, 85(6), 548–554. 10.1111/cge.12225 [DOI] [PubMed] [Google Scholar]
- Tuck-Muller CM, Narayan A, Tsien F, Smeets DF, Sawyer J, Fiala ES, Sohn OS, & Ehrlich M (2000). DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet, 89(1-2), 121–128. 10.1159/000015590 [DOI] [PubMed] [Google Scholar]
- Tunovic S, Barkovich J, Sherr EH, & Slavotinek AM (2014, Jul). De novo ANKRD11 and KDM1A gene mutations in a male with features of KBG syndrome and Kabuki syndrome. Am J Med Genet A, 164A(7), 1744–1749. 10.1002/ajmg.a.36450 [DOI] [PubMed] [Google Scholar]
- Turkmen S, Gillessen-Kaesbach G, Meinecke P, Albrecht B, Neumann LM, Hesse V, Palanduz S, Balg S, Majewski F, Fuchs S, Zschieschang P, Greiwe M, Mennicke K, Kreuz FR, Dehmel HJ, Rodeck B, Kunze J, Tinschert S, Mundlos S, & Horn D (2003, Nov). Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes. Eur J Hum Genet, 11(11), 858–865. 10.1038/sj.ejhg.5201050 [DOI] [PubMed] [Google Scholar]
- Tzeng M, du Souich C, Cheung HW, & Boerkoel CF (2014, Jul). Coffin-Siris syndrome: phenotypic evolution of a novel SMARCA4 mutation. Am J Med Genet A, 164A(7), 1808–1814. 10.1002/ajmg.a.36533 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, & Li E (2006, Mar). Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development, 133(6), 1183–1192. 10.1242/dev.02293 [DOI] [PubMed] [Google Scholar]
- Urquhart J, Black GC, & Clayton-Smith J (2009, Nov-Dec). 4.5 Mb microdeletion in chromosome band 2q33.1 associated with learning disability and cleft palate. Eur J Med Genet, 52(6), 454–457. 10.1016/j.ejmg.2009.06.003 [DOI] [PubMed] [Google Scholar]
- Vallianatos CN, Raines B, Porter RS, Bonefas KM, Wu MC, Garay PM, Collette KM, Seo YA, Dou Y, Keegan CE, Tronson NC, & Iwase S (2020, Jun 1). Mutually suppressive roles of KMT2A and KDM5C in behaviour, neuronal structure, and histone H3K4 methylation. Commun Biol, 3(1), 278. 10.1038/s42003-020-1001-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Bon BW, Koolen DA, Brueton L, McMullan D, Lichtenbelt KD, Ades LC, Peters G, Gibson K, Moloney S, Novara F, Pramparo T, Dalla Bernardina B, Zoccante L, Balottin U, Piazza F, Pecile V, Gasparini P, Guerci V, Kets M, Pfundt R, de Brouwer AP, Veltman JA, de Leeuw N, Wilson M, Antony J, Reitano S, Luciano D, Fichera M, Romano C, Brunner HG, Zuffardi O, & de Vries BB (2010, Feb). The 2q23.1 microdeletion syndrome: clinical and behavioural phenotype. Eur J Hum Genet, 18(2), 163–170. 10.1038/ejhg.2009.152 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Velden YU, Wang L, Querol Cano L, & Haramis AP (2013). The polycomb group protein ring1b/rnf2 is specifically required for craniofacial development. PLoS One, 8(9), e73997. 10.1371/journal.pone.0073997 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Houdt JK, Nowakowska BA, Sousa SB, van Schaik BD, Seuntjens E, Avonce N, Sifrim A, Abdul-Rahman OA, van den Boogaard MJ, Bottani A, Castori M, Cormier-Daire V, Deardorff MA, Filges I, Fryer A, Fryns JP, Gana S, Garavelli L, Gillessen-Kaesbach G, Hall BD, Horn D, Huylebroeck D, Klapecki J, Krajewska-Walasek M, Kuechler A, Lines MA, Maas S, Macdermot KD, McKee S, Magee A, de Man SA, Moreau Y, Morice-Picard F, Obersztyn E, Pilch J, Rosser E, Shannon N, Stolte-Dijkstra I, Van Dijck P, Vilain C, Vogels A, Wakeling E, Wieczorek D, Wilson L, Zuffardi O, van Kampen AH, Devriendt K, Hennekam R, & Vermeesch JR (2012, Feb 26). Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet, 44(4), 445–449, S441. 10.1038/ng.1105 [DOI] [PubMed] [Google Scholar]
