Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Keywords: HIV, bNAbs, passive immunotherapy, genetic diversity
1. Introduction
The global prevalence of HIV continues to pose a substantial public health challenge, with millions of individuals affected. Those living with HIV require lifelong antiretroviral therapy (ART), which may lead to considerable toxicity and an increased risk of non-AIDS-associated comorbidities [1]. ART cannot cure HIV infection, as viral rebound typically occurs shortly after withdrawal due to persistent latent reservoirs. Without an effective vaccine, developing innovative therapeutic approaches is crucial for HIV management, particularly in high-burden regions such as Africa and Asia.
Passive transfer of therapeutic antibodies has been a longstanding treatment protocol for various diseases, including diphtheria and tetanus. Infused monoclonal antibodies have also demonstrated efficacy in treating a diverse range of conditions, such as cancer, autoimmunity, and pathogenic toxins. Concerning HIV, cutting-edge single-cell antibody cloning technology has led to the isolation of numerous anti-HIV broadly neutralizing antibodies (bNAbs) [2]. Although eliciting such bNAbs through vaccination remains elusive, their potential as a treatment for HIV infection is highly promising. This review examines recent advances and challenges associated with the therapeutic use of bNAbs and proposes novel strategies for addressing these obstacles.
2. Passive Transfer of Anti-HIV bNAbs
In recent years, several studies have highlighted the therapeutic potential of bNAbs in HIV-infected humanized mice, non-human primates, and humans. Early investigations employed first-generation bNAbs, such as 2G12, 2F5, and 4E10, demonstrating their safety and capacity to reduce viral load in HIV-infected individuals [3,4]. However, enthusiasm waned due to the rapid emergence of escape mutants [5]. Despite this, two independent studies assessed the therapeutic potential of these early bNAbs in individuals undergoing analytical treatment interruption (ATI) of ART. These studies documented a significant delay in viral rebound, ranging from 3 to 24 weeks after ART withdrawal [6,7]. Regrettably, 2F5 and 4E10 exhibit autoreactivity [8], while 2G12 demonstrates limited potency, with resistance observed in most HIV subtypes within a typical global panel [9]. Consequently, the undesirable characteristics of these first-generation bNAbs rendered them less appealing for therapeutic application, but they still provided a foundation for future treatment modalities.
In 2009, the development of a high-throughput HIV viral neutralization assay [10] and single-cell antibody cloning techniques [2] led to the isolation of second-generation bNAbs with significantly improved neutralization breadth and potency (Table 1). These antibodies target the seven highly conserved major epitopes of the HIV envelope glycoprotein (Env) (Fig. 1), including the CD4 binding site (CD4bs), the V1V2 glycan region, the V3-glycan region, the gp120-gp41 interface, the gp120 silent face, the gp41 MPER, and the gp41 fusion domain. The discovery of these second-generation bNAbs has renewed interest in antibody-mediated treatment [11-14]. However, given the diverse range of HIV subtypes with varying levels of antibody sensitivity encountered by humans, clinical trials are necessary to determine efficacy. The administration of bNAbs has been deemed safe and tolerable in healthy [15-23] and HIV-infected individuals [24-29], and the most promising second-generation bNAbs are currently undergoing clinical trials.
Table 1.
Neutralization profiles and genetic features of anti-HIV bNAbs.
Epitope | bNAb | Neutralization Profiles | Genetic Features | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Viral Panel |
Breadth (%) |
Potency (μg/ml) |
VH Somatic mutation (%) |
HCDR3 length (AA) |
Auto/poly reactivity |
|||
CD4 binding site | N49P7 | 176 | 98 | 0.20 | 38 | 19 | ND | [193] |
N6 | 173 | 98 | 0.07 | 31 | 15 | No | [194] [195] | |
1-18 | 119 | 97 | 0.05 | 32 | 18 | ND | [195] | |
12A12 | 170 | 94 | 0.19 | 20 | 13 | Yes | [196] | |
CH235.12 | 162 | 90 | 0.69 | 26 | 15 | No | [197] | |
VRC01 | 176 | 90 | 0.36 | 32 | 14 | No | [176] | |
VRC07 | 175 | 93 | 0.15 | 31 | 16 | No | [198] | |
VRC02 | 134 | 89 | 0.31 | 32 | 14 | No | [176] | |
3BNC117 | 176 | 86 | 0.12 | 24 | 10 | Yes | [196] | |
VRC13 | 176 | 86 | 0.18 | 43 | 21 | ND | [199] | |
NIH45-46 | 175 | 85 | 0.15 | 33 | 18 | Yes | [196] | |
VRC-CH31 | 174 | 83 | 0.25 | 36 | 15 | Yes | [200] | |
CH103 | 176 | 80 | 1.76 | 16 | 15 | Yes | [201] | |
VRC-PG04 | 171 | 80 | 0.27 | 29 | 16 | No | [200] | |
PG20 | 140 | 77 | 0.18 | 24 | 15 | No | [177] | |
8ANC131 | 142 | 75 | 2.30 | 26 | 18 | Yes | [196] | |
VRC-PG04b | 137 | 71 | 0.21 | 29 | 16 | No | [200] | |
b12 | 176 | 47 | 2.84 | 33 | 18 | Yes | [202] | |
VRC23 | 139 | 61 | 2.29 | 22 | 14 | No | [203] | |
1B2530 | 167 | 59 | 2.73 | 28 | 18 | Yes | [199] | |
IOMA | 176 | 52 | 2.31 | 12 | 19 | ND | [204] | |
VRC03 | 174 | 52 | 0.62 | 30 | 16 | No | [176] | |
8ANC134 | 136 | 49 | 0.97 | 27 | 18 | Yes | [199] | |
b12 | 176 | 47 | 2.84 | 12 | 20 | No | [205 | |
HJ16 | 176 | 39 | 0.92 | 18 | 29 | ND | [199] | |
VRC06 | 146 | 34 | 1.74 | 31 | 17 | No | [206] | |
179NC75 | 92 | 30 | 0.16 | 24 | 25 | ND | [207l | |
V3 glycan region | 10-1074 | 96 | 100 | 0.08 | 16 | 26 | NR | [208] |
PGT128 | 176 | 70 | 0.07 | 20 | 21 | NR | [178] | |
PGT121 | 176 | 68 | 0.05 | 20 | 26 | NR | [178] | |
PGT130 | 98 | 64 | 0.20 | 22 | 19 | No | [178] | |
BG18 | 91 | 63 | 0.04 | 21 | 21 | ND | [209] | |
DH270.6 | 162 | 56 | 0.16 | 13 | 20 | ND | [210] | |
PGDM12 | 86 | 52 | 0.14 | 32 | 21 | ND | [211] | |
VRC41.01 | 99 | 52 | 0.31 | 21 | 21 | ND | [212] | |
PGDM21 | 86 | 47 | 0.13 | 22 | 20 | ND | [211] | |
PCDN-33A | 93 | 46 | 0.48 | 12 | 22 | ND | [213] | |
PGT125 | 94 | 45 | 0.06 | 21 | 21 | NR | [178] | |
PGT127 | 93 | 41 | 0.11 | 16 | 21 | NR | [178] | |
438-B11 | 97 | 38 | 0.10 | 25 | 21 | ND | [214] | |
PGT135 | 176 | 36 | 0.43 | 19 | 20 | NR | [178] | |
VRC24 | 50 | 34 | 1.36 | 23 | 26 | NR | [203] | |
VRC29.03 | 162 | 28 | 1.69 | 15 | 20 | ND | [215] | |
2G12 | 176 | 27 | 2.20 | 21 | 16 | Yes | [216l | |
V1V2 glycan region | PGDM1400 | 176 | 82 | 0.02 | 27 | 34 | ND | [217] |
PG9 | 176 | 80 | 0.11 | 15 | 30 | No | [177] | |
PG16 | 176 | 77 | 0.05 | 15 | 30 | No | [177] | |
PGT145 | 173 | 75 | 0.13 | 17 | 33 | NR | [178] | |
CAP256-VRC26.25 | 173 | 66 | 0.01 | 12 | 36 | No | [218] | |
PGT142 | 154 | 57 | 0.05 | 16 | 34 | NR | [178] | |
VRC26.08 | 176 | 55 | 0.02 | 12 | 37 | ND | [219] | |
CH01 | 172 | 53 | 1.20 | 17 | 26 | No | [220] | |
CH02 | 94 | 45 | 0.89 | 14 | 26 | No | [220 | |
PCT64-35S | 87 | 37 | 1.10 | 13 | 25 | ND | [221] | |
VRC38.01 | 174 | 29 | 0.55 | 18 | 16 | ND | [222] | |
BG1 | 91 | 37 | 0.67 | 27 | 22 | ND | [209] | |
gp41 MPER | 4E10 | 176 | 99 | 1.55 | 7 | 20 | Yes | [179] |
10E8 | 176 | 99 | 0.41 | 21 | 22 | No | [223] | |
DH511.2 | 173 | 98 | 0.88 | 18 | 23 | ND | [224] | |
LN01 | 90 | 93 | 0.97 | 26 | 20 | No | [225] | |
2F5 | 176 | 56 | 2.09 | 14 | 24 | Yes | [226] | |
M66.6 | 127 | 25 | 15.18 | 4 | 23 | Yes | [227l | |
gp120 - gp41 interface | 8ANC195 | 176 | 70 | 1.20 | 28 | 22 | Yes | [196] |
PGT151 | 176 | 72 | 0.02 | 21 | 28 | No | [180] | |
35O22 | 176 | 62 | 0.13 | 35 | 14 | ND | [228] | |
PGT152 | 89 | 61 | 0.02 | 20 | 28 | No | [180] | |
VRC34.01 (Fusion peptide) | 162 | 54 | 0.31 | 15 | 13 | ND | [229] | |
ACS202 (Fusion peptide) | 63 | 49 | 0.12 | 43 | 24 | ND | [230] | |
gp120 Silent face | SF12 | 106 | 61 | 0.22 | 17 | 23 | ND | [231] |
VRC-PG05 | 176 | 41 | 2.34 | 9 | 17 | ND | [232] |
Neutralization breadth is defined as the percentage of virus neutralized by the respective bNAb. Potency is defined as the geometric mean bNAb concentration required to neutralize a broad viral panel (IC50). Neutralization data were captured from CATNAP, as of 2023 [233]. Antibody genetic features were obtained from the HIV Molecular Immunology Database [234]. ND=data not available; Viral Panel=number of viruses tested
Figure 1.
HIV Env epitopes. bNAbs targeting the major Env epitopes are indicated as follows: V3 glycan–green; V1V2 glycan–orange; CD4 binding site (bs)–pink; fusion peptide- black; gp41 membrane proximal region (MPER)–yellow; gp120-41 interface-magenta and Silent face-blue. See Table 1 for references of anti-HIV bNAbs and their respective epitopes.
2.1. Temporary Viral Suppression Following bNAb Monotherapy
Initial phase 1 clinical studies in HIV-infected individuals involved bNAbs targeting either the CD4 binding site (3BNC117 and VRC01) or the V3-glycan region (10-1074 and PGT121). A single infusion of 3BNC117, VRC01, PGT121, or 10-1074 in viremic individuals with bNAb-sensitive viruses resulted in an average reduction of 1.48, 1.10, 1.77, and 1.52 log10 viral copies/ml, respectively, from their pre-infusion baseline [24-27]. In these studies, viremia remained suppressed for up to 28 days following 3BNC117, 10-1074, and PGT121 administration [24,26,27]. However, viral rebound was inevitable due to the emergence of escape mutants, as observed with other antiretrovirals (ARVs) [30].
2.2. bNAb Monotherapy during Analytical Treatment Interruption (ATI)
Despite the resistance to monotherapy observed in untreated patients, some participants with significantly lower viral loads maintained viral suppression for two to six months [24,26,27]. These findings were likely attributable to reduced viral diversity in the individual or fewer opportunities for escape mutants to emerge [31]. Consequently, lowering viral diversity via prior ART may enhance the efficacy of bNAb monotherapy [32], as it is evident that combinations of ARVs can significantly limit viral escape.
Researchers tested this combinatorial approach in ART-treated patients who received bNAbs before ART discontinuation. These promising studies demonstrated effective viremia control and delayed viral rebound for 4 and 10 weeks with VRC01 or 3BNC117 monotherapy, respectively [29,33-35]. The eventual viral rebound was associated with either pre-existing bNAb resistance variants or waning bNAb levels, and interestingly, rebound viruses primarily arose from a single provirus. Nevertheless, 30% of 3BNC117 participants remained virally suppressed. Emerging viruses in all but one of these individuals remained susceptible to 3BCN117, suggesting that 3BCN117 effectively prevents escape mutants for up to 19 weeks [33]. We conclude that 3BNC117 exerts significant selective pressure on emerging viruses during ATI in humans.
In summary, these findings demonstrated the efficacy and safety of bNAbs in HIV-infected individuals. However, it is also evident that individual bNAbs can select resistance variants, highlighting their inability to provide durable viral suppression when administered alone.
2.3. Combination bNAb Therapy
Multiple combinations of antiretroviral medications limit viral escape. Similarly, bNAb combinations should provide broader antiviral coverage and be more effective than single bNAbs. As an initial proof-of-concept, several studies showed that a combination of bNAbs achieved durable viral suppression in animal models [36-38].
A combination of 3BNC117 and 10–1074 in HIV-negative individuals was safe and well-tolerated [20]. When administered to HIV-positive patients undergoing ATI, the combination of bNAbs 3BNC117 and 10–1074 resulted in a delayed viral rebound of 21 weeks in individuals with bNAb-sensitive viruses without developing bNAb resistance [39]. Importantly, the same combination of bNAbs delayed viral rebound for up to 3 months in untreated HIV-viremic patients without bNAb resistance [40]. These results indicated that the combination of 3BNC117 and 10-1074 offers some degree of viral suppression in patients with bNAb-sensitive viruses, provided sufficient concentrations are maintained. For broader coverage, a recent phase 1 study explored the safety and efficacy of a triple combination of bNAbs targeting non-overlapping epitopes, including the CD4bs antibody VRC07-523LS, the V3-glycan antibody PGT121, and the V1V2 glycan antibody PGDM1400. In this study, a single infusion of the three bNAbs in untreated viremic patients was safe and well-tolerated, reducing viremia by approximately 2.04 log10 copies per ml from their day 0 baseline. However, viral rebound seemed inevitable, with a median of 20 days post-infusion [28]. Viral rebound was associated with the rapid development of escape mutants evading V1V2 and V3-glycan bNAbs and the decay of serum bNAb concentrations [28]. These studies demonstrated that bNAb combinations are generally safe and well-tolerated and suggest that these antibodies can maintain viral suppression if a) pre-existing viruses are bNAb-sensitive and b) therapeutic levels are maintained. Accordingly, optimal bNAb combinations and concentrations are necessary to achieve durable viral suppression in HIV-infected individuals.
Identifying the right combination of bNAbs is challenging due to the continuous mutation of HIV (Fig .2) [41]. Interestingly, in rare cases, ARV resistance, such as the development of escape mutations, can be advantageous for different bNAbs therapies. For instance, escape variants resistant to the fusion peptide inhibitors enfuvirtide and C34 exhibited increased susceptibility to several bNAbs, including VRC01 and 10e8 [42]. The reasons for the increased bNAb susceptibility are unclear. Further studies are needed to identify specific viral mutations that lead to ART resistance while rendering the virus more susceptible to bNAbs. These findings could help inform future combinations of various antivirals to combat resistance.
Figure 2.
Challenges of bNAbs and strategies for enhancing immunotherapy. The diverse challenges the virus presents could be overcome through combinations of bNAbs, multi-specific antibodies/molecules, LRAs, CAR T cells, and/or ART. FcRn=neonatal Fc-receptor; LS bNAb=modified bNAb which prefers the FcRn.
3. bNAb Challenges
3.1. Viral Resistance
3.1.1. Viral Diversity Within the Host
The transmitted/founder (T/F) virus establishes infection during the initial acute infection [43]. The virus then evolves, escaping the immune attack and reaching maximum diversity over time [44]. Drug resistance is also associated with viral evolution. The high viral replication rate and error-prone reverse transcriptase can generate multiple recombination events, contributing to viral diversity [45]. Consequently, bNAbs continuously encounter a highly diverse pool of quasi-viral species.
Numerous studies strongly suggest that developing broad and highly potent neutralizing antibodies involves multiple rounds of viral escape from autologous neutralizing antibodies [46-48]. This process is associated with increased genetic diversity in the envelope protein [49], accumulating antibody-resistant variants [50-52]. In fact, about half of individuals infected with HIV develop immune responses within 4 to 5 years that can neutralize roughly 50% of tested viral strains [53], with 21-36% targeting the V3 glycan region, 5-26% targeting the CD4bs, and 12-14% directed towards the V1V2 glycan domain [54-56]. Individuals who generated neutralizing antibodies against the V2 apex, the CD4bs, or the V3 glycan region exhibited escape mutations in the corresponding epitopes [48,57,58]. Expectedly, these mutations affected the efficacy of bNAb-based therapeutic interventions, particularly in individuals with chronic infections [25,59]. However, viruses from patients who initiated ART during the acute infection stage (Fiebig stage I-III) are more sensitive to bNAbs [32], as the drug regimen significantly reduced the number of viral escape mutants due to small viral reservoirs and low viral diversity [35].
3.1.2. Global Genetic Diversity of HIV
HIV exhibits considerable genetic variability, with nine genetic subtypes and an increasing number of circulating recombinant forms (CRFs) that differ in prevalence across geographic regions [60]. Genetic diversity within a subtype can range from 15-20%, while diversity between subtypes can be as high as 24-35% [61].
The HIV genome consists of nine genes that encode fifteen viral proteins, among which the Env protein displays the greatest genetic diversity. A recent study reported median differences in Env amino acid sequences within and between subtypes at 22% and 27%, respectively [62]. Consequently, with ongoing viral evolution at the population level [63,64], neutralization resistance has increased over the decades and will likely present significant challenges to future bNAb-based immunotherapy [65]. To be effective within geographic regions, bNAbs must overcome this Env genetic diversity, preferably across all subtypes.
Each virus subtype possesses unique antigenic properties due to genetic diversity, resulting in subtype-specific geographically associated antibody neutralization sensitivity (Table 2). Thus, the selection of bNAbs for immunotherapeutic applications requires careful consideration. Combining bNAbs that target non-overlapping Env epitopes and pre-screening selected bNAbs for viral resistance can minimize the risk of immunotherapeutic failure [40,66].
Table 2.
