Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Jan 7;268(1462):61–69. doi: 10.1098/rspb.2000.1330

The social evolution of bacterial pathogenesis.

J Smith 1
PMCID: PMC1087601  PMID: 12123299

Abstract

Many of the genes responsible for the virulence of bacterial pathogens are carried by mobile genetic elements that can be transferred horizontally between different bacterial lineages. Horizontal transfer of virulence-factor genes has played a profound role in the evolution of bacterial pathogens, but it is poorly understood why these genes are so often mobile. Here, I present a hypothetical selective mechanism maintaining virulence-factor genes on horizontally transmissible genetic elements. For virulence factors that are secreted extracellularly, selection within hosts may favour mutant 'cheater' strains of the pathogen that do not produce the virulence factor themselves but still benefit from factors produced by other members of the pathogen population within a host. Using simple mathematical models, I show that if this occurs then selection for infectious transmission between hosts favours pathogen strains that can reintroduce functional copies of virulence-factor genes into cheaters via horizontal transfer, forcing them to produce the virulence factor. Horizontal gene transfer is thus a novel mechanism for the evolution of cooperation. I discuss predictions of this hypothesis that can be tested empirically and its implications for the evolution of pathogen virulence.

Full Text

The Full Text of this article is available as a PDF (195.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmer B. M., Tran M., Heffron F. The virulence plasmid of Salmonella typhimurium is self-transmissible. J Bacteriol. 1999 Feb;181(4):1364–1368. doi: 10.1128/jb.181.4.1364-1368.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beltrán P., Delgado G., Navarro A., Trujillo F., Selander R. K., Cravioto A. Genetic diversity and population structure of Vibrio cholerae. J Clin Microbiol. 1999 Mar;37(3):581–590. doi: 10.1128/jcm.37.3.581-590.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender C. L., Malvick D. K., Mitchell R. E. Plasmid-mediated production of the phytotoxin coronatine in Pseudomonas syringae pv. tomato. J Bacteriol. 1989 Feb;171(2):807–812. doi: 10.1128/jb.171.2.807-812.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergstrom C. T., Lipsitch M., Levin B. R. Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics. 2000 Aug;155(4):1505–1519. doi: 10.1093/genetics/155.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Betley M. J., Mekalanos J. J. Staphylococcal enterotoxin A is encoded by phage. Science. 1985 Jul 12;229(4709):185–187. doi: 10.1126/science.3160112. [DOI] [PubMed] [Google Scholar]
  6. Bonhoeffer S., Nowak M. A. Intra-host versus inter-host selection: viral strategies of immune function impairment. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8062–8066. doi: 10.1073/pnas.91.17.8062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bremermann H. J., Thieme H. R. A competitive exclusion principle for pathogen virulence. J Math Biol. 1989;27(2):179–190. doi: 10.1007/BF00276102. [DOI] [PubMed] [Google Scholar]
  8. DuPont H. L., Levine M. M., Hornick R. B., Formal S. B. Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis. 1989 Jun;159(6):1126–1128. doi: 10.1093/infdis/159.6.1126. [DOI] [PubMed] [Google Scholar]
  9. Durrett R, Levin S. Allelopathy in Spatially Distributed Populations. J Theor Biol. 1997 Mar 21;185(2):165–171. doi: 10.1006/jtbi.1996.0292. [DOI] [PubMed] [Google Scholar]
  10. Eberhard W. G. Evolution in bacterial plasmids and levels of selection. Q Rev Biol. 1990 Mar;65(1):3–22. doi: 10.1086/416582. [DOI] [PubMed] [Google Scholar]
  11. Figueroa-Bossi N., Bossi L. Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol. 1999 Jul;33(1):167–176. doi: 10.1046/j.1365-2958.1999.01461.x. [DOI] [PubMed] [Google Scholar]
  12. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  13. Frank S. A. Mutual policing and repression of competition in the evolution of cooperative groups. Nature. 1995 Oct 12;377(6549):520–522. doi: 10.1038/377520a0. [DOI] [PubMed] [Google Scholar]
  14. GROMAN N. B. The relation of bacteriophage to the change of Corynebacterium diphtheriae from avirulence to virulence. Science. 1953 Mar 20;117(3038):297–299. doi: 10.1126/science.117.3038.297. [DOI] [PubMed] [Google Scholar]
  15. González J. M., Jr, Brown B. J., Carlton B. C. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6951–6955. doi: 10.1073/pnas.79.22.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hamilton W. D. The genetical evolution of social behaviour. I. J Theor Biol. 1964 Jul;7(1):1–16. doi: 10.1016/0022-5193(64)90038-4. [DOI] [PubMed] [Google Scholar]
  17. Hammar M., Bian Z., Normark S. Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6562–6566. doi: 10.1073/pnas.93.13.6562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayashi T., Baba T., Matsumoto H., Terawaki Y. Phage-conversion of cytotoxin production in Pseudomonas aeruginosa. Mol Microbiol. 1990 Oct;4(10):1703–1709. doi: 10.1111/j.1365-2958.1990.tb00547.x. [DOI] [PubMed] [Google Scholar]