- Van Laarhoven PM, Neitzel LR, Quintana AM, Geiger EA, Zackai EH, Clouthier DE, Artinger KB, Ming JE, & Shaikh TH (2015, Aug 1). Kabuki syndrome genes KMT2D and KDM6A: functional analyses demonstrate critical roles in craniofacial, heart and brain development. Hum Mol Genet, 24(15), 4443–4453. 10.1093/hmg/ddv180 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Rij MC, Hollink I, Terhal PA, Kant SG, Ruivenkamp C, van Haeringen A, Kievit JA, & van Belzen MJ (2018, May). Two novel cases expanding the phenotype of SETD2-related overgrowth syndrome. Am J Med Genet A, 176(5), 1212–1215. 10.1002/ajmg.a.38666 [DOI] [PubMed] [Google Scholar]
- Vanyai HK, Garnham A, May RE, McRae HM, Collin C, Wilcox S, Smyth GK, Thomas T, & Voss AK (2019, Jul 24). MOZ directs the distal-less homeobox gene expression program during craniofacial development. Development, 146(14). 10.1242/dev.175042 [DOI] [PubMed] [Google Scholar]
- Vasileiou G, Vergarajauregui S, Endele S, Popp B, Buttner C, Ekici AB, Gerard M, Bramswig NC, Albrecht B, Clayton-Smith J, Morton J, Tomkins S, Low K, Weber A, Wenzel M, Altmuller J, Li Y, Wollnik B, Hoganson G, Plona MR, Cho MT, Deciphering Developmental Disorders S, Thiel CT, Ludecke HJ, Strom TM, Calpena E, Wilkie AOM, Wieczorek D, Engel FB, & Reis A (2018, Mar 1). Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome. Am J Hum Genet, 102(3), 468–479. 10.1016/j.ajhg.2018.01.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villavicencio-Lorini P, Klopocki E, Trimborn M, Koll R, Mundlos S, & Horn D (2013, Jul). Phenotypic variant of Brachydactyly-mental retardation syndrome in a family with an inherited interstitial 2q37.3 microdeletion including HDAC4. Eur J Hum Genet, 21(7), 743–748. 10.1038/ejhg.2012.240 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser R, Landman EB, Goeman J, Wit JM, & Karperien M (2012). Sotos syndrome is associated with deregulation of the MAPK/ERK-signaling pathway. PLoS One, 7(11), e49229. 10.1371/journal.pone.0049229 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vitte J, Gao F, Coppola G, Judkins AR, & Giovannini M (2017, Aug 21). Timing of Smarcb1 and Nf2 inactivation determines schwannoma versus rhabdoid tumor development. Nat Commun, 8(1), 300. 10.1038/s41467-017-00346-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voss AK, Vanyai HK, Collin C, Dixon MP, McLennan TJ, Sheikh BN, Scambler P, & Thomas T (2012, Sep 11). MOZ regulates the Tbx1 locus, and Moz mutation partially phenocopies DiGeorge syndrome. Dev Cell, 23(3), 652–663. 10.1016/j.devcel.2012.07.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner DR, Pisano MM, & Greene RM (2002, Jan). Expression of the nuclear coactivators CBP and p300 in developing craniofacial tissue. In Vitro Cell Dev Biol Anim, 38(1), 48–53. [DOI] [PubMed] [Google Scholar]
- Warner DR, Pisano MM, & Greene RM (2006, Dec 1). Functional analysis of CBP/p300 in embryonic orofacial mesenchymal cells. J Cell Biochem, 99(5), 1374–1379. 10.1002/jcb.20974 [DOI] [PubMed] [Google Scholar]
- Warner DR, Wells JP, Greene RM, & Pisano MM (2013, Mar). Gene expression changes in the secondary palate and mandible of Prdm16(-/-) mice. Cell Tissue Res, 351(3), 445–452. 