Subtype-Specific anti-HIV bNAb Resistance.
bNAb | Env Target Domain |
HIV bNAb Resistance | A.A. mutation | Ref. |
---|---|---|---|---|
3BNC117 and VRC01 | CD4bs | 30% subtype C viruses | G458Y | [235] |
2G12, 10–1074 and PGT121 | V3-glycan | 96% CRF07_BC recombinant viruses and 40% subtype A viruses | Deletion of N332 | [51,235] |
PG9 and PG16 | V1/V2-glycan | 100% of CRF01_AE recombinant | Deletion of N160 | [236] |
CAP256.VRC26 | V1/V2-glycan | 85% subtype B viruses | E/D164 substitution | [218] |
3.2. The Latent Viral Reservoir
Despite ART, cells harboring latent provirus can expand in tissues and remain stable for years [67], posing a significant barrier to a cure. Among these latently infected cells, tissue-resident memory CD4 T cells are a primary reservoir in gut-associated lymphoid tissues and lymph nodes (LNs), containing higher levels of HIV nucleic acids than peripheral blood CD4 cells [68]. This phenomenon is likely due to poor penetration of ARVs [69,70] or higher concentrations of follicular helper T cells in LN germinal centers (GCs), a major source of latently infected CD4 T cells [71]. CD8 T and NK cells mediate robust cellular antiviral responses against HIV-infected cells, and this response is associated with slower disease progression in elite controllers [72,73]. However, therapeutic strategies aimed at inducing cellular immune responses to HIV have failed to control viral replication due to escape mutants [74] and cellular exhaustion [75,76]. Yet, potential strategies that involve infusing dual anti-HIV CAR (Chimeric Antigen Receptor) -T cells, which are also genetically engineered to produce functional bNAbs, could present a promising immunotherapy solution.
3.3. bNAb Decay
Maintaining a stable serum concentration of passively transferred bNAbs is crucial for determining their therapeutic efficacy. Rapid HIV rebound and the emergence of escape variants are associated with significant bNAb decay [28,35], which depends on antibody half-life. The half-life of passively transferred anti-HIV bNAbs is approximately 2-3 weeks in healthy individuals [20,22] and even shorter in HIV-infected viremic patients, with an average half-life of around 10 days [24-26], presumably due to the rapid clearance of antigen-antibody complexes [40]. Therefore, antibody engineering and gene transfer technologies should focus on producing longer antibody half-lives and sustained antibody release to achieve durable viral suppression.
4. Strategies to Improve bNAb Immunotherapy
4.1. Combinations of bNAbs with ART
Viral diversity poses a significant challenge to bNAb immunotherapy. Even with triple combinations of bNAbs, escape variants have emerged in clinical studies [28,39]. One strategy to overcome viral escape is to reduce viral diversity within the host by combining bNAbs with ART (Fig .2). ART substantially limits viral diversity in both circulating and latent viruses [31,77,78]. Studies have demonstrated that participants who initiated ART during the acute infection phase had significantly reduced genetic variants and were more susceptible to bNAbs [32,52]. Consequently, a significant reduction in the likelihood of escape mutants is expected when treated with bNAbs and ART. Two trials are currently in progress (NCT02591420, NCT05719441) to determine if bNAbs in combination with daily ART can prevent the emergence of escape mutants, providing long-term viral suppression in infected patients.
Recently, long-acting ARVs, cabotegravir and rilpivirine, have demonstrated durable viral suppression for up to 2 months in HIV-infected individuals when administered together [79]. A newer long-acting ARV, lenacapavir, has provided at least six months of HIV suppression as a standalone treatment [80]. Combining bNAb therapy with newer long-acting ARVs should enhance the efficacy of both modalities. Indeed, six monthly lenacapavir injections and a single infusion of bNAbs (10-1074-LS and 3BNC117-LS) maintained undetectable viral loads for 26 weeks in HIV-infected individuals [81]. Therefore, combining bNAbs with long-acting ARVs could represent a potent treatment strategy that provides patients with long-lasting viral suppression without requiring a daily drug regimen.
4.2. Multi-Specific bNAbs
Multi-specific antibodies possess two or more binding arms that target different epitopes on the Env protein. CrossMAb technology enables the combination of heavy and light chains derived from two distinct antibodies to form human bispecific IgG antibodies without using an artificial linker [82]. Compared to a single parental bNAb, bispecific antibodies, such as VRC07/PG16, which target both the CD4bs site and the V1V2 region, exhibit greater efficacy [83]. Recently, a bispecific antibody, CAP256.J3LS, was designed by combining the light chain N-terminus of CAP256V2LS with either nanobody J3 or scFv fragments of 10E8 or VRC01, displaying improved viral neutralization breadth and potency compared to parental antibodies [84]. Furthermore, trispecific antibodies VRC01/PGDM1400-10E8v4 and N6/ PGDM1400-10E8v4 achieved superior neutralization breadth and potency compared to single parental bNAbs and have demonstrated effectiveness in preclinical studies [38,85] with clinical trials now underway (NCT03705169) (Fig .2).
4.3. Antibodies Targeting Host Receptors
HIV requires host cell receptors to enter cells and establish infection. Targeting HIV entry host receptors, such as CD4 and CCR5, offers an advantage over traditional ARVs. Host factors are relatively stable, and mutations in viral proteins targeting these host receptors are limited. Two host-targeting antibodies, anti-CD4 (ibalizumab ) and anti-CCR5 (PRO140), have proven effective in clinical studies [86,87]. Ibalizumab targets domain 2 of human CD4 without compromising its functionality [88], while PRO140 binds to the conformational epitope between the N-terminus and ECL2, blocking viral entry [89]. Both ibalizumab and PRO140 are safe, well-tolerated, and effective in HIV-infected patients with multi-drug-resistant (MDR) mutations [86,90]. Other antibodies targeting LFA-1 [91] and α4β7 integrin, found on human CD4 T cells, have demonstrated promising results in pre-clinical studies [92,93]. However, drug resistance inevitably emerged with ibalizumab monotherapy [90], indicating that combining these antibodies with other bNAbs or ARVs is necessary.
4.4. Nanobodies
Certain animals, including llamas, camels, and sharks, naturally produce unique antibodies known as nanobodies. These nanobodies consist of a single variable domain from the heavy-chain-only (VHHs) [94]. Unlike typical antibodies, nanobodies can access and neutralize viruses by reaching hidden epitopes on the Env trimer thanks to their large CDR3 arm [95]. Several anti-HIV nanobodies, including NC-Cow1, J3, A12, D7, and C8, have been isolated from llamas immunized with an HIV-1 Env immunogen [96-98]. Although these nanobodies demonstrated enhanced neutralization against a variety of viruses, their potency was limited. To enhance both the range and effectiveness of these nanobodies, a bi-specific nanobody called J3 + 2E7 was developed [99]. This nanobody targets both the CD4bs and gp41 regions on Env and has shown increased potency against various viruses. In general, nanobodies have a short half-life of 1-2 hours. However, their half-life can be extended by fusing them with an anti-albumin nanobody or through Fc-engineering [100] [101].
4.5. Multi-Specific Antibodies
Multi-specific antibodies target both host and viral proteins, such as a combination of anti-CD4 or anti-CCR5 with an anti-HIV bNAb. Several bispecific antibodies, including 10E8v2/ibalizumab and N6/ibalizumab, are under investigation and have shown improved neutralization breadth and potency compared to individual antibodies, exhibiting efficacy in pre-clinical studies [102,103]. The 10E8v2/ibalizumab multi-specific antibody is currently in clinical trials (NCT03875209) (Fig .2).
4.6. bNAbs and latency-reversing agents (LRAs)
Rapid viral rebound following antiviral discontinuation presents a significant challenge in achieving viral remission with current drugs and bNAbs. Several approaches for a functional cure have been proposed and are under investigation in pre-clinical and clinical studies, including shock and kill [104,105], block and lock [106,107], and host genomic editing [108]. Using LRAs in combination with bNAbs for shock and kill strategies has provided ART-free HIV control in some patients [104,105] (Fig .2). However, this approach cannot entirely clear infected cells.
To address this issue, researchers designed Bispecific T-cell Engaging antibodies (BiTEs) with distinct specificities in each variable region, such as anti-CD3 and anti-HIV bNAb. After administration of an LRA, BiTEs target CD3 on naïve CD8+ T cells, bringing them into proximity to host cells where the HIV provirus has emerged and is expressing viral antigens. Once close to the infected cell, the CD8+ T cell is activated through its CD3 receptor, killing the target cell. In vitro studies have demonstrated that BiTEs VRC01 x CD3 and VRC07 x CD3 efficiently eliminated gp120-expressing cells [109,110].
To enhance the stability of BiTEs, disulfide bonds have been introduced between the two scFvs to form a Dual-Affinity Re-Targeting molecule (DART). In vitro evaluations of these DARTs, combining anti-HIV bNAb scFvs with anti-CD3 scFvs, demonstrated that PGT121 x CD3, 7B2 x CD3, and A32 x CD3 exhibited higher potency compared to other combinations, such as PGT145 x CD3, VRC01 x CD3, and 10e8 x CD3 when tested against diverse HIV isolates [111] and Simian HIVs [112]. Moreover, phase 1 clinical trials of A32 x CD3 (NCT03570918) and 7B2 x CD3 (NCT05261191) are in progress (Fig .2).
Apart from BiTEs and DARTs, a tandem bispecific antibody designed with a combination of bNAb scFvs from PGT128 and Hu5A8 fused with a modified IgG Fc demonstrated enhanced neutralization and killing when tested against a panel of 124 HIV viral strains, eliminating infected cells in mice [113]. Recently, the same tandem bispecific antibody significantly reduced peak viremia, achieving undetectable viral levels in 8 of 13 macaques and delaying disease progression for years [114]. Therefore, anti-HIV bNAb-based BiTEs and DARTs combined with LRAs could be employed in shock and kill strategies to achieve viral remission.
4.7. bNAb-Based Multi-Specific CAR T Cells
HIV evasion of CD8 T cells presents a significant barrier to clearing HIV-infected cells. HIV-specific CD8 CAR T cells incorporate CAR genes to express CD4 molecules on their surface, recognizing antigens without MHC I restriction. These cells are safe [115] and promote cytotoxic activity [116]; however, they are ineffective in controlling viremia and succumb to HIV infection via CAR-encoded CD4 molecules. Therefore, single-chain variable fragment (scFv)-based CAR T cells targeting different epitopes of the Env protein were generated and validated [117,118]. Adoptive transfer of these HIV-specific CAR T cells demonstrated durable viral suppression in animal models [119-121]. However, a single infusion of bNAb-based CAR T cells only resulted in transient viral suppression for a few weeks [122], associated with the relatively rapid emergence of escape variants in HIV-infected individuals. To address this issue, bi- and tri-specific bNAb-based CARs that combine two or three distinct bNAb scFvs with or without the CD4 domain were developed [123,124]. These multi-specific CAR-Ts were safe and effective in pre-clinical studies [124-126], and clinical trials (NCT03240328 and NCT03617198) are evaluating the safety and efficacy of these cells in patients (Fig .2).
4.8. CXCR5-Expressing CAR T Cells
Another challenge for CAR T cells is the inaccessibility to viral reservoirs in secondary lymphoid organs. Inserting the CXC chemokine receptor 5 (CXCR5) gene into CAR designs would enable these CAR T cells to access germinal centers (GCs) and further target viral reservoirs [127]. Several groups have reported that a specialized population of CD8+ T cells expressing CXCR5 migrate into GCs and control viral replication in mice or primates [128,129]. HIV-specific CXCR5-expressing CD8+ T cells also control viremia in humans [130]. Some natural killer (NK) cells naturally express CXCR5 and can migrate to GC follicles in HIV-infected individuals [131], a process associated with viral control in SHIV infection [132]. Lastly, macaques treated with CAR T cells engineered to express CXCR5, exhibited reduced viremia during SHIV infection [119] (Fig .2). However, researchers have yet to test this approach in humans.
4.9. Challenges to CAR T Cell Therapy
The effectiveness of CAR T cells is impacted by excessive ex vivo stimulation and expansion, often leading to exhaustion [133]. Utilizing stem/progenitor cells in CAR designs can result in a more durable response and expression in multiple cell types, including T-cells, B-cells, and NK cells [134]. Alternatively, PD-1 signaling blockade [135,136] or adding IL-7 and IL-15 to ex vivo stimulation cultures may help prevent exhaustion [137].
CAR T cell therapy can also result in significant adverse events, including cytokine release syndrome (CRS) [138], immune effector cell-associated neurotoxicity syndrome (ICANS) [139], off-target effects [140], anaphylaxis [141], macrophage activation syndrome (MAS) [142], coagulation disorders [143], and cytopenia [144]. Consequently, strategies to mitigate these risks, such as synNotch receptors [145,146] and inhibitory CARs (iCARs), are being tested [147]. Recently, newly designed convertible CAR T cells recognized various epitopes when multiplexed with bNAbs, efficiently mediating antiviral activity [148].
Notably, no current anti-HIV CAR T cell designs minimize adverse events and overcome pre-existing or escape mutations, functional exhaustion, or home to secondary lymphoid organs. Therefore, substantial studies are warranted to further optimize CAR T cell designs and provide safe and durable viral suppression.
4.10. bNAbs Plus Natural CD8 T Cells
Apart from neutralization, antibodies and antigens form immune complexes, potent immunogens that promote host cellular immune responses [149]. In non-human primates, the combined anti-HIV bNAbs, 3BNC117 and 10-1074, conferred long-term viral suppression and enhanced CD8 T cell responses [13,150]. HIV-infected patients with the same bNAb combination also displayed similar results [33,151]. Escape mutants were not detected [151], possibly due to enhanced CD8 T cell responses [152]. The efficacy of LRAs administered with bNAbs is also currently under investigation. Infusion of bNAbs plus a TLR 7 agonist during ART resulted in viral clearance in SHIV-infected macaques [153]. Separately in humans, the combination of romidepsin and 3BNC117 led to faster decay of viremia, decreased transcriptionally active infected cells, and improved gag-specific CD8 T cell responses [104] (Fig .2).
Thus, strategies combining antibodies targeting non-overlapping Env epitopes or host receptors, multi-specific antibodies, and multi-specific CAR T cells combined with LRA, bNAbs, and ART should overcome escape mutations and augment CD8 T cell responses.
4.11. bNAb Bioavailability
The half-life of an antibody is crucial to the therapeutic efficacy of antibodies. By modifying the Fc-domain to have a higher affinity for the neonatal Fc receptor [154], the half-life of bNAbs can be improved (Fig .2). For example, the M428L and N434S ("LS") mutations prolong antibody half-life without compromising functionality [155]. These modifications have been integrated into several bNAbs and demonstrated in clinical trials to increase the antibody's half-life without impairing its functionality (Table 3). Further, single-dose administration of half-life-enhanced bNAbs is sufficient to control viremia for 6 to 12 months [14]. Increasing antibody half-life may enable more effective and affordable treatment by allowing smaller dosages and less frequent administrations.
Table 3.
Clinical efficacy of anti-HIV engineered bNAbs.
bNAb | Half-life (days) | Clinical Outcomes | |||||
---|---|---|---|---|---|---|---|
Parental Ab | Ab with LS mutation |
Ref. | Therapy | Viral Load | TVR (days) |
Safety | |
VRC01 | HIV− individuals: 15 | 71 | [21,23] | Mono | 0.5-fold reduction in 43% of participants [237]. | ND | Yes |
HIV+ individuals: 12 | Combined (VRC-01 LS + 10-1074) | <40 copies/ml in 44% of participants [238]. | 168 | ||||
VRC07-523 | HIV− individuals: 29 | 40-66 | [15,198] [19,239] |
Mono | 1.2-fold reduction in 89% of participants [237]. | ND | Yes |
HIV+ individuals: 10 | Combined (PGDM1400 + PGT121+VRC07523 LS) | 2.0-fold reduction [28]. | 20 | ||||
N6 | ND | 44 | [240] | Mono | 1.7-fold reduction in 93% of participants [241]. | 35 | Yes |
Combined | ND | ND | ND | ||||
3BNC117 | HIV− individuals: 17 | 62 | [24,242] | Mono | ND | ND | |
HIV+ individuals: 09 | Combined (3NBC117 LS + 10-1074 LS) | 1.1-2.5-fold reduction in 100% of participants [242]. | ND | Yes | |||
10-1074 | HIV− individuals: 24 | 80 | [26,242] | Mono | ND | ND | |
HIV+ individuals: 12 | Combined (3NBC117 LS + 10-1074 LS) | 1.1-2.5-fold reduction in 100% of participants [238,242]. | ND | Yes | |||
CAP256V2 | ND | 43 | [238] | Mono | ND | ND | ND |
Combined | |||||||
PGT121 | HIV− individuals: 23 | 74 | [27,243] | Mono | ND | ND | ND |
HIV+ individuals: 13 | Combined |
ND=data not available, TVR= Time to viral rebound; HIV+ individuals = Viremic patients without ART; LS=M428L and N434S.
4.12. mRNA Encoded bNAbs
The use of mRNA as a genetic delivery platform has emerged as a powerful new class of therapeutic agents [156,157]. This approach provides a potential therapeutic solution to deliver multiple bNAbs as a single drug product. In humans, the first phase 1 mRNA-based trial demonstrated that mRNA-generated antibodies protected against chikungunya disease [158]. A recent study in mice showed an mRNA-lipid nanoparticle (LNP) platform expressing full-length N6 IgG, single-chain PGDM1400, and PGT121 with expected breadth and potency targeting multiple HIV pseudoviruses [159]. Several reports have described potential adverse events associated with the use of mRNA, including acute myocardial infarction [160], Bell's palsy [161], cerebral venous sinus thrombosis [162], myocarditis/pericarditis [163], pulmonary embolisms, and stroke [164]. Expressing multiple bNAbs for an extended duration in a single cell using mRNA is possible [165], but potential adverse events must be thoroughly examined (Fig 2).
4.13. Adenoviral Delivery
Among the many gene transfer methods, the adeno-associated virus (AAV) vector has demonstrated safety and efficacy in humans with rare incidences of vaccine-induced thrombotic thrombocytopenia [166]. Pre-clinical studies showed that AAV-based transfer of 3BNC117 and 10-1074 bNAbs demonstrated viral suppression up to 3 years after rAAV inoculation in SHIV-infected macaques [167] and HIV-infected humanized mice [168]. However, a phase 1 clinical trial showed that although the rAAV1-PG9DP vector was well-tolerated, only low levels of PG9 bNAbs were detected and were associated with ADAs [169]. A more recent study showed robust production of VRC07, lasting up to 3 years, after administering the AAV8-VRC07 vector to HIV-infected individuals [170], validating the use of AAV vectors for bNAb secretion (Fig .2).
4.14. Combined Humoral and Cellular Strategies
An alternative to passively transferred bNAbs is engineering immune cells to express bNAbs directly. This strategy would allow memory B cell formation, somatic affinity maturation, class-switch recombination, and plasma cell generation, secreting bNAbs in response to virus coevolution [171]. CRISPR/Cas9 genome editing is one approach to insert a bNAb gene ex vivo. This strategy has already succeeded in mice, where CRISPR/Cas9-edited B cells expressed HIV-specific bNAbs [172]. Two other studies recently established that engineered memory B cells could secrete VRC01 and BNC117 bNAbs [173,174]. In addition, these engineered B cells migrated to germinal centers (GCs), class-switched, underwent somatic hypermutation (SHM), and clonally expanded, differentiating into plasmablasts following Env immunization. These findings demonstrated that when transferred, engineered B cells could express and secrete bNAbs (Fig 2).