  19. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  20. Hirano S. S., Charkowski A. O., Collmer A., Willis D. K., Upper C. D. Role of the Hrp type III protein secretion system in growth of Pseudomonas syringae pv. syringae B728a on host plants in the field. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9851–9856. doi: 10.1073/pnas.96.17.9851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnson L. P., Schlievert P. M. Group A streptococcal phage T12 carries the structural gene for pyrogenic exotoxin type A. Mol Gen Genet. 1984;194(1-2):52–56. doi: 10.1007/BF00383496. [DOI] [PubMed] [Google Scholar]
  22. Karaolis D. K., Lan R., Reeves P. R. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J Bacteriol. 1995 Jun;177(11):3191–3198. doi: 10.1128/jb.177.11.3191-3198.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Karaolis D. K., Somara S., Maneval D. R., Jr, Johnson J. A., Kaper J. B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature. 1999 May 27;399(6734):375–379. doi: 10.1038/20715. [DOI] [PubMed] [Google Scholar]
  24. Lazar S., Waldor M. K. ToxR-independent expression of cholera toxin from the replicative form of CTXphi. Infect Immun. 1998 Jan;66(1):394–397. doi: 10.1128/iai.66.1.394-397.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lenski R. E., Bouma J. E. Effects of segregation and selection on instability of plasmid pACYC184 in Escherichia coli B. J Bacteriol. 1987 Nov;169(11):5314–5316. doi: 10.1128/jb.169.11.5314-5316.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lundbäck A. K., Lundbäck A., Nordström K. Effect of R-factor-mediated drug-metabolizing enzymes on survival of Escherichia coli K-12 in presence of ampicillin, chloramphenicol, or streptomycin. Antimicrob Agents Chemother. 1974 May;5(5):492–499. doi: 10.1128/aac.5.5.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mirold S., Rabsch W., Rohde M., Stender S., Tschäpe H., Rüssmann H., Igwe E., Hardt W. D. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9845–9850. doi: 10.1073/pnas.96.17.9845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murray B. E., Evans D. J., Jr, Penãranda M. E., Evans D. G. CFA/I-ST plasmids: comparison of enterotoxigenic Escherichia coli (ETEC) of serogroups O25, O63, O78, and O128 and mobilization from an R factor-containing epidemic ETEC isolate. J Bacteriol. 1983 Jan;153(1):566–570. doi: 10.1128/jb.153.1.566-570.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Neely M. N., Friedman D. I. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol. 1998 Jun;28(6):1255–1267. doi: 10.1046/j.1365-2958.1998.00890.x. [DOI] [PubMed] [Google Scholar]
  30. Nowak M. A., May R. M. Superinfection and the evolution of parasite virulence. Proc Biol Sci. 1994 Jan 22;255(1342):81–89. doi: 10.1098/rspb.1994.0012. [DOI] [PubMed] [Google Scholar]
  31. O'Brien A. D., Newland J. W., Miller S. F., Holmes R. K., Smith H. W., Formal S. B. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science. 1984 Nov 9;226(4675):694–696. doi: 10.1126/science.6387911. [DOI] [PubMed] [Google Scholar]
  32. Ochman H., Lawrence J. G., Groisman E. A. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000 May 18;405(6784):299–304. doi: 10.1038/35012500. [DOI] [PubMed] [Google Scholar]
  33. Riley M. A., Gordon D. M. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 1999 Mar;7(3):129–133. doi: 10.1016/s0966-842x(99)01459-6. [DOI] [PubMed] [Google Scholar]
  34. Simonsen L., Gordon D. M., Stewart F. M., Levin B. R. Estimating the rate of plasmid transfer: an end-point method. J Gen Microbiol. 1990 Nov;136(11):2319–2325. doi: 10.1099/00221287-136-11-2319. [DOI] [PubMed] [Google Scholar]
  35. Van Larebeke N., Genetello C., Schell J., Schilperoort R. A., Hermans A. K., Van Montagu M., Hernalsteens J. P. Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature. 1975 Jun 26;255(5511):742–743. doi: 10.1038/255742a0. [DOI] [PubMed] [Google Scholar]
  36. Waalwijk C., MacLaren D. M., de Graaff J. In vivo function of hemolysin in the nephropathogenicity of Escherichia coli. Infect Immun. 1983 Oct;42(1):245–249. doi: 10.1128/iai.42.1.245-249.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Waldor M. K., Mekalanos J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996 Jun 28;272(5270):1910–1914. doi: 10.1126/science.272.5270.1910. [DOI] [PubMed] [Google Scholar]
  38. Wall D., Wu S. S., Kaiser D. Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J Bacteriol. 1998 Feb;180(3):759–761. doi: 10.1128/jb.180.3.759-761.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weeks C. R., Ferretti J. J. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect Immun. 1984 Nov;46(2):531–536. doi: 10.1128/iai.46.2.531-536.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wilson D. S. A theory of group selection. Proc Natl Acad Sci U S A. 1975 Jan;72(1):143–146. doi: 10.1073/pnas.72.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Winkler K. C., de Waart J., Grootsen C. Lysogenic conversion of staphylococci to loss of beta-toxin. J Gen Microbiol. 1965 Jun;39(3):321–333. doi: 10.1099/00221287-39-3-321. [DOI] [PubMed] [Google Scholar]
  42. Wolf M. K., Crosa J. H. Evidence for the role of a siderophore in promoting Vibrio anguillarum infections. J Gen Microbiol. 1986 Oct;132(10):2949–2952. doi: 10.1099/00221287-132-10-2949. [DOI] [PubMed] [Google Scholar]
  43. van Rhijn P., Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev. 1995 Mar;59(1):124–142. doi: 10.1128/mr.59.1.124-142.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings. Biological sciences / The Royal Society are provided here courtesy of The Royal Society

RESOURCES