10.1007/s00441-012-1525-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weerts MJA, Lanko K, Guzman-Vega FJ, Jackson A, Ramakrishnan R, Cardona-Londono KJ, Pena-Guerra KA, van Bever Y, van Paassen BW, Kievit A, van Slegtenhorst M, Allen NM, Kehoe CM, Robinson HK, Pang L, Banu SH, Zaman M, Efthymiou S, Houlden H, Jarvela I, Lauronen L, Maatta T, Schrauwen I, Leal SM, Ruivenkamp CAL, Barge-Schaapveld D, Peeters-Scholte C, Galehdari H, Mazaheri N, Sisodiya SM, Harrison V, Sun A, Thies J, Pedroza LA, Lara-Taranchenko Y, Chinn IK, Lupski JR, Garza-Flores A, McGlothlin J, Yang L, Huang S, Wang X, Jewett T, Rosso G, Lin X, Mohammed S, Merritt JL 2nd, Mirzaa GM, Timms AE, Scheck J, Elting MW, Polstra AM, Schenck L, Ruzhnikov MRZ, Vetro A, Montomoli M, Guerrini R, Koboldt DC, Mosher TM, Pastore MT, McBride KL, Peng J, Pan Z, Willemsen M, Koning S, Turnpenny PD, de Vries BBA, Gilissen C, Pfundt R, Lees M, Braddock SR, Klemp KC, Vansenne F, van Gijn ME, Quindipan C, Deardorff MA, Hamm JA, Putnam AM, Baud R, Walsh L, Lynch SA, Baptista J, Person RE, Monaghan KG, Crunk A, Keller-Ramey J, Reich A, Elloumi HZ, Alders M, Kerkhof J, McConkey H, Haghshenas S, Genomics England Research, C., Maroofian R, Sadikovic B, Banka S, Arold ST, & Barakat TS (2021, Nov). Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome. Genet Med, 23(11), 2122–2137. 10.1038/s41436-021-01246-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J, Beck CR, Harel T, Posey JE, Jhangiani SN, Tang S, Farwell KD, Powis Z, Mendelsohn NJ, Baker JA, Pollack L, Mason KJ, Wierenga KJ, Arrington DK, Hall M, Psychogios A, Fairbrother L, Walkiewicz M, Person RE, Niu Z, Zhang J, Rosenfeld JA, Muzny DM, Eng C, Beaudet AL, Lupski JR, Boerwinkle E, Gibbs RA, Yang Y, Xia F, & Sutton VR (2016, Jan 6). POGZ truncating alleles cause syndromic intellectual disability. Genome Med, 8(1), 3. 10.1186/s13073-015-0253-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieczorek D, Bogershausen N, Beleggia F, Steiner-Haldenstatt S, Pohl E, Li Y, Milz E, Martin M, Thiele H, Altmuller J, Alanay Y, Kayserili H, Klein-Hitpass L, Bohringer S, Wollstein A, Albrecht B, Boduroglu K, Caliebe A, Chrzanowska K, Cogulu O, Cristofoli F, Czeschik JC, Devriendt K, Dotti MT, Elcioglu N, Gener B, Goecke TO, Krajewska-Walasek M, Guillen-Navarro E, Hayek J, Houge G, Kilic E, Simsek-Kiper PO, Lopez-Gonzalez V, Kuechler A, Lyonnet S, Mari F, Marozza A, Mathieu Dramard M, Mikat B, Morin G, Morice-Picard F, Ozkinay F, Rauch A, Renieri A, Tinschert S, Utine GE, Vilain C, Vivarelli R, Zweier C, Nurnberg P, Rahmann S, Vermeesch J, Ludecke HJ, Zeschnigk M, & Wollnik B (2013, Dec 20). A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum Mol Genet, 22(25), 5121–5135. 10.1093/hmg/ddt366 [DOI] [PubMed] [Google Scholar]
- Wiesel-Motiuk N, & Assaraf YG (2020, Dec). The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist Updat, 53, 100729. 10.1016/j.drup.2020.100729 [DOI] [PubMed] [Google Scholar]
- Wilderman A, VanOudenhove J, Kron J, Noonan JP, & Cotney J (2018, May 1). High-Resolution Epigenomic Atlas of Human Embryonic Craniofacial Development. Cell Rep, 23(5), 1581–1597. 10.1016/j.celrep.2018.03.129 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams SR, Aldred MA, Der Kaloustian VM, Halal F, Gowans G, McLeod DR, Zondag S, Toriello HV, Magenis RE, & Elsea SH (2010, Aug 13). Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet, 87(2), 219–228. 10.1016/j.ajhg.2010.07.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams SR, Mullegama SV, Rosenfeld JA, Dagli AI, Hatchwell E, Allen WP, Williams CA, & Elsea SH (2010, Apr). Haploinsufficiency of MBD5 associated with a syndrome involving microcephaly, intellectual disabilities, severe speech impairment, and seizures. Eur J Hum Genet, 18(4), 436–441. 10.1038/ejhg.2009.199 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson DI, Burn J, Scambler P, & Goodship J (1993, Oct). DiGeorge syndrome: part of CATCH 22. J Med Genet, 30(10), 852–856. 10.1136/jmg.30.10.852 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witteveen JS, Willemsen MH, Dombroski TC, van Bakel NH, Nillesen WM, van Hulten JA, Jansen EJ, Verkaik D, Veenstra-Knol HE, van Ravenswaaij-Arts CM, Wassink-Ruiter JS, Vincent M, David A, Le Caignec C, Schieving J, Gilissen C, Foulds N, Rump P, Strom T, Cremer K, Zink AM, Engels H, de Munnik SA, Visser JE, Brunner HG, Martens GJ, Pfundt R, Kleefstra T, & Kolk SM (2016, Aug). Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nat Genet, 48(8), 877–887. 10.1038/ng.3619 [DOI] [PubMed] [Google Scholar]