However, the current state of B cell reprogramming is insufficient to functionally cure HIV, as latent reservoirs activated in the presence of LRAs release additional free viruses and enable direct cell-to-cell transmission of the virus, circumventing bNAb neutralization. ART and bNAbs can clear free viruses, but a different set of engineered cells, CAR T cells, are required to target infected host cells. Advancements in CAR T cell methods have made expressing multiple proteins from a single vector feasible. Ex vivo engineering of HIV antigen-specific T cells to express functional bNAb genes demonstrates that such cells can neutralize free viruses and kill infected cells [175]. These findings suggest that combining two distinct immunotherapeutic strategies, humoral and cellular, may allow for synergy that broadens CAR T cells' ability to clear free and cell-associated viruses.
4.15. Challenges with Sustained bNAb Expression
Most bNAbs currently tested in clinical trials were isolated from HIV-infected individuals [176-180]. However, these bNAbs are associated with unusual characteristics, such as extended heavy-chain complementarity-determining region 3 (CDR-H3), high levels of SHM, and poly- or autoreactivity [181,182], all needed for higher Env affinity and neutralization breadth [183,184]. For instance, the bNAbs VRC01, VRC02, CH106, and CH103 strongly bind to human ubiquitin ligase E3A [181]. Thus, long-term expression of anti-HIV bNAbs may induce autoimmune responses, an undesirable side effect. Consequently, strategies to limit bNAb expression might mitigate some autoimmune concerns.
Repeated infusion or sustained expression of antibodies can result in anti-drug antibodies (ADAs) [185,186], limiting their efficacy [187]. Although anti-HIV bNAbs are primarily isolated from human B cells, most are highly somatically mutated and could be immunogenic [188]. Previous research has demonstrated that ADAs can occur when human bNAbs are administered to macaques, inducing a xenoresponse [167,189-191]. Even after repeated infusions of VRC01 in humans, however researchers did not detect ADAs [22]. Moreover, while 4 out of 18 participants had detectable ADAs, the effectiveness of bNAbs 3BNC117 and 10-1074 mainly remained unaltered [20].
Compared to passive infusion, ADAs are more commonly associated with sustained bNAb delivery methods, such as AAV-based gene delivery methods, reducing their clinical utility [167,189]. ADA responses generally range from insignificant to detrimental, rarely impacting patient safety [192]. bNAbs will typically need to be administered multiple times or delivered continuously via viral vectors to maintain viral suppression. However, the generation of ADAs does pose safety concerns, and their emergence should be monitored carefully in future clinical trials.
5. Conclusion
Anti-HIV bNAbs hold considerable potential for achieving viral control, with a functional cure on the horizon through combining bNAbs, CAR T cells, and ART. Furthermore, enhancing bNAb half-life and developing bi- and tri-specific antibodies would be advantageous. When choosing specific bNAbs for therapy, it is crucial to consider the resident HIV strains within the patient to minimize the risk of escape variants and provide a personalized treatment plan.
Gene therapeutic approaches can facilitate the long-term expression of desired proteins; however, the autoreactivity of these proteins may introduce potential complications. Therefore, it is essential to conduct long-term studies to assess the safety of continuous bNAb expression in humans. We anticipate that bNAbs, in conjunction with other modalities, will play a significant role in the treatment of HIV.
Highlights.
Anti-HIV broad neutralizing antibodies (bNAbs) can reduce virus levels in HIV-positive patients, offering a significant breakthrough in HIV treatment.
However, challenges like viral resistance, hidden viral reservoirs, and the natural decline of antibody levels can hinder bNAb-based treatments.
This article delves into the latest progress and challenges in using bNAbs and suggests potential treatments that might address these issues, possibly leading to effective viral control or even a functional cure.
Acknowledgments
This is manuscript number 1,071 from The Scintillon Institute. The authors would like to thank Drs. Dorit Hanein and Niels Volkmann for their critical reading of the manuscript.
Funding
This work was supported by the California Institute of Regenerative Medicine (CIRM) [Grant No. DISC2-13510] and the National Institutes of Health (NIH) [Grant No. 7R01AI150381-02].
Abbreviations
- bNAb
Broadly neutralizing antibody
- ART
Antiretroviral therapy
- ATI
Analytical treatment interruption
- ARV
Antiretrovirals
Footnotes
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Declaration of Competing Interest
None.
References
- [1].Number of people dying from HIV-related causes, (n.d.). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-deaths-due-to-hiv-aids (accessed February 20, 2023). [Google Scholar]
- [2].Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H, Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning, J. Immunol. Methods 329 (2008) 112–124. 10.1016/j.jim.2007.09.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Armbruster C, Stiegler GM, Vcelar BA, Jäger W, Michael NL, Vetter N, Katinger HWD, A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1, AIDS Lond. Engl 16 (2002) 227–233. 10.1097/00002030-200201250-00012. [DOI] [PubMed] [Google Scholar]
- [4].Stiegler G, Armbruster C, Vcelar B, Stoiber H, Kunert R, Michael NL, Jagodzinski LL, Ammann C, Jäger W, Jacobson J, Vetter N, Katinger H, Antiviral activity of the neutralizing antibodies 2F5 and 2G12 in asymptomatic HIV-1-infected humans: a phase I evaluation, AIDS Lond. Engl 16 (2002) 2019–2025. 10.1097/00002030-200210180-00006. [DOI] [PubMed] [Google Scholar]
- [5].Manrique A, Rusert P, Joos B, Fischer M, Kuster H, Leemann C, Niederöst B, Weber R, Stiegler G, Katinger H, Günthard HF, Trkola A, In Vivo and In Vitro Escape from Neutralizing Antibodies 2G12, 2F5, and 4E10, J. Virol 81 (2007) 8793–8808. 10.1128/JVI.00598-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [6].Trkola A, Kuster H, Rusert P, Joos B, Fischer M, Leemann C, Manrique A, Huber M, Rehr M, Oxenius A, Weber R, Stiegler G, Vcelar B, Katinger H, Aceto L, Günthard HF, Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies, Nat. Med 11 (2005) 615–622. 10.1038/nm1244. [DOI] [PubMed] [Google Scholar]
- [7].Mehandru S, Vcelar B, Wrin T, Stiegler G, Joos B, Mohri H, Boden D, Galovich J, Tenner-Racz K, Racz P, Carrington M, Petropoulos C, Katinger H, Markowitz M, Adjunctive Passive Immunotherapy in Human Immunodeficiency Virus Type 1-Infected Individuals Treated with Antiviral Therapy during Acute and Early Infection, J. Virol 81 (2007) 11016–11031. 10.1128/JVI.01340-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Yang G, Holl TM, Liu Y, Li Y, Lu X, Nicely NI, Kepler TB, Alam SM, Liao H-X, Cain DW, Spicer L, VandeBerg JL, Haynes BF, Kelsoe G, Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies, J. Exp. Med 210 (2013) 241–256. 10.1084/jem.20121977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].deCamp A, Hraber P, Bailer RT, Seaman MS, Ochsenbauer C, Kappes J, Gottardo R, Edlefsen P, Self S, Tang H, Greene K, Gao H, Daniell X, Sarzotti-Kelsoe M, Gorny MK, Zolla-Pazner S, LaBranche CC, Mascola JR, Korber BT, Montefiori DC, Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies, J. Virol 88 (2014) 2489–2507. 10.1128/JVI.02853-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Montefiori DC, Measuring HIV neutralization in a luciferase reporter gene assay, Methods Mol. Biol. Clifton NJ 485 (2009) 395–405. 10.1007/978-1-59745-170-3_26. [DOI] [PubMed] [Google Scholar]
- [11].Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY, Liu J, Stephenson KE, Chang H-W, Shekhar K, Gupta S, Nkolola JP, Seaman MS, Smith KM, Borducchi EN, Cabral C, Smith JY, Blackmore S, Sanisetty S, Perry JR, Beck M, Lewis MG, Rinaldi W, Chakraborty AK, Poignard P, Nussenzweig MC, Burton DR, Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys, Nature. 503 (2013) 224–228. 10.1038/nature12744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Shingai M, Nishimura Y, Klein F, Mouquet H, Donau OK, Plishka R, Buckler-White A, Seaman M, Piatak M, Lifson JD, Dimitrov DS, Nussenzweig MC, Martin MA, Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia, Nature. 503 (2013) 277–280. 10.1038/nature12746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Nishimura Y, Gautam R, Chun TW, Sadjadpour R, Foulds KE, Shingai M, Klein F, Gazumyan A, Golijanin J, Donaldson M, Donau OK, Plishka RJ, Buckler-White A, Seaman MS, Lifson JD, Koup RA, Fauci AS, Nussenzweig MC, Martin MA, Early antibody therapy can induce long-lasting immunity to SHIV, Nature. 543 (2017) 559–563. 10.1038/nature21435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Gautam R, Nishimura Y, Gaughan N, Gazumyan A, Schoofs T, Buckler-White A, Seaman MS, Swihart BJ, Follmann DA, Nussenzweig MC, Martin MA, A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection, Nat. Med 24 (2018) 610–616. 10.1038/S41591-018-0001-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Mahomed S, Garrett N, Capparelli EV, Osman F, Harkoo I, Yende-Zuma N, Gengiah TN, Archary D, Samsunder N, Baxter C, Mkhize NN, Modise T, Carlton K, McDermott A, Moore PL, Karim QA, Barouch DH, Fast PE, Mascola JR, Ledgerwood JE, Morris L, Karim SSA, Safety and Pharmacokinetics of Monoclonal Antibodies VRC07-523LS and PGT121 Administered Subcutaneously for Human Immunodeficiency Virus Prevention, J. Infect. Dis 226 (2022) 510–520. 10.1093/infdis/jiac041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Corey L, Gilbert PB, Juraska M, Montefiori DC, Morris L, Karuna ST, Edupuganti S, Mgodi NM, deCamp AC, Rudnicki E, Huang Y, Gonzales P, Cabello R, Orrell C, Lama JR, Laher F, Lazarus EM, Sanchez J, Frank I, Hinojosa J, Sobieszczyk ME, Marshall KE, Mukwekwerere PG, Makhema J, Baden LR, Mullins JI, Williamson C, Hural J, McElrath MJ, Bentley C, Takuva S, Lorenzo MMG, Burns DN, Espy N, Randhawa AK, Kochar N, Piwowar-Manning E, Donnell DJ, Sista N, Andrew P, Kublin JG, Gray G, Ledgerwood JE, Mascola JR, Cohen MS, Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition, N. Engl. J. Med 384 (2021) 1003–1014. 10.1056/NEJMOA2031738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Mahomed S, Garrett N, Karim QA, Zuma NY, Capparelli E, Baxter C, Gengiah T, Archary D, Samsunder N, Rose ND, Moore P, Williamson C, Barouch DH, Fast PE, Pozzetto B, Hankins C, Carlton K, Ledgerwood J, Morris L, Mascola J, Karim SA, Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07-523LS and PGT121 in South African women: Study protocol for the first-in-human CAPRISA 012B phase i clinical trial, BMJ Open. 10 (2020). 10.1136/bmjopen-2020-042247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Cunningham CK, McFarland EJ, Morrison RL, Capparelli EV, Safrit JT, Mofenson LM, Mathieson B, Valentine ME, Perlowski C, Smith B, Hazra R, Purdue L, Muresan P, Harding PA, Mbengeranwa T, Robinson L-G, Wiznia A, Theron G, Lin B, Bailer RT, Mascola JR, Graham BS, IMPAACT P1112 team, Safety, Tolerability, and Pharmacokinetics of the Broadly Neutralizing Human Immunodeficiency Virus (HIV)-1 Monoclonal Antibody VRC01 in HIV-Exposed Newborn Infants, J. Infect. Dis 222 (2020) 628–636. 10.1093/infdis/jiz532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Gaudinski MR, Houser KV, Doria-Rose NA, Chen GL, Rothwell RSS, Berkowitz N, Costner P, Holman LSA, Gordon IJ, Hendel CS, Kaltovich F, Conan-Cibotti M, Lorenzo MG, Carter C, Sitar S, Carlton K, Gall J, Laurencot C, Lin BC, Bailer RT, McDermott AB, Ko SY, Pegu A, Kwon YD, Kwong PD, Namboodiri AM, Pandey JP, Schwartz R, Arnold F, Hu Z, Zhang L, Huang Y, Koup RA, Capparelli EV, Graham BS, Mascola JR, Ledgerwood JE, Mendoza F, Novik L, Zephir K, Whalen W, Larkin B, Saunders J, Cunningham J, Levinson C, Wang X, Plummer S, Victorino M, Ola A, Boyd C, Jayasinghe N, Apte P, Cartagena CT, Hicks R, Williams P, Vasilenko O, Yamshchikov G, Florez MB, Pittman I, Gama L, Casazza J, DeCederfelt H, Cheng KC, Stein J, Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial, Lancet HIV. 6 (2019) e667–e679. 10.1016/S2352-3018(19)30181-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Cohen YZ, Butler AL, Millard K, Witmer-Pack M, Levin R, Unson-O’Brien C, Patel R, Shimeliovich I, Lorenzi JCC, Horowitz J, Walsh SR, Lin S, Weiner JA, Tse A, Sato A, Bennett C, Mayer B, Seaton KE, Yates NL, Baden LR, DeCamp AC, Ackerman ME, Seaman MS, Tomaras GD, Nussenzweig MC, Caskey M, Safety, pharmacokinetics, and immunogenicity of the combination of the broadly neutralizing anti-HIV-1 antibodies 3BNC117 and 10-1074 in healthy adults: A randomized, phase 1 study, PloS One. 14 (2019). 10.1371/JOURNAL.PONE.0219142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Gaudinski MR, Coates EE, Houser KV, Chen GL, Yamshchikov G, Saunders JG, Holman LSA, Gordon I, Plummer S, Hendel CS, Conan-Cibotti M, Lorenzo MG, Sitar S, Carlton K, Laurencot C, Bailer RT, Narpala S, McDermott AB, Namboodiri AM, Pandey JP, Schwartz RM, Hu Z, Koup RA, Capparelli E, Graham BS, Mascola JR, Ledgerwood JE, Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults, PLoS Med. 15 (2018). 10.1371/JOURNAL.PMED.1002493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Mayer KH, Seaton KE, Huang Y, Grunenberg N, Isaacs A, Allen M, Ledgerwood JE, Frank I, Sobieszczyk ME, Baden LR, Rodriguez B, Tieu HV, Tomaras GD, Deal A, Goodman D, Bailer RT, Ferrari G, Jensen R, Hural J, Graham BS, Mascola JR, Corey L, Montefiori DC, Safety, pharmacokinetics, and immunological activities of multiple intravenous or subcutaneous doses of an anti-HIV monoclonal antibody, VRC01, administered to HIV-uninfected adults: Results of a phase 1 randomized trial, PLoS Med. 14 (2017). 10.1371/JOURNAL.PMED.1002435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME, Dezure A, Lynch RM, Gordon I, Plummer S, Hendel CS, Pegu A, Conan-Cibotti M, Sitar S, Bailer RT, Narpala S, McDermott A, Louder M, O’Dell S, Mohan S, Pandey JP, Schwartz RM, Hu Z, Koup RA, Capparelli E, Mascola JR, Graham BS, Mendoza F, Novik L, Zephir K, Whalen W, Larkin B, Vasilenko O, Berkowitz N, Wilson B, Pittman I, Schieber G, Decederfelt H, Starling J, Gilly J, Rao S, Kaltovich F, Renehan P, Kunchai M, Romano S, Menard K, Diep L, Anude C, Allen M, Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults, Clin. Exp. Immunol 182 (2015) 289–301. 10.1111/CEI.12692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [24].Caskey M, Klein F, Lorenzi JCC, Seaman MS, West AP, Buckley N, Kremer G, Nogueira L, Braunschweig M, Scheid JF, Horwitz JA, Shimeliovich I, Ben-Avraham S, Witmer-Pack M, Platten M, Lehmann C, Burke LA, Hawthorne T, Gorelick RJ, Walker BD, Keler T, Gulick RM, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC, Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117, Nature. 522 (2015) 487–491. 10.1038/NATURE14411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P, Enama ME, Plummer S, Holman L, Hendel CS, Gordon I, Casazza J, Conan-Cibotti M, Migueles SA, Tressler R, Bailer RT, McDermott A, Narpala S, O’Dell S, Wolf G, Lifson JD, Freemire BA, Gorelick RJ, Pandey JP, Mohan S, Chomont N, Fromentin R, Chun TW, Fauci AS, Schwartz RM, Koup RA, Douek DC, Hu Z, Capparelli E, Graham BS, Mascola JR, Ledgerwood JE, Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection, Sci.Transl. Med 7 (2015). 10.1126/SCITRANSLMED.AAD5752. [DOI] [PubMed] [Google Scholar]
