Abstract
Although empirical and theoretical studies suggest that climate influences the timing of life-history events in animals and plants, correlations between climate and the timing of events such as egg-laying, migration or flowering do not reveal the mechanisms by which natural selection operates on life-history events. We present a general autoregressive model of the timing of life-history events in relation to variation in global climate that, like autoregressive models of population dynamics, allows for a more mechanistic understanding of the roles of climate, resources and competition. We applied the model to data on 50 years of annual dates of first flowering by three species of plants in 26 populations covering 4 degrees of latitude in Norway. In agreement with earlier studies, plants in most populations and all three species bloomed earlier following warmer winters. Moreover, our model revealed that earlier blooming reflected increasing influences of resources and density-dependent population limitation under climatic warming. The insights available from the application of this model to phenological data in other taxa will contribute to our understanding of the roles of endogenous versus exogenous processes in the evolution of the timing of life-history events in a changing climate.
Full Text
The Full Text of this article is available as a PDF (216.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blarer A., Doebeli M., Stearns S. C. Diagnosing senescence: inferring evolutionary causes from phenotypic patterns can be misleading. Proc Biol Sci. 1995 Dec 22;262(1365):305–312. doi: 10.1098/rspb.1995.0210. [DOI] [PubMed] [Google Scholar]
- Bradley N. L., Leopold A. C., Ross J., Huffaker W. Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9701–9704. doi: 10.1073/pnas.96.17.9701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. L., Li S. H., Bhagabati N. Long-term trend toward earlier breeding in an American bird: a response to global warming? Proc Natl Acad Sci U S A. 1999 May 11;96(10):5565–5569. doi: 10.1073/pnas.96.10.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn P0, Winkler DW. Climate change has affected the breeding date of tree swallows throughout North America. Proc Biol Sci. 1999 Dec 22;266(1437):2487–2490. doi: 10.1098/rspb.1999.0950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forchhammer M. C., Asferg T. Invading parasites cause a structural shift in red fox dynamics. Proc Biol Sci. 2000 Apr 22;267(1445):779–786. doi: 10.1098/rspb.2000.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forchhammer M. C., Stenseth N. C., Post E., Langvatn R. Population dynamics of Norwegian red deer: density-dependence and climatic variation. Proc Biol Sci. 1998 Feb 22;265(1393):341–350. doi: 10.1098/rspb.1998.0301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forchhammer MC, Post E. Climatic signatures in ecology. Trends Ecol Evol. 2000 Jul;15(7):286–286. doi: 10.1016/s0169-5347(00)01869-3. [DOI] [PubMed] [Google Scholar]
- Goulden C. E., Hornig L. L. Population oscillations and energy reserves in planktonic cladocera and their consequences to competition. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1716–1720. doi: 10.1073/pnas.77.3.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurrell J. W. Decadal trends in the north atlantic oscillation: regional temperatures and precipitation. Science. 1995 Aug 4;269(5224):676–679. doi: 10.1126/science.269.5224.676. [DOI] [PubMed] [Google Scholar]
- Jacoby GC, D'Arrigo RD, Davaajamts T. Mongolian Tree Rings and 20th-Century Warming. Science. 1996 Aug 9;273(5276):771–773. doi: 10.1126/science.273.5276.771. [DOI] [PubMed] [Google Scholar]
- Kappagoda C. T., Greenwood P. V. Physical training with minimal hospital supervision of patients after coronary artery bypass surgery. Arch Phys Med Rehabil. 1984 Feb;65(2):57–60. [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1999.0770. [DOI] [PMC free article] [Google Scholar]
- Partridge L., Harvey P. H. The ecological context of life history evolution. Science. 1988 Sep 16;241(4872):1449–1455. doi: 10.1126/science.241.4872.1449. [DOI] [PubMed] [Google Scholar]
- Post E., Langvatn R., Forchhammer M. C., Stenseth N. C. Environmental variation shapes sexual dimorphism in red deer. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4467–4471. doi: 10.1073/pnas.96.8.4467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Post E., Stenseth N. C., Langvatn R., Fromentin J. M. Global climate change and phenotypic variation among red deer cohorts. Proc Biol Sci. 1997 Sep 22;264(1386):1317–1324. doi: 10.1098/rspb.1997.0182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stenseth N. C., Bjørnstad O. N., Falck W. Is spacing behaviour coupled with predation causing the microtine density cycle? A synthesis of current process-oriented and pattern-oriented studies. Proc Biol Sci. 1996 Nov 22;263(1376):1423–1435. doi: 10.1098/rspb.1996.0208. [DOI] [PubMed] [Google Scholar]
- Stenseth N. C. Snowshoe hare populations: squeezed from below and above. Science. 1995 Aug 25;269(5227):1061–1062. doi: 10.1126/science.269.5227.1061. [DOI] [PubMed] [Google Scholar]
- Stevenson I. R., Bancroft D. R. Fluctuating trade-offs favour precocial maturity in male Soay sheep. Proc Biol Sci. 1995 Dec 22;262(1365):267–275. doi: 10.1098/rspb.1995.0205. [DOI] [PubMed] [Google Scholar]