- Wyatt BH, Raymond TO, Lansdon LA, Darbro BW, Murray JC, Manak JR, & Dickinson AJG (2021, Feb). Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders. Genesis, 59(1-2), e23394. 10.1002/dvg.23394 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia D, Deng S, Gao C, Li X, Zhang L, Xiao X, Peng X, Zhang J, He Z, Meng Z, Liu Z, Ouyang N, & Liang L (2023, May). ARID2, a rare cause of Coffin-Siris syndrome: A novel microdeletion at 12q12q13.11 causing severe short stature and literature review. Am J Med Genet A, 191(5), 1240–1249. 10.1002/ajmg.a.63139 [DOI] [PubMed] [Google Scholar]
- Xu F, Flowers S, & Moran E (2012, Feb 10). Essential role of ARID2 protein-containing SWI/SNF complex in tissue-specific gene expression. J Biol Chem, 287(7), 5033–5041. 10.1074/jbc.M111.279968 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu J, Yu B, Hong C, & Wang CY (2013, Dec). KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci, 5(4), 200–205. 10.1038/ijos.2013.77 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yano S, Fujimoto A, Morin-Leisk J, Matumoto N, Miyake N, Gillespie M, & Gao H (2018, Nov). New SMARCE1 variant in a patient with features overlapping with oculoauriculofrontonasal syndrome. Clin Genet, 94(5), 487–488. 10.1111/cge.13436 [DOI] [PubMed] [Google Scholar]
- Ye Y, Cho MT, Retterer K, Alexander N, Ben-Omran T, Al-Mureikhi M, Cristian I, Wheeler PG, Crain C, Zand D, Weinstein V, Vernon HJ, McClellan R, Krishnamurthy V, Vitazka P, Millan F, & Chung WK (2015, Oct). De novo POGZ mutations are associated with neurodevelopmental disorders and microcephaly. Cold Spring Harb Mol Case Stud, 1(1), a000455. 10.1101/mcs.a000455 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yochum GS, & Ayer DE (2001, Jul). Pf1, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex. Mol Cell Biol, 21(13), 4110–4118. 10.1128/MCB.21.13.4110-4118.2001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoi T, Enomoto Y, Naruto T, Kurosawa K, & Higurashi N (2020). Tatton-Brown-Rahman syndrome with a novel DNMT3A mutation presented severe intellectual disability and autism spectrum disorder. Hum Genome Var, 7, 15. 10.1038/s41439-020-0102-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaghi M, Longo F, Massimino L, Rubio A, Bido S, Mazzara PG, Bellini E, Banfi F, Podini P, Maltecca F, Zippo A, Broccoli V, & Sessa A (2023, Jun 1). SETD5 haploinsufficiency affects mitochondrial compartment in neural cells. Mol Autism, 14(1), 20. 10.1186/s13229-023-00550-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaghlool A, Halvardson J, Zhao JJ, Etemadikhah M, Kalushkova A, Konska K, Jernberg-Wiklund H, Thuresson AC, & Feuk L (2016, Sep). A Role for the Chromatin-Remodeling Factor BAZ1A in Neurodevelopment. Hum Mutat, 37(9), 964–975. 10.1002/humu.23034 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanella M, Vitriolo A, Andirko A, Martins PT, Sturm S, O’Rourke T, Laugsch M, Malerba N, Skaros A, Trattaro S, Germain PL, Mihailovic M, Merla G, Rada-Iglesias A, Boeckx C, & Testa G (2019, Dec). Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying self-domestication. Sci Adv, 5(12), eaaw7908. 