- [26].Caskey M, Schoofs T, Gruell H, Settler A, Karagounis T, Kreider EF, Murrell B, Pfeifer N, Nogueira L, Oliveira TY, Learn GH, Cohen YZ, Lehmann C, Gillor D, Shimeliovich I, Unson-O’Brien C, Weiland D, Robles A, Kümmerle T, Wyen C, Levin R, Witmer-Pack M, Eren K, Ignacio C, Kiss S, West AP, Mouquet H, Zingman BS, Gulick RM, Keler T, Bjorkman PJ, Seaman MS, Hahn BH, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC, Klein F, Antibody 10-1074 suppresses viremia in HIV-1-infected individuals, Nat. Med 23 (2017) 185–191. 10.1038/NM.4268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Stephenson KE, Julg B, Tan CS, Zash R, Walsh SR, Rolle CP, Monczor AN, Lupo S, Gelderblom HC, Ansel JL, Kanjilal DG, Maxfield LF, Nkolola J, Borducchi EN, Abbink P, Liu J, Peter L, Chandrashekar A, Nityanandam R, Lin Z, Setaro A, Sapiente J, Chen Z, Sunner L, Cassidy T, Bennett C, Sato A, Mayer B, Perelson AS, deCamp A, Priddy FH, Wagh K, Giorgi EE, Yates NL, Arduino RC, DeJesus E, Tomaras GD, Seaman MS, Korber B, Barouch DH, Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial, Nat. Med 27 (2021) 1718–1724. 10.1038/s41591-021-01509-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [28].Julg B, Stephenson KE, Wagh K, Tan SC, Zash R, Walsh S, Ansel J, Kanjilal D, Nkolola J, Walker-Sperling VEK, Ophel J, Yanosick K, Borducchi EN, Maxfield L, Abbink P, Peter L, Yates NL, Wesley MS, Hassell T, Gelderblom HC, deCamp A, Mayer BT, Sato A, Gerber MW, Giorgi EE, Gama L, Koup RA, Mascola JR, Monczor A, Lupo S, Rolle CP, Arduino R, DeJesus E, Tomaras GD, Seaman MS, Korber B, Barouch DH, Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial, Nat. Med 28 (2022) 1288–1296. 10.1038/S41591-022-01815-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Crowell TA, Colby DJ, Pinyakorn S, Sacdalan C, Pagliuzza A, Intasan J, Benjapornpong K, Tangnaree K, Chomchey N, Kroon E, de Souza MS, Tovanabutra S, Rolland M, Eller MA, Paquin-Proulx D, Bolton DL, Tokarev A, Thomas R, Takata H, Trautmann L, Krebs SJ, Modjarrad K, McDermott AB, Bailer RT, Doria-Rose N, Patel B, Gorelick RJ, Fullmer BA, Schuetz A, Grandin PV, O’Connell RJ, Ledgerwood JE, Graham BS, Tressler R, Mascola JR, Chomont N, Michael NL, Robb ML, Phanuphak N, Ananworanich J, Ake JA, Akapirat S, Bose M, Cale E, Chan P, Chanthaburanun S, Churikanont N, Dawson P, Dumrongpisutikul N, Getchalarat S, Jongrakthaitae S, Jongsakul K, Lerdlum S, Manasnayakorn S, McCullough C, Milazzo M, Nuntapinit B, On K, Ouellette M, Phanuphak P, Sanders-Buell E, Sangnoi N, Shangguan S, Sirivichayakul S, Tragonlugsana N, Trichavaroj R, Ubolyam S, Vasan S, Wattanaboonyongcharoen P, Yamchuenpong T, Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial, Lancet HIV. 6 (2019) e297–e306. 10.1016/S2352-3018(19)30053-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Pannus P, Rutsaert S, De Wit S, Allard SD, Vanham G, Cole B, Nescoi C, Aerts J, De Spiegelaere W, Tsoumanis A, Couttenye M, Herssens N, De Scheerder M, Vandekerckhove L, Florence E, Rapid viral rebound after analytical treatment interruption in patients with very small HIV reservoir and minimal on-going viral transcription, J. Int. AIDS Soc 23 (2020) e25453. 10.1002/jia2.25453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [31].Abdi B, Nguyen T, Brouillet S, Desire N, Sayon S, Wirden M, Jary A, Achaz G, Assoumou L, Palich R, Simon A, Tubiana R, Valantin M-A, Katlama C, Calvez V, Marcelin A-G, Soulie C, No HIV-1 molecular evolution on long-term antiretroviral therapy initiated during primary HIV-1 infection, AIDS Lond. Engl 34 (2020) 1745–1753. 10.1097/QAD.0000000000002629. [DOI] [PubMed] [Google Scholar]
- [32].Moldt B, Günthard HF, Workowski KA, Little SJ, Eron JJ, Overton ET, Lehmann C, Rokx C, Kozal MJ, Gandhi RT, Braun DL, Parvangada A, Li J, Martin R, Selzer L, Cox S, Margot N, Liu H, Slamowitz D, Makadzange T, Collins SE, Geleziunas R, Callebaut C, Evaluation of HIV-1 reservoir size and broadly neutralizing antibody susceptibility in acute antiretroviral therapy-treated individuals, AIDS Lond. Engl 36 (2022) 205–214. 10.1097/QAD.0000000000003088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [33].Scheid JF, Horwitz JA, Bar-On Y, Kreider EF, Lu CL, Lorenzi JCC, Feldmann A, Braunschweig M, Nogueira L, Oliveira T, Shimeliovich I, Patel R, Burke L, Cohen YZ, Hadrigan S, Settler A, Witmer-Pack M, West AP, Juelg B, Keler T, Hawthorne T, Zingman B, Gulick RM, Pfeifer N, Learn GH, Seaman MS, Bjorkman PJ, Klein F, Schlesinger SJ, Walker BD, Hahn BH, Nussenzweig MC, Caskey M, HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption, Nature. 535 (2016) 556–560. 10.1038/nature18929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Bar KJ, Sneller MC, Harrison LJ, Justement JS, Overton ET, Petrone ME, Salantes DB, Seamon CA, Scheinfeld B, Kwan RW, Learn GH, Proschan MA, Kreider EF, Blazkova J, Bardsley M, Refsland EW, Messer M, Clarridge HE, Tustin NB, Madden PJ, Oden K, O’Dell SJ, Jarocki B, Shiakolas AR, Tressler RL, Doria-Rose NA, Bailer RT, Ledgerwood JE, Capparelli EV, Lynch RM, Graham BS, Moir S, Koup RA, Mascola JR, Hoxie JA, Fauci AS, Tebas P, Chun T-W, Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption, N. Engl. J. Med 375 (2016) 2037–2050. 10.1056/NEJMOA1608243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [35].Cale EM, Bai H, Bose M, Messina MA, Colby DJ, Sanders-Buell E, Dearlove B, Li Y, Engeman E, Silas D, O’Sullivan AM, Mann B, Pinyakorn S, Intasan J, Benjapornpong K, Sacdalan C, Kroon E, Phanuphak N, Gramzinski R, Vasan S, Robb ML, Michael NL, Lynch RM, Bailer RT, Pagliuzza A, Chomont N, Pegu A, Doria-Rose NA, Trautmann L, Crowell TA, Mascola JR, Ananworanich J, Tovanabutra S, Rolland M, Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound, J. Clin. Invest 130 (2020) 3299–3304. 10.1172/JCI134395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [36].Rosás-Umbert M, Gunst JD, Pahus MH, Olesen R, Schleimann M, Denton PW, Ramos V, Ward A, Kinloch NN, Copertino DC, Escribà T, Llano A, Brumme ZL, Jones RB, Mothe B, Brander C, Fox J, Nussenzweig MC, Fidler S, Caskey M, Tolstrup M, Søgaard OS, Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8+ T cell immunity, Nat. Commun 13 (2022). 10.1038/s41467-022-34171-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [37].Welles HC, King HAD, Nettey L, Cavett N, Gorman J, Zhou T, Tsybovsky Y, Du R, Song K, Nguyen R, Ambrozak D, Ransier A, Schramm CA, Doria-Rose NA, Swanstrom AE, Hoxie JA, LaBranche C, Montefiori DC, Douek DC, Kwong PD, Mascola JR, Roederer M, Mason RD, Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4, PLoS Pathog. 18 (2022) e1010574. 10.1371/journal.ppat.1010574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [38].Pegu A, Xu L, DeMouth ME, Fabozzi G, March K, Almasri CG, Cully MD, Wang K, Yang ES, Dias J, Fennessey CM, Hataye J, Wei RR, Rao E, Casazza JP, Promsote W, Asokan M, McKee K, Schmidt SD, Chen X, Liu C, Shi W, Geng H, Foulds KE, Kao S-F, Noe A, Li H, Shaw GM, Zhou T, Petrovas C, Todd J-P, Keele BF, Lifson JD, Doria-Rose NA, Koup RA, Yang Z-Y, Nabel GJ, Mascola JR, Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys, Cell Rep. 38 (2022) 110199. 10.1016/j.celrep.2021.110199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Mendoza P, Gruell H, Nogueira L, Pai JA, Butler AL, Millard K, Lehmann C, Suárez I, Oliveira TY, Lorenzi JCC, Cohen YZ, Wyen C, Kümmerle T, Karagounis T, Lu CL, Handl L, Unson-O’Brien C, Patel R, Ruping C, Schlotz M, Witmer-Pack M, Shimeliovich I, Kremer G, Thomas E, Seaton KE, Horowitz J, West AP, Bjorkman PJ, Tomaras GD, Gulick RM, Pfeifer N, Fätkenheuer G, Seaman MS, Klein F, Caskey M, Nussenzweig MC, Combination therapy with anti-HIV-1 antibodies maintains viral suppression, Nature. 561 (2018) 479–484. 10.1038/S41586-018-0531-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [40].Bar-On Y, Gruell H, Schoofs T, Pai JA, Nogueira L, Butler AL, Millard K, Lehmann C, Suárez I, Oliveira TY, Karagounis T, Cohen YZ, Wyen C, Scholten S, Handl L, Belblidia S, Dizon JP, Vehreschild JJ, Witmer-Pack M, Shimeliovich I, Jain K, Fiddike K, Seaton KE, Yates NL, Horowitz J, Gulick RM, Pfeifer N, Tomaras GD, Seaman MS, Fätkenheuer G, Caskey M, Klein F, Nussenzweig MC, Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals, Nat. Med 24 (2018) 1701–1707. 10.1038/S41591-018-0186-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Bouvin-Pley M, Morgand M, Moreau A, Jestin P, Simonnet C, Tran L, Goujard C, Meyer L, Barin F, Braibant M, Evidence for a Continuous Drift of the HIV-1 Species towards Higher Resistance to Neutralizing Antibodies over the Course of the Epidemic, PLOS Pathog. 9 (2013) e1003477. 10.1371/journal.ppat.1003477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Alam M, Kuwata T, Shimura K, Yokoyama M, Ramirez Valdez KP, Tanaka K, Maruta Y, Oishi S, Fujii N, Sato H, Matsuoka M, Matsushita S, Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors, Retrovirology. 13 (2016) 70. 10.1186/s12977-016-0304-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [43].Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, Zajic L, Iyer SS, Decker JM, Kumar A, Hora B, Berg A, Cai F, Hopper J, Denny TN, Ding H, Ochsenbauer C, Kappes JC, Galimidi RP, West AP, Bjorkman PJ, Wilen CB, Doms RW, O’Brien M, Bhardwaj N, Borrow P, Haynes BF, Muldoon M, Theiler JP, Korber B, Shaw GM, Hahn BH, Phenotypic properties of transmitted founder HIV-1, Proc. Natl. Acad. Sci 110 (2013) 6626–6633. 10.1073/pnas.1304288110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [44].Maldarelli F, Kearney M, Palmer S, Stephens R, Mican J, Polis MA, Davey RT, Kovacs J, Shao W, Rock-Kress D, Metcalf JA, Rehm C, Greer SE, Lucey DL, Danley K, Alter H, Mellors JW, Coffin JM, HIV Populations Are Large and Accumulate High Genetic Diversity in a Nonlinear Fashion, J. Virol 87 (2013) 10313–10323. 10.1128/JVI.01225-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [45].Zhuang J, Jetzt AE, Sun G, Yu H, Klarmann G, Ron Y, Preston BD, Dougherty JP, Human Immunodeficiency Virus Type 1 Recombination: Rate, Fidelity, and Putative Hot Spots, J. Virol 76 (2002) 11273–11282. 10.1128/JVI.76.22.11273-11282.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM, Antibody neutralization and escape by HIV-1, Nature. 422 (2003) 307–312. 10.1038/nature01470. [DOI] [PubMed] [Google Scholar]
- [47].Wibmer CK, Bhiman JN, Gray ES, Tumba N, Abdool Karim SS, Williamson C, Morris L, Moore PL, Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes, PLoS Pathog. 9 (2013) e1003738. 10.1371/journal.ppat.1003738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [48].Bhiman JN, Anthony C, Doria-Rose NA, Karimanzira O, Schramm CA, Khoza T, Kitchin D, Botha G, Gorman J, Garrett NJ, Abdool Karim SS, Shapiro L, Williamson C, Kwong PD, Mascola JR, Morris L, Moore PL, Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies, Nat. Med 21 (2015) 1332–1336. 10.1038/nm.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [49].Shen S, Tian W, Ji Y, Gao Y, Zhang M, Han X, Shang H, Higher Genetic Diversity and Viral Evolution in Key Regions of the Envelope Gene Are Associated with Broader Neutralizing Antibody Responses: a Report of Two Chronic HIV Infected Cases, Jpn. J. Infect. Dis 72 (2019) 312–317. 10.7883/yoken.JJID.2018.336. [DOI] [PubMed] [Google Scholar]
- [50].Dispinseri S, Cavarelli M, Tolazzi M, Plebani AM:, Jansson M Scarlatti E, Continuous HIV-1 Escape from Autologous Neutralization and Development of Cross-Reactive Antibody Responses Characterizes Slow Disease Progression of Children, Vaccines. 9 (2021) 260. 10.3390/vaccines9030260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [51].Wang L, Liang S, Huang J, Ding Y, He L, Hao Y, Ren L, Zhu M, Feng Y, Rashid A, Liu Y, Jiang S, Hong K, Ma L, Neutralization Sensitivity of HIV-1 CRF07_BC From an Untreated Patient With a Focus on Evolution Over Time, Front. Cell. Infect. Microbiol 12 (2022) 862754. 10.3389/fcimb.2022.862754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [52].Wilson A, Shakhtour L, Ward A, Ren Y, Recarey M, Stevenson E, Korom M, Kovacs C, Benko E, Jones RB, Lynch RM, Characterizing the Relationship Between Neutralization Sensitivity and env Gene Diversity During ART Suppression, Front. Immunol 12 (2021). https://www.frontiersin.org/articles/10.3389/fimmu.2021.710327 (accessed March 2, 2023). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [53].Hraber P, Seaman MS, Bailer RT, Mascola JR, Montefiori DC, Korber BT, Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection, AIDS Lond. Engl 28 (2014) 163–169. 10.1097/QAD.0000000000000106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Landais E, Huang X, Havenar-Daughton C, Murrell B, Price MA, Wickramasinghe L, Ramos A, Bian CB, Simek M, Allen S, Karita E, Kilembe W, Lakhi S, Inambao M, Kamali A, Sanders EJ, Anzala O, Edward V, Bekker L-G, Tang J, Gilmour J, Kosakovsky-Pond SL, Phung P, Wrin T, Crotty S, Godzik A, Poignard P, Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort, PLoS Pathog. 12 (2016) e1005369. 10.1371/journal.ppat.1005369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Nandagopal P, Bhattacharya J, Srikrishnan AK, Goyal R, Ravichandran Swathirajan C, Patil S, Saravanan S, Deshpande S, Vignesh R, Solomon SS, Singla N, Mukherjee J, Murugavel KG, Broad neutralization response in a subset of HIV-1 subtype C-infected viraemic non-progressors from southern India, J. Gen. Virol 99 (2018) 379–392. 10.1099/jgv.0.001016. [DOI] [PubMed] [Google Scholar]
- [56].Rusert P, Kouyos RD, Kadelka C, Ebner H, Schanz M, Huber M, Braun DL, Hozé N, Scherrer A, Magnus C, Weber J, Uhr T, Cippa V, Thorball CW, Kuster H, Cavassini M, Bernasconi E, Hoffmann M, Calmy A, Battegay M, Rauch A, Yerly S, Aubert V, Klimkait T, Böni J, Fellay J, Regoes RR, Günthard HF, Trkola A, Determinants of HIV-1 broadly neutralizing antibody induction, Nat. Med 22 (2016) 1260–1267. 10.1038/nm.4187. [DOI] [PubMed] [Google Scholar]
- [57].Wu X, Zhang Z, Schramm CA, Joyce MG, Kwon YD, Zhou T, Sheng Z, Zhang B, O’Dell S, McKee K, Georgiev IS, Chuang G-Y, Longo NS, Lynch RM, Saunders KO, Soto C, Srivatsan S, Yang Y, Bailer RT, Louder MK, NISC Comparative Sequencing Program, Mullikin JC, Connors M, Kwong PD, Mascola JR, Shapiro L, Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection, Cell. 161 (2015) 470–485. 10.1016/j.cell.2015.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [58].Moore PL, Gray ES, Wibmer CK, Bhiman JN, Nonyane M, Sheward DJ, Hermanus T, Bajimaya S, Tumba NL, Abrahams M-R, Lambson BE, Ranchobe N, Ping L, Ngandu N, Abdool Karim Q, Abdool Karim SS, Swanstrom RI, Seaman MS, Williamson C, Morris L, Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape, Nat. Med 18 (2012) 1688–1692. 10.1038/nm.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [59].Saha A, Dixit NM, Pre-existing resistance in the latent reservoir can compromise VRC01 therapy during chronic HIV-1 infection, PLoS Comput. Biol 16 (2020) e1008434. 10.1371/journal.pcbi.1008434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [60].Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I, Kirtley S, Williams B, Gouws-Williams E, Ghys PD, WHO–UNAIDS Network for HIV Isolation Characterisation, Global and regional molecular epidemiology of HIV-1, 1990-2015: a systematic review, global survey, and trend analysis, Lancet Infect. Dis 19 (2019) 143–155. 10.1016/S1473-3099(18)30647-9. [DOI] [PubMed] [Google Scholar]
- [61].Hemelaar J, Gouws E, Ghys PD, Osmanov S, Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004, AIDS Lond. Engl 20 (2006) W13–23. 10.1097/01.aids.0000247564.73009.bc. [DOI] [PubMed] [Google Scholar]
- [62].Stephenson KE, Wagh K, Korber B, Barouch DH, Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention, Annu. Rev. Immunol 38 (2020) 673–703. 10.1146/annurev-immunol-080219-023629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [63].Han C, Johnson J, Dong R, Kandula R, Kort A, Wong M, Yang T, Breheny PJ, Brown GD, Haim H, Key Positions of HIV-1 Env and Signatures of Vaccine Efficacy Show Gradual Reduction of Population Founder Effects at the Clade and Regional Levels, MBio. 11 (2020) e00126–20. 10.1128/mBio.00126-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [64].Raghwani J, Redd AD, Longosz AF, Wu C-H, Serwadda D, Martens C, Kagaayi J, Sewankambo N, Porcella SF, Grabowski MK, Quinn TC, Eller MA, Eller LA, Wabwire-Mangen F, Robb ML, Fraser C, Lythgoe KA, Evolution of HIV-1 within untreated individuals and at the population scale in Uganda, PLoS Pathog. 14 (2018) e1007167. 10.1371/journal.ppat.1007167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [65].Hraber P, Korber BT, Lapedes AS, Bailer RT, Seaman MS, Gao H, Greene KM, McCutchan F, Williamson C, Kim JH, Tovanabutra S, Hahn BH, Swanstrom R, Thomson MM, Gao F, Harris L, Giorgi E, Hengartner N, Bhattacharya T, Mascola JR, Montefiori DC, Impact of clade, geography, and age of the epidemic on HIV-1 neutralization by antibodies, J. Virol 88 (2014) 12623–12643. 10.1128/JVI.01705-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [66].Sneller MC, Blazkova J, Justement JS, Shi V, Kennedy BD, Gittens K, Tolstenko J, McCormack G, Whitehead EJ, Schneck RF, Proschan MA, Benko E, Kovacs C, Oguz C, Seaman MS, Caskey M, Nussenzweig MC, Fauci AS, Moir S, Chun TW, Combination anti-HIV antibodies provide sustained virological suppression, Nature. 606 (2022) 375–381. 10.1038/s41586-022-04797-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [67].Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF, Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy, Nat. Med 5 (1999) 512–517. 10.1038/8394. [DOI] [PubMed] [Google Scholar]
- [68].Hey-Nguyen WJ, Xu Y, Pearson CF, Bailey M, Suzuki K, Tantau R, Obeid S, Milner B, Field A, Carr A, Bloch M, Cooper DA, Kelleher AD, Zaunders JJ, Koelsch KK, Quantification of Residual Germinal Center Activity and HIV-1 DNA and RNA Levels Using Fine Needle Biopsies of Lymph Nodes During Antiretroviral Therapy, AIDS Res. Hum. Retroviruses 33 (2017) 648–657. 10.1089/aid.2016.0171. [DOI] [PubMed] [Google Scholar]
- [69].Lee SA, Telwatte S, Hatano H, Kashuba ADM, Cottrell ML, Hoh R, Liegler TJ, Stephenson S, Somsouk M, Hunt PW, Deeks SG, Yukl S, Savic RM, Antiretroviral therapy concentrations differ in gut versus lymph node tissues and are associated with HIV viral transcription by a novel RT-ddPCR assay, J. Acquir. Immune Defic. Syndr. 1999 83 (2020) 530–537. 10.1097/QAI.0000000000002287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [70].Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, Beilman GJ, Khoruts A, Thorkelson A, Schmidt TE, Anderson J, Perkey K, Stevenson M, Perelson AS, Douek DC, Haase AT, Schacker TW, Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues, Proc. Natl. Acad. Sci 111 (2014) 2307–2312. 10.1073/pnas.1318249111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [71].Perreau M, Savoye A-L, De Crignis E, Corpataux J-M, Cubas R, Haddad EK, De Leval L, Graziosi C, Pantaleo G, Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production, J. Exp. Med 210 (2012) 143–156. 10.1084/jem.20121932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [72].Pohlmeyer CW, Gonzalez VD, Irrinki A, Ramirez RN, Li L, Mulato A, Murry JP, Arvey A, Hoh R, Deeks SG, Kukolj G, Cihlar T, Pflanz S, Nolan GP, Min-Oo G, Identification of NK Cell Subpopulations That Differentiate HIV-Infected Subject Cohorts with Diverse Levels of Virus Control, J. Virol 93 (2019) e01790–18. 10.1128/JVI.01790-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [73].Hersperger AR, Pereyra F, Nason M, Demers K, Sheth P, Shin LY, Kovacs CM, Rodriguez B, Sieg SF, Teixeira-Johnson L, Gudonis D, Goepfert PA, Lederman MM, Frank I, Makedonas G, Kaul R, Walker BD, Betts MR, Perforin Expression Directly Ex Vivo by HIV-Specific CD8+ T-Cells Is a Correlate of HIV Elite Control, PLoS Pathog. 6 (2010) e1000917. 10.1371/journal.ppat.1000917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [74].Deng K, Pertea M, Rongvaux A, Wang L, Durand CM, Ghiaur G, Lai J, McHugh HL, Hao H, Zhang H, Margolick JB, Gurer C, Murphy AJ, Valenzuela DM, Yancopoulos GD, Deeks SG, Strowig T, Kumar P, Siliciano JD, Salzberg SL, Flavell RA, Shan L, Siliciano RF, Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations, Nature. 517 (2015) 381–385. 10.1038/nature14053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [75].Rutishauser RL, Hartogensis W, Deguit CD, Krone M, Hoh R, Hecht FM, Pilcher CD, Bacchetti P, Deeks SG, Hunt PW, McCune JM, Early and Delayed Antiretroviral Therapy Results in Comparable Reductions in CD8+ T Cell Exhaustion Marker Expression, AIDS Res. Hum. Retroviruses 33 (2017) 658–667. 10.1089/AID.2016.0324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [76].Collins DR, Urbach JM, Racenet ZJ, Arshad U, Power KA, Newman RM, Mylvaganam GH, Ly NL, Lian X, Rull A, Rassadkina Y, Yanez AG, Peluso MJ, Deeks SG, Vidal F, Lichterfeld M, Yu XG, Gaiha GD, Allen TM, Walker BD, Functional impairment of HIV-specific CD8+ T cells precedes aborted spontaneous control of viremia, Immunity. 54 (2021) 2372–2384.e7. 10.1016/j.immuni.2021.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [77].Leite TF, Delatorre E, Côrtes FH, Ferreira ACG, Cardoso SW, Grinsztejn B, de Andrade MM, Veloso VG, Morgado MG, Guimarães ML, Reduction of HIV-1 Reservoir Size and Diversity After 1 Year of cART Among Brazilian Individuals Starting Treatment During Early Stages of Acute Infection, Front. Microbiol 10 (2019) 145. 10.3389/fmicb.2019.00145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [78].Kearney MF, Spindler J, Shao W, Yu S, Anderson EM, O’Shea A, Rehm C, Poethke C, Kovacs N, Mellors JW, Coffin JM, Maldarelli F, Lack of Detectable HIV-1 Molecular Evolution during Suppressive Antiretroviral Therapy, PLOS Pathog. 10 (2014) e1004010. 10.1371/journal.ppat.1004010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [79].Mills A, Richmond GJ, Newman C, Osiyemi O, Cade J, Brinson C, De Vente J, Margolis DA, Sutton KC, Wilches V, Hatch S, Roberts J, McCoig C, Garris C, Vandermeulen K, Spreen WR, Long-acting cabotegravir and rilpivirine for HIV-1 suppression: switch to 2-monthly dosing after 5 years of daily oral therapy, AIDS. 36 (2022) 195. 10.1097/QAD.0000000000003085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [80].Gupta SK, Berhe M, Crofoot G, Benson P, Ramgopal M, Sims J, McDonald C, Ruane P, Sanchez WE, Scribner A, Liu S-Y, VanderVeen LA, Dvory-Sobol H, Rhee MS, Baeten JM, Koenig E, Lenacapavir administered every 26 weeks or daily in combination with oral daily antiretroviral therapy for initial treatment of HIV: a randomised, open-label, active-controlled, phase 2 trial, Lancet HIV. 10 (2023) e15–e23. 10.1016/S2352-3018(22)00291-0. [DOI] [PubMed] [Google Scholar]
- [81].LENACAPAVIR WITH bNAbs GS-5423 AND GS-2872 DOSED EVERY 6 MONTHS IN PEOPLE WITH HIV, CROI Conf. (n.d.). https://www.croiconference.org/abstract/lenacapavir-with-bnabs-gs-5423-and-gs-2872-dosed-every-6-months-in-people-with-hiv/ (accessed March 12, 2023). [Google Scholar]
- [82].Schaefer W, Regula JT, Bähner M, Schanzer J, Croasdale R, Dürr H, Gassner C, Georges G, Kettenberger H, Imhof-Jung S, Schwaiger M, Stubenrauch KG, Sustmann C, Thomas M, Scheuer W, Klein C, Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies, Proc. Natl. Acad. Sci. U. S. A 108 (2011) 11187–11192. 10.1073/pnas.1019002108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [83].Asokan M, Rudicell RS, Louder M, McKee K, O’Dell S, Stewart-Jones G, Wang K, Xu L, Chen X, Choe M, Chuang G, Georgiev IS, Joyce MG, Kirys T, Ko S, Pegu A, Shi W, Todd JP, Yang Z, Bailer RT, Rao S, Kwong PD, Nabel GJ, Mascola JR, Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization, J. Virol 89 (2015) 12501–12512. 10.1128/JVI.02097-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [84].Zhang B, Gorman J, Kwon YD, Pegu A, Chao CW, Liu T, Asokan M, Bender MF, Bylund T, Damron L, Gollapudi D, Lei P, Li Y, Liu C, Louder MK, McKee K, Olia AS, Rawi R, Schön A, Wang S, Yang ES, Yang Y, Carlton K, Doria-Rose NA, Shapiro L, Seaman MS, Mascola JR, Kwong PD, Bispecific antibody CAP256.J3LS targets V2-apex and CD4-binding sites with high breadth and potency, MAbs. 15 (2023) 2165390. 10.1080/19420862.2023.2165390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [85].Xu L, Pegu A, Rao E, Doria-Rose N, Beninga J, McKee K, Lord DM, Wei RR, Deng G, Louder M, Schmidt SD, Mankoff Z, Wu L, Asokan M, Beil C, Lange C, Leuschner WD, Kruip J, Sendak R, Kwon YD, Zhou T, Chen X, Bailer RT, Wang K, Choe M, Tartaglia LJ, Barouch DH, O’Dell S, Todd JP, Burton DR, Roederer M, Connors M, Koup RA, Kwong PD, Yang ZY, Mascola JR, Nabel GJ, Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques, Science. 358 (2017) 85–90. 10.1126/SCIENCE.AAN8630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [86].Dhody K, Pourhassan N, Kazempour K, Green D, Badri S, Mekonnen H, Burger D, Maddon PJ, PRO 140, a monoclonal antibody targeting CCR5, as a long-acting, single-agent maintenance therapy for HIV-1 infection, HIV Clin. Trials 19 (2018) 85–93. 10.1080/15284336.2018.1452842. [DOI] [PubMed] [Google Scholar]
- [87].Rizza SA, Bhatia R, Zeuli J, Temesgen Z, Ibalizumab for the treatment of multidrug-resistant HIV-1 infection, Drugs Today Barc. Spain 1998 55 (2019) 25–34. 10.1358/dot.2019.55.1.2895651. [DOI] [PubMed] [Google Scholar]
- [88].Burkly LC, Olson D, Shapiro R, Winkler G, Rosa JJ, Thomas DW, Williams C, Chisholm P, Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody. Dissecting the basis for its inhibitory effect on HIV-induced cell fusion, J. Immunol. Baltim. Md 1950 149 (1992) 1779–1787. [PubMed] [Google Scholar]
- [89].Olson WC, Rabut GE, Nagashima KA, Tran DN, Anselma DJ, Monard SP, Segal JP, Thompson DA, Kajumo F, Guo Y, Moore JP, Maddon PJ, Dragic T, Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5, J. Virol 73 (1999) 4145–4155. 10.1128/JVI.73.5.4145-4155.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [90].Emu B, Fessel J, Schrader S, Kumar P, Richmond G, Win S, Weinheimer S, Marsolais C, Lewis S, Phase 3 Study of Ibalizumab for Multidrug-Resistant HIV-1, N. Engl. J. Med 379 (2018) 645–654. 10.1056/NEJMoa1711460. [DOI] [PubMed] [Google Scholar]
- [91].Rychert J, Jones L, McGrath G, Bazner S, Rosenberg ES, A monoclonal antibody against lymphocyte function-associated antigen-1 decreases HIV-1 replication by inducing the secretion of an antiviral soluble factor, Virol. J 10 (2013) 120. 10.1186/1743-422X-10-120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [92].Byrareddy SN, Kallam B, Arthos J, Cicala C, Nawaz F, Hiatt J, Kersh EN, McNicholl JM, Hanson D, Reimann KA, Brameier M, Walter L, Rogers K, Mayne AE, Dunbar P, Villinger T, Little D, Parslow TG, Santangelo PJ, Villinger F, Fauci AS, Ansari AA, Targeting α4β7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection, Nat. Med 20 (2014) 1397–1400. 10.1038/nm.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [93].Calenda G, Frank I, Arrode-Brusés G, Pegu A, Wang K, Arthos J, Cicala C, Rogers KA, Shirreff L, Grasperge B, Blanchard JL, Maldonado S, Roberts K, Gettie A, Villinger F, Fauci AS, Mascola JR, Martinelli E, Delayed vaginal SHIV infection in VRC01 and anti-α4β7 treated rhesus macaques, PLoS Pathog. 15 (2019) e1007776. 10.1371/journal.ppat.1007776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [94].Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, Bendahman N, Hammers R, Naturally occurring antibodies devoid of light chains, Nature. 363 (1993) 446–448. 10.1038/363446a0. [DOI] [PubMed] [Google Scholar]
- [95].Zhou T, Chen L, Gorman J, Wang S, Kwon YD, Lin BC, Louder MK, Rawi R, Stancofski E-SD, Yang Y, Zhang B, Quigley AF, McCoy LE, Rutten L, Verrips T, Weiss RA, Doria-Rose NA, Shapiro L, Kwong PD, Structural basis for llama nanobody recognition and neutralization of HIV-1 at the CD4-binding site, Structure. 30 (2022) 862–875.e4. 10.1016/j.str.2022.03.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [96].Strokappe N, Szynol A, Aasa-Chapman M, Gorlani A, Forsman Quigley A, Hulsik DL, Chen L, Weiss R, de Haard H, Verrips T, Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C, PloS One. 7 (2012) e33298. 10.1371/journal.pone.0033298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [97].McCoy LE, Quigley AF, Strokappe NM, Bulmer-Thomas B, Seaman MS, Mortier D, Rutten L, Chander N, Edwards CJ, Ketteler R, Davis D, Verrips T, Weiss RA, Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization, J. Exp. Med 209 (2012) 1091–1103. 10.1084/jem.20112655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [98].Koch K, Kalusche S, Torres JL, Stanfield RL, Danquah W, Khazanehdari K, von Briesen H, Geertsma ER, Wilson IA, Wernery U, Koch-Nolte F, Ward AB, Dietrich U, Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers, Sci. Rep 7 (2017) 8390. 10.1038/s41598-017-08273-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [99].Strokappe NM, Hock M, Rutten L, Mccoy LE, Back JW, Caillat C, Haffke M, Weiss RA, Weissenhorn W, Verrips T, Super Potent Bispecific Llama VHH Antibodies Neutralize HIV via a Combination of gp41 and gp120 Epitopes, Antibodies. 8 (2019) 38. 10.3390/antib8020038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [100].Van Roy M, Ververken C, Beirnaert E, Hoefman S, Kolkman J, Vierboom M, Breedveld E, t Hart B, Poelmans S, Bontinck L, Hemeryck A, Jacobs S, Baumeister J, Ulrichts H, The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis, Arthritis Res. Ther 17 (2015) 135. 10.1186/s13075-015-0651-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [101].Bell A, Wang ZJ, Arbabi-Ghahroudi M, Chang TA, Durocher Y, Trojahn U, Baardsnes J, Jaramillo ML, Li S, Baral TN, O’Connor-McCourt M, Mackenzie R, Zhang J, Differential tumor-targeting abilities of three single-domain antibody formats, Cancer Lett. 289 (2010) 81–90. 10.1016/j.canlet.2009.08.003. [DOI] [PubMed] [Google Scholar]
- [102].Moshoette T, Papathanasopoulos MA, Killick MA, HIV-1 bispecific antibody iMab-N6 exhibits enhanced breadth but not potency over its parental antibodies iMab and N6, Virol. J 19 (2022). 10.1186/s12985-022-01876-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [103].Huang Y, Yu J, Lanzi A, Yao X, Andrews CD, Tsai L, Gajjar MR, Sun M, Seaman MS, Padte NN, Ho DD, Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity, Cell. 165 (2016) 1621–1631. 10.1016/J.CELL.2016.05.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [104].Gunst JD, Pahus MH, Rosás-Umbert M, Lu IN, Benfield T, Nielsen H, Johansen IS, Mohey R, Østergaard L, Klastrup V, Khan M, Schleimann MH, Olesen R, Støvring H, Denton PW, Kinloch NN, Copertino DC, Ward AR, Alberto WDC, Nielsen SD, Puertas MC, Ramos V, Reeves JD, Petropoulos CJ, Martinez-Picado J, Brumme ZL, Jones RB, Fox J, Tolstrup M, Nussenzweig MC, Caskey M, Fidler S, Søgaard OS, Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial, Nat. Med 28 (2022) 2424–2435. 10.1038/s41591-022-02023-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [105].Gruell H, Gunst JD, Cohen YZ, Pahus MH, Malin JJ, Platten M, Millard KG, Tolstrup M, Jones RB, Alberto WDC, Lorenzi JCC, Oliveira TY, Kümmerle T, Suárez I, Unson-O’Brien C, Nogueira L, Olesen R, Østergaard L, Nielsen H, Lehmann C, Nussenzweig MC, Fätkenheuer G, Klein F, Caskey M, Søgaard OS, Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial, Lancet Microbe. 3 (2022) e203–e214. 10.1016/S2666-5247(21)00239-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [106].Zhou C-L, Huang Y-F, Li Y-B, Liang T-Z, Zheng T-Y, Chen P, Wu Z-Y, Lai F-Y, Liu S-W, Xi B-M, Li L, A New Small-Molecule Compound, Q308, Silences Latent HIV-1 Provirus by Suppressing Tat- and FACT-Mediated Transcription, Antimicrob. Agents Chemother 65 (2021) e0047021. 10.1128/AAC.00470-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [107].Kessing CF, Nixon CC, Li C, Tsai P, Takata H, Mousseau G, Ho PT, Honeycutt JB, Fallahi M, Trautmann L, Garcia JV, Valente ST, In Vivo Suppression of HIV Rebound by Didehydro-Cortistatin A, a “Block-and-Lock” Strategy for HIV-1 Treatment, Cell Rep. 21 (2017) 600–611. 10.1016/j.celrep.2017.09.080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [108].Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM, Chen C, Mancuso P, Sariyer R, Ferrante P, Donadoni M, Robinson JA, Sillman B, Lin Z, Hilaire JR, Banoub M, Elango M, Gautam N, Mosley RL, Poluektova LY, McMillan J, Bade AN, Gorantla S, Sariyer IK, Burdo TH, Young W-B, Amini S, Gordon J, Jacobson JM, Edagwa B, Khalili K, Gendelman HE, Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice, Nat. Commun 10 (2019) 2753. 10.1038/s41467-019-10366-Y [DOI] [PMC free article] [PubMed] [Google Scholar]
- [109].Pegu A, Asokan M, Wu L, Wang K, Hataye J, Casazza JP, Guo X, Shi W, Georgiev I, Zhou T, Chen X, O’Dell S, Todd J-P, Kwong PD, Rao SS, Yang Z, Koup RA, Mascola JR, Nabel GJ, Activation and lysis of human CD4 cells latently infected with HIV-1, Nat. Commun 6 (2015) 8447. 10.1038/ncomms9447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [110].Brozy J, Schlaepfer E, Mueller CKS, Rochat M-A, Rampini SK, Myburgh R, Raum T, Kufer P, Baeuerle PA, Muenz M, Speck RF, Antiviral Activity of HIV gp120-Targeting Bispecific T Cell Engager Antibody Constructs, J. Virol 92 (2018) e00491–18. 10.1128/JVI.00491-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [111].Sloan DD, Lam C-YK, Irrinki A, Liu L, Tsai A, Pace CS, Kaur J, Murry JP, Balakrishnan M, Moore PA, Johnson S, Nordstrom JL, Cihlar T, Koenig S, Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells, PLOS Pathog. 11 (2015) e1005233. 10.1371/journal.ppat.1005233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [112].Tuyishime M, Dashti A, Faircloth K, Jha S, Nordstrom JL, Haynes BF, Silvestri G, Chahroudi A, Margolis DM, Ferrari G, Elimination of SHIV Infected Cells by Combinations of Bispecific HIVxCD3 DART® Molecules, Front. Immunol 12 (2021) 710273. 10.3389/fimmu.2021.710273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [113].Wu X, Guo J, Niu M, An M, Liu L, Wang H, Jin X, Zhang Q, Lam KS, Wu T, Wang H, Wang Q, Du Y, Li J, Cheng L, Tang HY, Shang H, Zhang L, Zhou P, Chen Z, Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice, J. Clin. Invest 128 (2018) 2239–2251. 10.1172/JCI96764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [114].Niu M, Wong YC, Wang H, Li X, Chan CY, Zhang Q, Ling L, Cheng L, Wang R, Du Y, Yim LY, Jin X, Zhang H, Zhang L, Chen Z, Tandem bispecific antibody prevents pathogenic SHIVSF162P3CN infection and disease progression, Cell Rep. 36 (2021) 109611. 10.1016/j.celrep.2021.109611. [DOI] [PubMed] [Google Scholar]