10.1126/sciadv.aaw7908 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanoni P, Steindl K, Sengupta D, Joset P, Bahr A, Sticht H, Lang-Muritano M, van Ravenswaaij-Arts CMA, Shinawi M, Andrews M, Attie-Bitach T, Maystadt I, Belnap N, Benoit V, Delplancq G, de Vries BBA, Grotto S, Lacombe D, Larson A, Mourmans J, Ounap K, Petrilli G, Pfundt R, Ramsey K, Blok LS, Tsatsaris V, Vitobello A, Faivre L, Wheeler PG, Wevers MR, Wojcik M, Zweier M, Gozani O, & Rauch A (2021, Aug). Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype. Genet Med, 23(8), 1474–1483. 10.1038/s41436-021-01158-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarate YA, Bosanko KA, Caffrey AR, Bernstein JA, Martin DM, Williams MS, Berry-Kravis EM, Mark PR, Manning MA, Bhambhani V, Vargas M, Seeley AH, Estrada-Veras JI, van Dooren MF, Schwab M, Vanderver A, Melis D, Alsadah A, Sadler L, Van Esch H, Callewaert B, Oostra A, Maclean J, Dentici ML, Orlando V, Lipson M, Sparagana SP, Maarup TJ, Alsters SI, Brautbar A, Kovitch E, Naidu S, Lees M, Smith DM, Turner L, Raggio V, Spangenberg L, Garcia-Minaur S, Roeder ER, Littlejohn RO, Grange D, Pfotenhauer J, Jones MC, Balasubramanian M, Martinez-Monseny A, Blok LS, Gavrilova R, & Fish JL (2019, Aug). Mutation update for the SATB2 gene. Hum Mutat, 40(8), 1013–1029. 10.1002/humu.23771 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarate YA, & Fish JL (2017, Feb). SATB2-associated syndrome: Mechanisms, phenotype, and practical recommendations. Am J Med Genet A, 173(2), 327–337. 10.1002/ajmg.a.38022 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zepeda-Mendoza C, Goodenberger ML, Kuhl A, Rice GM, & Hoppman N (2019, Jun). Familial segregation of a 5q15-q21.2 deletion associated with facial dysmorphism and speech delay. Clin Case Rep, 7(6), 1154–1160. 10.1002/ccr3.2186 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang LX, Lemire G, Gonzaga-Jauregui C, Molidperee S, Galaz-Montoya C, Liu DS, Verloes A, Shillington AG, Izumi K, Ritter AL, Keena B, Zackai E, Li D, Bhoj E, Tarpinian JM, Bedoukian E, Kukolich MK, Innes AM, Ediae GU, Sawyer SL, Nair KM, Soumya PC, Subbaraman KR, Probst FJ, Bassetti JA, Sutton RV, Gibbs RA, Brown C, Boone PM, Holm IA, Tartaglia M, Ferrero GB, Niceta M, Dentici ML, Radio FC, Keren B, Wells CF, Coubes C, Laquerriere A, Aziza J, Dubucs C, Nampoothiri S, Mowat D, Patel MS, Bracho A, Cammarata-Scalisi F, Gezdirici A, Fernandez-Jaen A, Hauser N, Zarate YA, Bosanko KA, Dieterich K, Carey JC, Chong JX, Nickerson DA, Bamshad MJ, Lee BH, Yang XJ, Lupski JR, & Campeau PM (2020, Aug). Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants. Genet Med, 22(8), 1338–1347. 10.1038/s41436-020-0811-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao W, Hu X, Liu Y, Wang X, Chen Y, Wang Y, & Zhou H (2021). A de novo Variant of ASXL1 Is Associated With an Atypical Phenotype of Bohring-Opitz Syndrome: Case Report and Literature Review. Front Pediatr, 9, 678615. 10.3389/fped.2021.678615 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou B, Wang J, Lee SY, Xiong J, Bhanu N, Guo Q, Ma P, Sun Y, Rao RC, Garcia BA, Hess JL, & Dou Y (2016, Apr 21). PRDM16 Suppresses MLL1r Leukemia via Intrinsic Histone Methyltransferase Activity. Mol Cell, 62(2), 222–236. 10.1016/j.molcel.2016.03.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zweier C, Rittinger O, Bader I, Berland S, Cole T, Degenhardt F, Di Donato N, Graul-Neumann L, Hoyer J, Lynch SA, Vlasak I, & Wieczorek D (2014, Sep). Females with de novo aberrations in PHF6: clinical overlap of Borjeson-Forssman-Lehmann with Coffin-Siris syndrome. Am J Med Genet C Semin Med Genet, 166C(3), 290–301. 10.1002/ajmg.c.31408 [DOI] [PubMed] [Google Scholar]