- [115].Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C, Macken C, Richman DD, Christopherson C, June CH, Lazar R, Broad DF, Jalali S, Hege KM , A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy, Mol. Ther. J. Am. Soc. Gene Ther 5 (2002) 788–797. 10.1006/mthe.2002.0611. [DOI] [PubMed] [Google Scholar]
- [116].Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT, Bakker A, Roberts MR, June CH, Jalali S, Lin AA, Pennathur-Das R, Hege KM, Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects, Blood. 96 (2000) 785–793. [PubMed] [Google Scholar]
- [117].Hale M, Mesojednik T, Romano Ibarra GS, Sahni J, Bernard A, Sommer K, Scharenberg AM, Rawlings DJ, Wagner TA, Engineering HIV-Resistant, Anti-HIV Chimeric Antigen Receptor T Cells, Mol. Ther 25 (2017) 570–579. 10.1016/j.ymthe.2016.12.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [118].Ali A, Kitchen SG, Chen ISY, Ng HL, Zack JA, Yang OO, HIV-1-Specific Chimeric Antigen Receptors Based on Broadly Neutralizing Antibodies, J. Virol 90 (2016) 6999–7006. 10.1128/JVI.00805-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [119].Pampusch MS, Abdelaal HM, Cartwright EK, Molden JS, Davey BC, Sauve JD, Sevcik EN, Rendahl AK, Rakasz EG, Connick E, Berger EA, Skinner PJ, CAR/CXCR5-T cell immunotherapy is safe and potentially efficacious in promoting sustained remission of SIV infection, PLoS Pathog. 18 (2022) e1009831. 10.1371/journal.ppat.1009831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [120].Maldini CR, Gayout K, Leibman RS, Dopkin DL, Mills JP, Shan X, Glover JA, Riley JL, HIV-Resistant and HIV-Specific CAR-Modified CD4+ T Cells Mitigate HIV Disease Progression and Confer CD4+ T Cell Help In Vivo, Mol. Ther 28 (2020) 1585–1599. 10.1016/j.ymthe.2020.05.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [121].Guan M, Lim L, Holguin L, Han T, Vyas V, Urak R, Miller A, Browning DL, Echavarria L, Li S, Li S, Chang W-C, Scott T, Yazaki P, Morris KV, Cardoso AA, Blanchard MS, Verche VL, Forman SJ, Zaia JA, Burnett JC, Wang X, Pre-clinical data supporting immunotherapy for HIV using CMV-HIV-specific CAR T cells with CMV vaccine, Mol. Ther. - Methods Clin. Dev 25 (2022) 344–359. 10.1016/j.omtm.2022.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [122].Liu B, Zhang W, Xia B, Jing S, Du Y, Zou F, Li R, Lu L, Chen S, Li Y, Hu Q, Lin Y, Zhang Y, He Z, Zhang X, Chen X, Peng T, Tang X, Cai W, Pan T, Li L, Zhang H, Broadly neutralizing antibody–derived CAR T cells reduce viral reservoir in individuals infected with HIV-1, J. Clin. Invest 131 (2021). 10.1172/JCI150211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [123].Liu L, Patel B, Ghanem MH, Bundoc V, Zheng Z, Morgan RA, Rosenberg SA, Dey B, Berger EA, Novel CD4-Based Bispecific Chimeric Antigen Receptor Designed for Enhanced Anti-HIV Potency and Absence of HIV Entry Receptor Activity, J. Virol 89 (2015) 6685–6694. 10.1128/JVI.00474-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [124].Anthony-Gonda K, Bardhi A, Ray A, Flerin N, Li M, Chen W, Ochsenbauer C, Kappes JC, Krueger W, Worden A, Schneider D, Zhu Z, Orentas R, Dimitrov DS, Goldstein H, Dropulić B, Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model, Sci. Transl. Med 11 (2019) eaav5685. 10.1126/scitranslmed.aav5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [125].Cartwright EK, Pampusch MS, Rendahl AK, Berger EA, Coleman-Fuller N, Skinner PJ, HIV-Specific CAR T Cells with CD28 or 4-1BB Signaling Domains Are Phenotypically and Functionally Distinct and Effective at Suppressing HIV and Simian Immunodeficiency Virus, ImmunoHorizons. 6 (2022) 693–704. 10.4049/immunohorizons.2200073. [DOI] [PubMed] [Google Scholar]
- [126].Davey BC, Pampusch MS, Cartwright EK, Abdelaal HM, Rakasz EG, Rendahl A, Berger EA, Skinner PJ, Development of an anti-CAR antibody response in SIV-infected rhesus macaques treated with CD4-MBL CAR/CXCR5 T cells, Front. Immunol 13 (2022) 1032537. 10.3389/fimmu.2022.1032537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [127].Pampusch MS, Hajduczki A, Mwakalundwa G, Connick E, Berger EA, Skinner PJ, Production and Characterization of SIV-Specific CAR/CXCR5 T Cells, Methods Mol. Biol. Clifton NJ 2421 (2022) 171–185. 10.1007/978-1-0716-1944-5_12. [DOI] [PubMed] [Google Scholar]
- [128].He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, Xu L, Chen X, Hao Y, Wang P, Zhu C, Ou J, Liang H, Ni T, Zhang X, Zhou X, Deng K, Chen Y, Luo Y, Xu J, Qi H, Wu Y, Ye L, Follicular CXCR5-expressing CD8+T cells curtail chronic viral infection, Nature. 537 (2016) 412–416. 10.1038/nature19317. [DOI] [PubMed] [Google Scholar]
- [129].Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, Minnich M, Meckiff BJ, Wei Y, Hou Z, Zotos D, Fenix KA, Atnerkar A, Preston S, Chipman JG, Beilman GJ, Allison CC, Sun L, Wang P, Xu J, Toe JG, Lu HK, Tao Y, Palendira U, Dent AL, Landay AL, Pellegrini M, Comerford I, McColl SR, Schacker TW, Long HM, Estes JD, Busslinger M, Belz GT, Lewin SR, Kallies A, Yu D, CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles, Nat. Immunol 17 (2016) 1187–1196. 10.1038/ni.3543. [DOI] [PubMed] [Google Scholar]
- [130].Adams P, Iserentant G, Servais J-Y, Vandekerckhove L, Vanham G, Seguin-Devaux C, the PhenoCure Study Group, Cytotoxic CD8+ T Cells Expressing CXCR5 Are Detectable in HIV-1 Elite Controllers After Prolonged In Vitro Peptide Stimulation, Front. Immunol 11 (2021). https://www.frontiersin.org/articles/10.3389/fimmu.2020.622343 (accessed May 4, 2023). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [131].Guo A-L, Jiao Y-M, Zhao Q-W, Huang H-H, Deng J-N, Zhang C, Fan X, Xu R-N, Zhang J-Y, Zhen C, Xie Z-M, Qin Y-M, Xu J-Q, Yang Y, Shi M, Huang L, Song J-W, Wang F-S, Implications of the accumulation of CXCR5+ NK cells in lymph nodes of HIV-1 infected patients, EBioMedicine. 75 (2022) 103794. 10.1016/j.ebiom.2021.103794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [132].Rahman SA, Billingsley JM, Sharma AA, Styles TM, Govindaraj S, Shanmugasundaram U, Babu H, Riberio SP, Ali SA, Tharp GK, Ibegbu C, Waggoner SN, Johnson RP, Sekaly R-P, Villinger F, Bosinger SE, Amara RR, Velu V, Lymph node CXCR5+ NK cells associate with control of chronic SHIV infection, JCI Insight. 7 (n.d.) e155601. 10.1172/jci.insight.155601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [133].Caruso HG, Tanaka R, Liang J, Ling X, Sabbagh A, Henry VK, Collier TL, Heimberger AB, Shortened ex vivo manufacturing time of EGFRvIII-specific chimeric antigen receptor (CAR) T cells reduces immune exhaustion and enhances antiglioma therapeutic function, J. Neurooncol 145 (2019) 429–439. 10.1007/s11060-019-03311-y. [DOI] [PubMed] [Google Scholar]
- [134].Zhen A, Kamata M, Rezek V, Rick J, Levin B, Kasparian S, Chen IS, Yang OO, Zack JA, Kitchen SG, HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells, Mol. Ther. J. Am. Soc. Gene Ther 23 (2015) 1358–1367. 10.1038/mt.2015.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [135].Pan H, Wang J, Liang H, Jiang Z, Zhao L, Wang Y, Yang X, Liang Z, Shen X, Lin Q, Liang Y, Yang J, Lu P, Zhu Y, Xiang W, Li M, Wang P, Zhu H, Allogeneic gene-edited HIV-specific CAR-T cells secreting PD-1 blocking scFv enhance anti-HIV activity in vitro, (2022) 2022.01.14.476413 10.1101/2022.01.14.476413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [136].Jiang Z, Liang H, Pan H, Liang Y, Wang H, Yang X, Lu P, Zhang X, Yang J, Zhang D, Shen X, Wang J, Liang Z, Lin Q, Wang Y, Zhao L, Zhong Y, Lu H, Zhu H, HIV-1-Specific CAR-T Cells With Cell-Intrinsic PD-1 Checkpoint Blockade Enhance Anti-HIV Efficacy in vivo, Front. Microbiol 12 (2021). https://www.frontiersin.org/articles/10.3389/fmicb.2021.684016 (accessed March 9, 2023). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [137].Gargett T, Brown MP, Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor T cells specific for tumor antigen GD2, Cytotherapy. 17 (2015) 487–495. 10.1016/j.jcyt.2014.12.002. [DOI] [PubMed] [Google Scholar]
- [138].Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M, CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade, Nat. Med 24 (2018) 731–738. 10.1038/s41591-018-0041-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [139].Cao J-X, Wang H, Gao W-J, You J, Wu L-H, Wang Z-X, The incidence of cytokine release syndrome and neurotoxicity of CD19 chimeric antigen receptor-T cell therapy in the patient with acute lymphoblastic leukemia and lymphoma, Cytotherapy. 22 (2020) 214–226. 10.1016/j.jcyt.2020.01.015. [DOI] [PubMed] [Google Scholar]
- [140].Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA, Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2, Mol. Ther. J. Am. Soc. Gene Ther 18 (2010) 843–851. 10.1038/mt.2010.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [141].Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M, June CH, T cells expressing chimeric antigen receptors can cause anaphylaxis in humans, Cancer Immunol. Res 1 (2013) 26–31. 10.1158/2326-6066.CIR-13-0006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [142].Kennedy VE, Wong C, Huang C-Y, Wolf JL, Martin T, Shah N, Wong SW, Macrophage Activation Syndrome-like Manifestations (MAS-L) Following BCMA-Directed CAR T-Cells in Multiple Myeloma, Blood. 136 (2020) 7–8. 10.1182/blood-2020-142612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [143].Wang Y, Qi K, Cheng H, Cao J, Shi M, Qiao J, Yan Z, Jing G, Pan B, Sang W, Li D, Wang X, Fu C, Zhu F, Zheng J, Li Z, Xu K, Coagulation Disorders after Chimeric Antigen Receptor T Cell Therapy: Analysis of 100 Patients with Relapsed and Refractory Hematologic Malignancies, Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant 26 (2020) 865–875. 10.1016/j.bbmt.2019.11.027. [DOI] [PubMed] [Google Scholar]
- [144].Nagle SJ, Murphree C, Raess PW, Schachter L, Chen A, Hayes-Lattin B, Nemecek E, Maziarz RT, Prolonged hematologic toxicity following treatment with chimeric antigen receptor T cells in patients with hematologic malignancies, Am. J. Hematol 96 (2021) 455–461. 10.1002/ajh.26113. [DOI] [PubMed] [Google Scholar]
- [145].Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I, Choe JH, Walker WJ, McNally KA, Lim WA, Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors, Cell. 167 (2016) 419–432.e16. 10.1016/j.cell.2016.09.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [146].Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, Lim WA, Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits, Cell. 164 (2016) 770–779. 10.1016/j.cell.2016.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [147].Fedorov VD, Themeli M, Sadelain M, PD-1– and CTLA-4–Based Inhibitory Chimeric Antigen Receptors (iCARs) Divert Off-Target Immunotherapy Responses, Sci. Transl. Med 5 (2013) 215ra172. 10.1126/scitranslmed.3006597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [148].Celichowski P, Turi M, Charvátová S, Radhakrishnan D, Feizi N, Chyra Z, Šimíček M, Jelínek T, Bago JR, Hájek R, Hrdinka M, Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility, J. Transl. Med 21 (2023) 197. 10.1186/s12967-023-04041-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [149].Schuurhuis DH, Ioan-Facsinay A, Nagelkerken B, van Schip JJ, Sedlik C, Melief CJM, Verbeek JS, Ossendorp F, Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8+ CTL responses in vivo, J. Immunol. Baltim. Md 1950 168 (2002) 2240–2246. 10.4049/jimmunol.168.5.2240. [DOI] [PubMed] [Google Scholar]
- [150].Nishimura Y, Donau OK, Dias J, Ferrando-Martinez S, Jesteadt E, Sadjadpour R, Gautam R, Buckler-White A, Geleziunas R, Koup RA, Nussenzweig MC, Martin MA, Immunotherapy during the acute SHIV infection of macaques confers long-term suppression of viremia, J. Exp. Med 218 (2021). 10.1084/JEM.20201214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [151].Niessl J, Baxter AE, Mendoza P, Jankovic M, Cohen YZ, Butler AL, Lu CL, Dubé M, Shimeliovich I, Gruell H, Klein F, Caskey M, Nussenzweig MC, Kaufmann DE, Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity, Nat. Med 26 (2020) 222–227. 10.1038/S41591-019-0747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [152].Ndhlovu ZM, Kazer SW, Nkosi T, Ogunshola F, Muema DM, Anmole G, Swann SA, Moodley A, Dong K, Reddy T, Brockman MA, Shalek AK, Ndung’u T, Walker BD, Augmentation of HIV-specific T cell function by immediate treatment of hyperacute HIV-1 infection, Sci. Transl. Med 11 (2019) eaau0528. 10.1126/scitranslmed.aau0528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [153].Borducchi EN, Liu J, Nkolola JP, Cadena AM, Yu WH, Fischinger S, Broge T, Abbink P, Mercado NB, Chandrashekar A, Jetton D, Peter L, McMahan K, Moseley ET, Bekerman E, Hesselgesser J, Li W, Lewis MG, Alter G, Geleziunas R, Barouch DH, Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys, Nature. 563 (2018) 360–364. 10.1038/S41586-018-0600-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [154].Mackness BC, Jaworski JA, Boudanova E, Park A, Valente D, Mauriac C, Pasquier O, Schmidt T, Kabiri M, Kandira A, Radošević K, Qiu H, Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life, MAbs. 11 (2019) 1276–1288. 10.1080/19420862.2019.1633883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [155].Ko SY, Pegu A, Rudicell RS, Yang ZY, Joyce MG, Chen X, Wang K, Bao S, Kraemer TD, Rath T, Zeng M, Schmidt SD, Todd JP, Penzak SR, Saunders KO, Nason MC, Haase AT, Rao SS, Blumberg RS, Mascola JR, Nabel GJ, Enhanced neonatal Fc receptor function improves protection against primate SHIV infection, Nature. 514 (2014) 642–645. 10.1038/NATURE13612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [156].Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC, Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine, N. Engl. J. Med 383 (2020) 2603–2615. 10.1056/NEJMoa2034577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [157].Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C, Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav A, Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T, Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine, N. Engl. J. Med 384 (2021) 403–416. 10.1056/NEJMoa2035389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [158].August A, Attarwala HZ, Himansu S, Kalidindi S, Lu S, Pajon R, Han S, Lecerf J-M, Tomassini JE, Hard M, Ptaszek LM, Crowe JE, Zaks T, A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus, Nat. Med 27 (2021) 2224–2233. 10.1038/s41591-021-01573-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [159].Narayanan E, Falcone S, Elbashir SM, Attarwala H, Hassett K, Seaman MS, Carfi A, Himansu S, Rational Design and In Vivo Characterization of mRNA-Encoded Broadly Neutralizing Antibody Combinations against HIV-1. Antibodies Basel Switz. 11 (2022). 10.3390/antib11040067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [160].Freise NF, Kivel M, Grebe O, Meyer C, Wafaisade B, Peiper M, Zeus T, Schmidt J, Neuwahl J, Jazmati D, Luedde T, Bölke E, Feldt T, Jensen BEO, Bode J, Keitel V, Haussmann J, Tamaskovics B, Budach W, Fischer JC, Knoefel WT, Schneider M, Gerber PA, Pedoto A, Häussinger D, van Griensven M, Rezazadeh A, Flaig Y, Kirchner J, Antoch G, Schelzig H, Matuschek C, Acute cardiac side effects after COVID-19 mRNA vaccination: a case series, Eur. J. Med. Res 27 (2022) 80. 10.1186/s40001-022-00695-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [161].Cirillo N, Doan R, The association between COVID-19 vaccination and Bell’s palsy, Lancet Infect. Dis 22 (2022) 5–6. 10.1016/S1473-3099(21)00467-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [162].Tu TM, Yi SJ, Koh JS, Saffari SE, Hoe RHM, Chen GJ, Chiew HJ, Tham CH, Seet CYH, Yong MH, Yong KP, Hui AC-F, Fan BE, Tan BY-Q, Quek AML, Seet RCS, Yeo LLL, Tan K, Thirugnanam UN, Incidence of Cerebral Venous Thrombosis Following SARS-CoV-2 Infection vs mRNA SARS-CoV-2 Vaccination in Singapore, JAMA Netw. Open 5 (2022) e222940. 10.1001/jamanetworkopen.2022.2940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [163].Weintraub ES, Oster ME, Klein NP, Myocarditis or Pericarditis Following mRNA COVID-19 Vaccination, JAMA Netw. Open 5 (2022) e2218512–e2218512. 10.1001/jamanetworkopen.2022.18512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [164].Jabagi MJ, Botton J, Bertrand M, Weill A, Farrington P, Zureik M, Dray-Spira R, Myocardial Infarction, Stroke, and Pulmonary Embolism After BNT162b2 mRNA COVID-19 Vaccine in People Aged 75 Years or Older, JAMA. 327 (2022) 80–82. 10.1001/jama.2021.21699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [165].Pegu A, O’Connell SE, Schmidt SD, O’Dell S, Talana CA, Lai L, Albert J, Anderson E, Bennett H, Corbett KS, Flach B, Jackson L, Leav B, Ledgerwood JE, Luke CJ, Makowski M, Nason MC, Roberts PC, Roederer M, Rebolledo PA, Rostad CA, Rouphael NG, Shi W, Wang L, Widge AT, Yang ES, The mRNA-1273 Study Group, Beigel JH, Graham BS, Mascola JR, Suthar MS, McDermott AB, Doria-Rose NA, Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants, Science. 373 (2021) 1372–1377. 10.1126/science.abj4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [166].Jacobson BF, Schapkaitz E, Takalani A, Rowji PF, Louw V, Opie J, Bekker LG, Garrett N, Goga A, Reddy T, Zuma NY, Sanne I, Seocharan I, Peter J, Robinson M, Collie S, Khan A, Takuva S, Gray G, Vascular thrombosis after single dose Ad26.COV2.S vaccine in healthcare workers in South Africa: open label, single arm, phase 3B study (Sisonke study), BMJ Med. 2 (2023) e000302. 10.1136/bmjmed-2022-000302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [167].Martinez-Navio JM, Fuchs SP, Pantry SN, Lauer WA, Duggan NN, Keele BF, Rakasz EG, Gao G, Lifson JD, Desrosiers RC, Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression, Immunity. 50 (2019) 567–575.e5. 10.1016/j.immuni.2019.02.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [168].Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS, An DS, Baltimore D, Vectored ImmunoProphylaxis Protects Humanized Mice from Mucosal HIV Transmission, Nat. Med 20 (2014) 296–300. 10.1038/nm.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [169].Priddy FH, Lewis DJM, Gelderblom HC, Hassanin H, Streatfield C, LaBranche C, Hare J, Cox JH, Dally L, Bendel D, Montefiori D, Sayeed E, Ackland J, Gilmour J, Schnepp BC, Wright JF, Johnson P, Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial, Lancet HIV. 6 (2019) e230–e239. 10.1016/S2352-3018(19)30003-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [170].Casazza JP, Cale EM, Narpala S, Yamshchikov GV, Coates EE, Hendel CS, Novik L, Holman LA, Widge AT, Apte P, Gordon I, Gaudinski MR, Conan-Cibotti M, Lin BC, Nason MC, Trofymenko O, Telscher S, Plummer SH, Wycuff D, Adams WC, Pandey JP, McDermott A, Roederer M, Sukienik AN, O’Dell S, Gall JG, Flach B, Terry TL, Choe M, Shi W, Chen X, Kaltovich F, Saunders KO, Stein JA, Doria-Rose NA, Schwartz RM, Balazs AB, Baltimore D, Nabel GJ, Koup RA, Graham BS, Ledgerwood JE, Mascola JR, Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial, Nat. Med 28 (2022) 1022–1030. 10.1038/s41591-022-01762-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [171].Huang D, Tran JT, Olson A, Vollbrecht T, Tenuta M, Guryleva MV, Fuller RP, Schiffner T, Abadejos JR, Couvrette L, Blane TR, Saye K, Li W, Landais E, Gonzalez-Martin A, Schief W, Murrell B, Burton DR, Nemazee D, Voss JE, Vaccine elicitation of HIV broadly neutralizing antibodies from engineered B cells, Nat. Commun 11 (2020) 5850. 10.1038/s41467-020-19650-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [172].Hartweger H, McGuire AT, Horning M, Taylor JJ, Dosenovic P, Yost D, Gazumyan A, Seaman MS, Stamatatos L, Jankovic M, Nussenzweig MC, HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells, J. Exp. Med 216 (2019) 1301–1310. 10.1084/jem.20190287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [173].Nahmad AD, Lazzarotto CR, Zelikson N, Kustin T, Tenuta M, Huang D, Reuveni I, Nataf D, Raviv Y, Horovitz-Fried M, Dotan I, Carmi Y, Rosin-Arbesfeld R, Nemazee D, Voss JE, Stern A, Tsai SQ, Barzel A, In vivo engineered B cells secrete high titers of broadly neutralizing anti-HIV antibodies in mice, Nat. Biotechnol 40 (2022) 1241–1249. 10.1038/s41587-022-01328-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [174].Nahmad AD, Raviv Y, Horovitz-Fried M, Sofer I, Akriv T, Nataf D, Dotan I, Carmi Y, Burstein D, Wine Y, Benhar I, Barzel A, Engineered B cells expressing an anti-HIV antibody enable memory retention, isotype switching and clonal expansion, Nat. Commun 11 (2020) 5851. 10.1038/s41467-020-19649-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [175].Powell AB, Ren Y, Korom M, Saunders D, Hanley PJ, Goldstein H, Nixon DF, Bollard CM, Lynch RM, Jones RB, Cruz CRY, Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV, Mol. Ther. - Methods Clin. Dev 19 (2020) 78–88. 10.1016/j.omtm.2020.08.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [176].Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, Longo NS, McKee K, O’Dell S, Louder MK, Wycuff DL, Feng Y, Nason M, Doria-Rose N, Connors M, Kwong PD, Roederer M, Wyatt RT, Nabel GJ, Mascola JR, Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1, Science. 329 (2010) 856–861. 10.1126/SCIENCE.1187659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [177].Walker LM, Phogat SK, Chan-Hui P-Y, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey SM, Hammond PW, Protocol G Principal Investigators, Kaminsky S, Zamb T, Moyle M, Koff WC, Poignard P, Burton DR, Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target, Science. 326 (2009) 285–289. 10.1126/science.1178746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [178].Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong CH, Phogat S, Wrin T, Simek MD, Koff WC, Wilson IA, Burton DR, Poignard P, Broad neutralization coverage of HIV by multiple highly potent antibodies, Nature. 477 (2011) 466–470. 10.1038/NATURE10373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [179].Morris L, Chen X, Alam M, Tomaras G, Zhang R, Marshall DJ, Chen B, Parks R, Foulger A, Jaeger F, Donathan M, Bilska M, Gray ES, Karim SSA, Kepler TB, Whitesides J, Montefiori D, Moody MA, Liao H-X, Haynes BF, Isolation of a Human Anti-HIV gp41 Membrane Proximal Region Neutralizing Antibody by Antigen-Specific Single B Cell Sorting, PLOS ONE. 6 (2011) e23532. 10.1371/journal.pone.0023532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [180].Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH, Blattner C, Ramirez A, Derking R, van Gils MJ, Liang C-H, Mcbride R, von Bredow B, Shivatare SS, Wu C-Y, Chan-Hui P-Y, Liu Y, Feizi T, Zwick MB, Koff WC, Seaman MS, Swiderek K, Moore JP, Evans D, Paulson JC, Wong C-H, Ward AB, Wilson IA, Sanders RW, Poignard P, Burton DR, Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the pre-fusion conformation of the gp41 protein on cleaved Envelope trimers, Immunity. 40 (2014) 657–668. 10.1016/j.immuni.2014.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [181].Liu M, Yang G, Wiehe K, Nicely NI, Vandergrift NA, Rountree W, Bonsignori M, Alam SM, Gao J, Haynes BF, Kelsoe G, Polyreactivity and Autoreactivity among HIV-1 Antibodies, J. Virol 89 (2014) 784–798. 10.1128/JVI.02378-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [182].Haynes BF, Fleming J, St Clair EW, Katinger H, Stiegler G, Kunert R, Robinson J, Scearce RM, Plonk K, Staats HF, Ortel TL, Liao H-X, Alam SM, Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies, Science. 308 (2005) 1906–1908. 10.1126/science.1111781. [DOI] [PubMed] [Google Scholar]
- [183].Sok D, Laserson U, Laserson J, Liu Y, Vigneault F, Julien J-P, Briney B, Ramos A, Saye KF, Le K, Mahan A, Wang S, Kardar M, Yaari G, Walker LM, Simen BB, St John EP, Chan-Hui P-Y, Swiderek K, Kleinstein SH, Alter G, Seaman MS, Chakraborty AK, Koller D, Wilson IA, Church GM, Burton DR, Poignard P, The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies, PLoS Pathog. 9 (2013) e1003754. 10.1371/journal.ppat.1003754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [184].Kepler TB, Liao H-X, Alam SM, Bhaskarabhatla R, Zhang R, Yandava C, Stewart S, Anasti K, Kelsoe G, Parks R, Lloyd KE, Stolarchuk C, Pritchett J, Solomon E, Friberg E, Morris L, Karim SSA, Cohen MS, Walter E, Moody MA, Wu X, Altae-Tran HR, Georgiev IS, Kwong PD, Boyd SD, Fire AZ, Mascola JR, Haynes BF, Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies, Cell Host Microbe. 16 (2014) 304–313. 10.1016/j.chom.2014.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [185].Vultaggio A, Matucci A, Nencini F, Pratesi S, Parronchi P, Rossi O, Romagnani S, Maggi E, Anti-infliximab IgE and non-IgE antibodies and induction of infusion-related severe anaphylactic reactions, Allergy. 65 (2010) 657–661. 10.1111/j.1398-9995.2009.02280.x. [DOI] [PubMed] [Google Scholar]
- [186].van Schouwenburg PA, Krieckaert CL, Nurmohamed M, Hart M, Rispens T, Aarden L, Wouters D, Wolbink GJ, IgG4 production against adalimumab during long term treatment of RA patients, J. Clin. Immunol 32 (2012) 1000–1006. 10.1007/s10875-012-9705-0. [DOI] [PubMed] [Google Scholar]
- [187].Wang Y-MC, Wang J, Hon YY, Zhou L, Fang L, Ahn HY, Evaluating and Reporting the Immunogenicity Impacts for Biological Products--a Clinical Pharmacology Perspective, AA PS J. 18 (2016) 395–403. 10.1208/sl2248-015-9857-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [188].Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H, Georgiev IS, Pancera M, Zhou T, Incesu R-B, Fu BZ, Gnanapragasam PNP, Oliveira TY, Seaman MS, Kwong PD, Bjorkman PJ, Nussenzweig MC, Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization, Cell. 153 (2013) 126–138. 10.1016/j.cell.2013.03.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [189].Gardner MR, Fetzer I, Kattenhorn LM, Davis-Gardner ME, Zhou AS, Alfant B, Weber JA, Kondur HR, Martinez-Navio JM, Fuchs SP, Desrosiers RC, Gao G, Lifson JD, Farzan M, Anti-drug Antibody Responses Impair Prophylaxis Mediated by AAV-Delivered HIV-1 Broadly Neutralizing Antibodies, Mol. Ther. J. Am. Soc. Gene Ther 27 (2019) 650–660. 10.1016/j.ymthe.2019.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [190].Martinez-Navio JM, Fuchs SP, Pedreño-López S, Rakasz EG, Gao G, Desrosiers RC, Host Anti-antibody Responses Following Adeno-associated Virus–mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys, Mol. Ther 24 (2016) 76–86. 10.1038/mt.2015.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [191].Lee WS, Reynaldi A, Amarasena T, Davenport MP, Parsons MS, Kent SJ, Anti-Drug Antibodies in Pigtailed Macaques Receiving HIV Broadly Neutralising Antibody PGT121, Front. Immunol 12 (2021). https://www.frontiersin.org/articles/10.3389/fimmu.2021.749891 (accessed March 17, 2023). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [192].Song S, Yang L, Trepicchio WL, Wyant T, Understanding the Supersensitive Anti-Drug Antibody Assay: Unexpected High Anti-Drug Antibody Incidence and Its Clinical Relevance, J. Immunol. Res 2016 (2016) 3072586. 10.1155/2016/3072586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [193].Sajadi MM, Dashti A, Tehrani ZR, Tolbert WD, Seaman MS, Ouyang X, Gohain N, Pazgier M, Kim D, Cavet G, Yared J, Redfield RR, Lewis GK, DeVico AL, Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses, Cell. 173 (2018) 1783–1795.e14. 10.1016/J.CELL.2018.03.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [194].Huang J, Kang BH, Ishida E, Zhou T, Griesman T, Sheng Z, Wu F, Doria-Rose NA, Zhang B, McKee K, O’Dell S, Chuang GY, Druz A, Georgiev IS, Schramm CA, Zheng A, Joyce MG, Asokan M, Ransier A, Darko S, Migueles SA, Bailer RT, Louder MK, Alam SM, Parks R, Kelsoe G, Holle TV, Haynes BF, Douek DC, Hirsch V, Seaman MS, Shapiro L, Mascola JR, Kwong PD, Connors M, Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth, Immunity. 45 (2016) 1108–1121. 10.1016/J.IMMUNI.2016.10.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [195].Schommers P, Gruell H, Abernathy ME, Tran M-K, Dingens AS, Gristick HB, Barnes CO, Schoofs T, Schlotz M, Vanshylla K, Kreer C, Weiland D, Holtick U, Scheid C, Valter MM, van Gils MJ, Sanders RW, Vehreschild JJ, Cornely OA, Lehmann C, Fätkenheuer G, Seaman MS, Bloom JD, Bjorkman PJ, Klein F, Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody, Cell. 180 (2020) 471–489.e22. 10.1016/j.cell.2020.01.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [196].Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TYK, Pietzsch J, Fenyo D, Abadir A, Velinzon K, Hurley A, Myung S, Boulad F, Poignard P, Burton DR, Pereyra F, Ho DD, Walker BD, Seaman MS, Bjorkman PJ, Chait BT, Nussenzweig MC, Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding, Science. 333 (2011) 1633–1637. 10.1126/SCIENCE.1207227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [197].Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F, Joyce MG, Ozorowski G, Chuang G-Y, Schramm CA, Wiehe K, Alam SM, Bradley T, Gladden MA, Hwang K-K, Iyengar S, Kumar A, Lu X, Luo K, Mangiapani MC, Parks RJ, Song G, Acharya P, Bailer RT, Cao A, Druz A, Georgiev IS, Kwon YD, Louder MK, Zhang B, Zheng A, Hill BJ, Kong R, Soto C, NISC Comparative Sequencing Program, Mullikin JC, Douek DC, Montefiori DC, Moody MA, Shaw GM, Hahn BH, Kelsoe G, Hraber PT, Korber BT, Boyd SD, Fire AZ, Kepler TB, Shapiro L, Ward AB, Mascola JR, Liao H-X, Kwong PD, Haynes BF, Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody, Cell. 165 (2016)449–463. 10.1016/j.cell.2016.02.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [198].Rudicell RS, Kwon YD, Ko S-Y, Pegu A, Louder MK, Georgiev IS, Wu X, Zhu J, Boyington JC, Chen X, Shi W, Yang Z, Doria-Rose NA, McKee K, O’Dell S, Schmidt SD, Chuang G-Y, Druz A, Soto C, Yang Y, Zhang B, Zhou T, Todd J-P, Lloyd KE, Eudailey J, Roberts KE, Donald BR, Bailer RT, Ledgerwood J, Mullikin JC, Shapiro L, Koup RA, Graham BS, Nason MC, Connors M, Haynes BF, Rao SS, Roederer M, Kwong PD, Mascola JR, Nabel GJ, Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo, J. Virol 88 (2014) 12669–12682. 10.1128/JVI.02213-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [199].Zhou T, Lynch RM, Chen L, Acharya P, Wu X, Doria-Rose NA, Joyce MG, Lingwood D, Soto C, Bailer RT, Ernandes MJ, Kong R, Longo NS, Louder MK, McKee K, O’Dell S, Schmidt SD, Tran L, Yang Z, Druz A, Luongo TS, Moquin S, Srivatsan S, Yang Y, Zhang B, Zheng A, Pancera M, Kirys T, Georgiev IS, Gindin T, Peng H-P, Yang A-S, Mullikin JC, Gray MD, Stamatatos L, Burton DR, Koff WC, Cohen MS, Haynes BF, Casazza JP, Connors M, Corti D, Lanzavecchia A, Sattentau QJ, Weiss RA, West AP, Bjorkman PJ, Scheid JF, Nussenzweig MC, Shapiro L, Mascola JR, Kwong PD, Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors, Cell. 161 (2015) 1280–1292. 10.1016/j.cell.2015.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [200].Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, Chen X, Longo NS, Louder M, McKee K, O’Dell S, Perfetto S, Schmidt SD, Shi W, Wu L, Yang Y, Yang Z-Y, Yang Z, Zhang Z, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Simek M, Burton DR, Koff WC, Doria-Rose NA, Connors M, NISC Comparative Sequencing Program, Mullikin JC, Nabel GJ, Roederer M, Shapiro L, Kwong PD, Mascola JR, Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing, Science. 333 (2011) 1593–1602. 10.1126/science.1207532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [201].Liao H-X, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, Fire AZ, Roskin KM, Schramm CA, Zhang Z, Zhu J, Shapiro L, NISC Comparative Sequencing Program, Mullikin JC, Gnanakaran S, Hraber P, Wiehe K, Kelsoe G, Yang G, Xia S-M, Montefiori DC, Parks R, Lloyd KE, Scearce RM, Soderberg KA, Cohen M, Kamanga G, Louder MK, Tran LM, Chen Y, Cai F, Chen S, Moquin S, Du X, Joyce MG, Srivatsan S, Zhang B, Zheng A, Shaw GM, Hahn BH, Kepler TB, Korber BTM, Kwong PD, Mascola JR, Haynes BF, Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus, Nature. 496 (2013) 469–476. 10.1038/nature12053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [202].Zwick MB, Parren PWHI, Saphire EO, Church S, Wang M, Scott JK, Dawson PE, Wilson IA, Burton DR, Molecular Features of the Broadly Neutralizing Immunoglobulin G1 b12 Required for Recognition of Human Immunodeficiency Virus Type 1 gp120, J. Virol 77 (2003) 5863–5876. 10.1128/JVI.77.10.5863-5876.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [203].Georgiev IS, Doria-Rose NA, Zhou T, Kwon YD, Staupe RP, Moquin S, Chuang G-Y, Louder MK, Schmidt SD, Altae-Tran HR, Bailer RT, McKee K, Nason M, O’Dell S, Ofek G, Pancera M, Srivatsan S, Shapiro L, Connors M, Migueles SA, Morris L, Nishimura Y, Martin MA, Mascola JR, Kwong PD, Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization, Science. 340 (2013) 751–756. 10.1126/science.1233989. [DOI] [PubMed] [Google Scholar]
- [204].Gristick HB, von Boehmer L, West AP Jr, Schamber M, Gazumyan A, Golijanin J, Seaman MS, Fätkenheuer G, Klein F, Nussenzweig MC, Bjorkman PJ, Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site, Nat. Struct. Mol. Biol 23 (2016) 906–915. 10.1038/nsmb.3291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [205].Dr B, Cf B, Ma P, Rm KSC, Ra L, A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals, Proc. Natl. Acad. Sci. U. S. A 88 (1991). 10.1073/pnas.88.22.10134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [206].Li Y, O’Dell S, Wilson R, Wu X, Schmidt SD, Hogerkorp C-M, Louder MK, Longo NS, Poulsen C, Guenaga J, Chakrabarti BK, Doria-Rose N, Roederer M, Connors M, Mascola JR, Wyatt RT, HIV-1 neutralizing antibodies display dual recognition of the primary and coreceptor binding sites and preferential binding to fully cleaved envelope glycoproteins, J. Virol 86 (2012) 11231–11241. 10.1128/JVI.01543-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [207].Freund NT, Horwitz JA, Nogueira L, Sievers SA, Scharf L, Scheid JF, Gazumyan A, Liu C, Velinzon K, Goldenthal A, Sanders RW, Moore JP, Bjorkman PJ, Seaman MS, Walker BD, Klein F, Nussenzweig MC, A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo, PLOS Pathog. 11 (2015) e1005238. 10.1371/journal.ppat.1005238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [208].Mouquet H, Scharf L, Euler Z, Liu Y, Eden C, Scheid JF, Halper-Stromberg A, Gnanapragasam PNP, Spencer DIR, Seaman MS, Schuitemaker H, Feizi T, Nussenzweig MC, Bjorkman PJ, Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies, Proc. Natl. Acad. Sci. U. S. A 109 (2012) E3268–3277. 10.1073/pnas.1217207109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [209].Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, Cesar Lorenzi JC, Halper-Stromberg A, Toth I, Piechocka-Trocha A, Gristick HB, van Gils MJ, Sanders RW, Wang L-X, Seaman MS, Burton DR, Gazumyan A, Walker BD, West AP, Bjorkman PJ, Nussenzweig MC, Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller, Sci. Transl. Med 9 (2017) eaal2144. 10.1126/scitranslmed.aal2144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [210].Bonsignori M, Kreider EF, Fera D, Meyerhoff RR, Bradley T, Wiehe K, Alam SM, Aussedat B, Walkowicz WE, Hwang K-K, Saunders KO, Zhang R, Gladden MA, Monroe A, Kumar A, Xia S-M, Cooper M, Louder MK, McKee K, Bailer RT, Pier BW, Jette CA, Kelsoe G, Williams WB, Morris L, Kappes J, Wagh K, Kamanga G, Cohen MS, Hraber PT, Montefiori DC, Trama A, Liao H-X, Kepler TB, Moody MA, Gao F, Danishefsky SJ, Mascola JR, Shaw GM, Hahn BH, Harrison SC, Korber BT, Haynes BF, Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies, Sci. Transl. Med 9 (2017) eaai7514. 10.1126/scitranslmed.aai7514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [211].Sok D, Pauthner M, Briney B, Lee JH, Saye-Francisco KL, Hsueh J, Ramos A, Le KM, Jones M, Jardine JG, Bastidas R, Sarkar A, Liang C-H, Shivatare SS, Wu C-Y, Schief WR, Wong C-H, Wilson IA, Ward AB, Zhu J, Poignard P, Burton DR, A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans, Immunity. 45 (2016) 31–45. 10.1016/j.immuni.2016.06.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [212].Alam SM, Aussedat B, Vohra Y, Meyerhoff RR, Cale EM, Walkowicz WE, Radakovich NA, Anasti K, Armand L, Parks R, Sutherland L, Scearce R, Joyce MG, Pancera M, Druz A, Georgiev IS, Von Holle T, Eaton A, Fox B, Reed SG, Louder M, Bailer RT, Morris L, Abdool-Karim SS, Cohen M, Liao H-X, Montefiori DC, Park PK, Fernández-Tejada A, Wiehe K, Santra S, Kepler TB, Saunders KO, Sodroski J, Kwong PD, Mascola JR, Bonsignori M, Moody MA, Danishefsky S, Haynes BF, Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide, Sci. Transl. Med 9 (2017) eaai7521. 10.1126/scitranslmed.aai7521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [213].MacLeod DT, Choi NM, Briney B, Garces F, Ver LS, Landais E, Murrell B, Wrin T, Kilembe W, Liang C-H, Ramos A, Bian CB, Wickramasinghe L, Kong L, Eren K, Wu C-Y, Wong C-H, IAVI Protocol C Investigators & The IAVI African HIV Research Network, Kosakovsky Pond SL, Wilson IA, Burton DR, Poignard P, Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch, Immunity. 44 (2016) 1215–1226. 10.1016/j.immuni.2016.04.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [214].Kumar S, Ju B, Shapero B, Lin X, Ren L, Zhang L, Li D, Zhou Z, Feng Y, Sou C, Mann CJ, Hao Y, Sarkar A, Hou J, Nunnally C, Hong K, Wang S, Ge X, Su B, Landais E, Sok D, Zwick MB, He L, Zhu J, Wilson IA, Shao Y, A VH1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite, Sci. Adv 6 (2020) eabb1328. 10.1126/sciadv.abb1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [215].Longo NS, Sutton MS, Shiakolas AR, Guenaga J, Jarosinski MC, Georgiev IS, McKee K, Bailer RT, Louder MK, O’Dell S, Connors M, Wyatt RT, Mascola JR, Doria-Rose NA, Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding, J. Virol 90 (2016) 10574–10586. 10.1128/JVI.01012-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [216].Huber M, Le KM, Doores KJ, Fulton Z, Stanfield RL, Wilson IA, Burton DR, Very Few Substitutions in a Germ Line Antibody Are Required To Initiate Significant Domain Exchange, J. Virol 84 (2010) 10700–10707. 10.1128/JVI.01111-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [217].Sok D, Gils MJV, Pauthner M, Julien JP, Saye-Francisco KL, Hsueh J, Briney B, Lee JH, Le KM, Lee PS, Hua Y, Seaman MS, Moore JP, Ward AB, Wilson IA, Sanders RW, Burton DR, Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex, Proc. Natl. Acad. Sci. U. S. A 111 (2014) 17624–17629. 10.1073/PNAS.1415789111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [218].Doria-Rose NA, Bhiman JN, Roark RS, Schramm CA, Gorman J, Chuang G-Y, Pancera M, Cale EM, Ernandes MJ, Louder MK, Asokan M, Bailer RT, Druz A, Fraschilla IR, Garrett NJ, Jarosinski M, Lynch RM, McKee K, O’Dell S, Pegu A, Schmidt SD, Staupe RP, Sutton MS, Wang K, Wibmer CK, Haynes BF, Abdool-Karim S, Shapiro L, Kwong PD, Moore PL, Morris L, Mascola JR, New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency, J. Virol 90 (2015) 76–91. 10.1128/JVI.01791-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [219].Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN, DeKosky BJ, Ernandes MJ, Georgiev IS, Kim HJ, Pancera M, Staupe RP, Altae-Tran HR, Bailer RT, Crooks ET, Cupo A, Druz A, Garrett NJ, Hoi KH, Kong R, Louder MK, Longo NS, McKee K, Nonyane M, O’Dell S, Roark RS, RudicelI RS, Schmidt SD, Sheward DJ, Soto C, Wibmer CK, Yang Y, Zhang Z, Mullikin JC, Binley JM, Sanders RW, Wilson IA, Moore JP, Ward AB, Georgiou G, Williamson C, Karim SSA, Morris L, Kwong PD, Shapiro L, Mascola JR, Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies, Nature. 509 (2014) 55–62. 10.1038/NATURE13036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [220].Bonsignori M, Hwang K-K, Chen X, Tsao C-Y, Morris L, Gray E, Marshall DJ, Crump JA, Kapiga SH, Sam NE, Sinangil F, Pancera M, Yongping Y, Zhang B, Zhu J, Kwong PD, O’Dell S, Mascola JR, Wu L, Nabel GJ, Phogat S, Seaman MS, Whitesides JF, Moody MA, Kelsoe G, Yang X, Sodroski J, Shaw GM, Montefiori DC, Kepler TB, Tomaras GD, Alam SM, Liao H-X, Haynes BF, Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors, J. Virol 85 (2011) 9998–10009. 10.1128/JVI.05045-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [221].Landais E, Murrell B, Briney B, Murrell S, Rantalainen K, Berndsen ZT, Ramos A, Wickramasinghe L, Smith ML, Eren K, de Val N, Wu M, Cappelletti A, Umotoy J, Lie Y, Wrin T, Algate P, Chan-Hui P-Y, Karita E, IAVI Protocol C Investigators, IAVI African HIV Research Network, Ward AB, Wilson IA, Burton DR, Smith D, Pond SLK, Poignard P, HIV Envelope Glycoform Heterogeneity and Localized Diversity Govern the Initiation and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage, Immunity. 47 (2017) 990–1003.e9. 10.1016/j.immuni.2017.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [222].Cale EM, Gorman J, Radakovich NA, Crooks ET, Osawa K, Tong T, Li J, Nagarajan R, Ozorowski G, Ambrozak DR, Asokan M, Bailer RT, Bennici AK, Chen X, Doria-Rose NA, Druz A, Feng Y, Joyce MG, Louder MK, O’Dell S, Oliver C, Pancera M, Connors M, Hope TJ, Kepler TB, Wyatt RT, Ward AB, Georgiev IS, Kwong PD, Mascola JR, Binley JM, Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop, Immunity. 46 (2017) 777–791.e10. 10.1016/j.immuni.2017.04.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [223].Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, Imamichi H, Bailer RT, Chakrabarti B, Sharma SK, Alam SM, Wang T, Yang Y, Zhang B, Migueles SA, Wyatt R, Haynes BF, Kwong PD, Mascola JR, Connors M, Broad and potent neutralization of HIV-1 by a gp41-specific human antibody, Nature. 491 (2012) 406–412. 10.1038/nature11544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [224].Williams LD, Ofek G, Schätzle S, McDaniel JR, Lu X, Nicely NI, Wu L, Lougheed CS, Bradley T, Louder MK, McKee K, Bailer RT, O’Dell S, Georgiev IS, Seaman MS, Parks RJ, Marshall DJ, Anasti K, Yang G, Nie X, Tumba NL, Wiehe K, Wagh K, Korber B, Kepler TB, Munir Alam S, Morris L, Kamanga G, Cohen MS, Bonsignori M, Xia S-M, Montefiori DC, Kelsoe G, Gao F, Mascola JR, Moody MA, Saunders KO, Liao H-X, Tomaras GD, Georgiou G, Haynes BF, Potent and broad HIV-neutralizing antibodies in memory B cells and plasma, Sci. Immunol 2 (2017) eaal2200. 10.1126/sciimmunol.aal2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [225].Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S, Dehez F, Chipot C, Barbieri S, Minola A, Jarrossay D, Tomaras GD, Shen X, Riva A, Tarkowski M, Schwartz O, Bruel T, Dufloo J, Seaman MS, Montefiori DC, Lanzavecchia A, Corti D, Pantaleo G, Weissenhorn W, Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01, Cell Host Microbe. 26 (2019) 623–637.e8. 10.1016/j.chom.2019.09.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [226].Zwick MB, Komori HK, Stanfield RL, Church S, Wang M, Parren PWHI, Kunert R, Katinger H, Wilson IA, Burton BR, The long third complementarity-determining region of the heavy chain is important in the activity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5, J. Virol 78 (2004) 3155–3161. 10.1128/jvi.78.6.3155-3161.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [227].Zhu Z, Qin HR, Chen W, Zhao Q, Shen X, Schutte R, Wang Y, Ofek G, Streaker E, Prabakaran P, Fouda GG, Liao H-X, Owens J, Louder M, Yang Y, Klaric K-A, Moody MA, Mascola JR, Scott JK, Kwong PD, Montefiori D, Haynes BF, Tomaras GD, Dimitrov DS, Cross-reactive HIV-1-neutralizing human monoclonal antibodies identified from a patient with 2F5-like antibodies, J. Virol 85 (2011) 11401–11408. 10.1128/JVI.05312-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [228].Huang J, Kang BH, Pancera M, Lee JH, Tong T, Feng Y, Imamichi H, Georgiev IS, Chuang G-Y, Druz A, Doria-Rose NA, Laub L, Sliepen K, van Gils MJ, de la Peña AT, Derking R, Klasse P-J, Migueles SA, Bailer RT, Alam M, Pugach P, Haynes BF, Wyatt RT, Sanders RW, Binley JM, Ward AB, Mascola JR, Kwong PD, Connors M, Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface, Nature. 515 (2014) 138–142. 10.1038/nature13601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [229].Kong R, Xu K, Zhou T, Acharya P, Lemmin T, Liu K, Ozorowski G, Soto C, Taft JD, Bailer RT, Cale EM, Chen L, Choi W, Chuang G-Y, Doria-Rose NA, Druz A, Georgiev IS, Gorman J, Huang J, Joyce MG, Louder MK, Ma X, McKee K, O’Dell S, Pancera M, Yang Y, Blanchard SC, Mothes W, Burton DR, Koff WC, Connors M, Ward AB, Kwong PD, Mascola JR, Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody, Science. 352 (2016) 828–833. 10.1126/science.aae0474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [230].van Gils MJ, van den Kerkhof TLGM, Ozorowski G, Cottrell CA, Sok D, Pauthner M, Pallesen J, de Val N, Yasmeen A, deTaeye SW, Schorcht A, Gumbs S, Johanna I, Saye-Francisco K, Liang C-H, Landais E, Nie X, Pritchard LK, Crispin M, Kelsoe G, Wilson IA, Schuitemaker H, Klasse PJ, Moore JP, Burton DR, Ward AB, Sanders RW, An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability, Nat. Microbiol 2 (2016) 16199. 10.1038/nmicrobiol.2016.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [231].Zhou T, Zheng A, Baxa U, Chuang G-Y, Georgiev IS, Kong R, O’Dell S, Shahzad-ul-Hussan S, Shen C-H, Tsybovsky Y, Bailer RT, Gift SK, Louder MK, McKee K, Rawi R, Stevenson CH, Stewart-Jones GBE, Taft JD, Waltari E, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee C-CD, Wu C-Y, Mullikin JC, Bewley CA, Burton DR, Polonis VR, Shapiro L, Wong C-H, Mascola JR, Kwong PD, Wu X, A Neutralizing Antibody Recognizing Primarily N-linked Glycan Targets the Silent Face of the HIV Envelope, Immunity. 48 (2018) 500–513.e6. 10.1016/j.immuni.2018.02.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [232].Schoofs T, Barnes CO, Suh-Toma N, Golijanin J, Schommers P, Gruell H, West AP, Bach F, Lee YE, Nogueira L, Georgiev IS, Bailer RT, Czartoski J, Mascola JR, Seaman MS, McElrath MJ, Doria-Rose NA, Klein F, Nussenzweig MC, Bjorkman PJ, Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope, Immunity. 50 (2019) 1513–1529.e9. 10.1016/j.immuni.2019.04.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [233].Tools CATNAP, (n.d.). https://www.hiv.lanl.gov/components/sequence/HIV/neutralization/ (accessed March 22, 2023). [Google Scholar]
- [234].Neutralizing Antibody Resources, (n.d.). https://www.hiv.lanl.gov/content/immunology/neutralizing_ab_resources.html (accessed March 22, 2023). [Google Scholar]
- [235].Bricault CA, Yusim K, Seaman MS, Yoon H, Theiler J, Giorgi EE, Wagh K, Theiler M, Hraber P, Macke JP, Kreider EF, Learn GH, Hahn BH, Scheid JF, Kovacs JM, Shields JL, Lavine CL, Ghantous F, Rist M, Bayne MG, Neubauer GH, McMahan K, Peng H, Chéneau C, Jones JJ, Zeng J, Ochsenbauer C, Nkolola JP, Stephenson KE, Chen B, Gnanakaran S, Bonsignori M, Williams LD, Haynes BF, Doria-Rose N, Mascola JR, Montefiori DC, Barouch DH, Korber B, HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design, Cell Host Microbe. 25 (2019) 59–72.e8. 10.1016/j.chom.2018.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [236].Wang H, Yuan T, Li T, Li Y, Qian F, Zhu C, Liang S, Hoffmann D, Dittmer U, Sun B, Yang R, Evaluation of susceptibility of HIV-1 CRF01_AE variants to neutralization by a panel of broadly neutralizing antibodies, Arch. Virol 163 (2018) 3303–3315. 10.1007/s00705-018-4011-7. [DOI] [PubMed] [Google Scholar]
- [237].Phase I/II study of monoclonal antibody VRC01 with early antiretroviral therapy to promote clearance of HIV-1 infected cells in infants (IMPAACT 2008). Abstract Archive, (n.d.). https://www.abstract-archive.org/Abstract/Share/80468 (accessed August 17, 2023). [Google Scholar]
- [238].TREATMENT WITH BROADLY NEUTRALIZING ANTIBODIES IN CHILDREN WITH HIV IN BOTSWANA, CROI Conf. (n.d.). https://www.croiconference.org/abstract/treatment-with-broadly-neutralizing-antibodies-in-children-with-hiv-in-botswana/ (accessed March 8, 2023). [Google Scholar]
- [239].Walsh S, Gay C, Karuna S, Hyrien O, Skalland T, Mayer KH, Sobieszczyk M, Andrew P, Karg C, Baumblatt J, Polakowski L, Chege W, Hasan S, Han X, Mcdermott A, Safety and single-dose pharmacokinetics of VRC07-523LS administered via different routes and doses., J. Int. AIDS Soc 24 (2021) 8–10. [Google Scholar]
- [240].A PHASE I DOSE-ESCALATION TRIAL OF HUMAN MONOCLONAL ANTIBODY N6LS IN HEALTHY ADULTS, CROI Conf. (n.d.). https://www.croiconference.org/abstract/a-phase-i-dose-escalation-trial-of-human-monoclonal-antibody-n6ls-in-healthy-adults/ (accessed March 5, 2023). [Google Scholar]
- [241].Leone P, Ferro A, Rolle C-P, Lupo S, McGowan J, Klein M, Cahn P, Benson P, Sanchez M, Bettacchi C, Schneider S, Wannamaker P, Wilches V, Bentley D, Gartland M, Lataillade M, Losos J, VH3810109 (N6LS) Reduces Viremia Across a Range of Doses in ART-Naive Adults Living With HIV: Proof of Concept Achieved in the Phase IIa BANNER (207959, NCT04871113) Study, (n.d.). [Google Scholar]
- [242].PHASE I STUDY OF LONG-ACTING 3BNC117 AND 10-1074 IN VIREMIC ADULTS LIVING WITH HIV, CROI Conf. (n.d.). https://www.croiconference.org/abstract/phase-i-study-of-long-acting-3bnc117-and-10-1074-in-viremic-adults-living-with-hiv/ (accessed March 5, 2023). [Google Scholar]
- [243].First-in-human evaluation of safety and pharmacokinetics of intravenous or subcutaneous infusions of PGT121.141.LS, an anti-V3 HIV-1 broadly neutralizing antibody in healthy volunteers without HIV. Abstract Archive, (n.d.). https://www.abstract-archive.org/Abstract/Share/86224 (accessed August 17, 2023). [Google Scholar]