Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Jan 29;356(1405):13–19. doi: 10.1098/rstb.2000.0743

Somatic hypermutation of immunoglobulin and non-immunoglobulin genes.

U Storb 1, H M Shen 1, N Michael 1, N Kim 1
PMCID: PMC1087686  PMID: 11205325

Abstract

Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is a highly specific mechanism restricted to B lymphocytes during only a few cell generations. Data presented here suggest that transcription of the target genes is required, but not sufficient for SHM. Presumably, cis-acting elements, such as those present in the Ig enhancers, are required to target a mutator factor (MuF) to Ig and human BCL-6 genes. It is postulated that the MuF travels with the transcribing RNA polymerase and is deposited on the target gene when the polymerase pauses. Point mutations, and rare deletions and insertions, are created by the combined actions of MuF and certain DNA polymerases. A subset of the mutations is corrected during SHM by DNA mismatch repair.

Full Text

The Full Text of this article is available as a PDF (138.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alizadeh A. A., Eisen M. B., Davis R. E., Ma C., Lossos I. S., Rosenwald A., Boldrick J. C., Sabet H., Tran T., Yu X. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000 Feb 3;403(6769):503–511. doi: 10.1038/35000501. [DOI] [PubMed] [Google Scholar]
  2. Ambrosini G., Adida C., Altieri D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997 Aug;3(8):917–921. doi: 10.1038/nm0897-917. [DOI] [PubMed] [Google Scholar]
  3. Azuma T., Motoyama N., Fields L. E., Loh D. Y. Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer. Int Immunol. 1993 Feb;5(2):121–130. doi: 10.1093/intimm/5.2.121. [DOI] [PubMed] [Google Scholar]
  4. Betz A. G., Milstein C., González-Fernández A., Pannell R., Larson T., Neuberger M. S. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994 Apr 22;77(2):239–248. doi: 10.1016/0092-8674(94)90316-6. [DOI] [PubMed] [Google Scholar]
  5. Cascalho M., Wong J., Steinberg C., Wabl M. Mismatch repair co-opted by hypermutation. Science. 1998 Feb 20;279(5354):1207–1210. doi: 10.1126/science.279.5354.1207. [DOI] [PubMed] [Google Scholar]
  6. Frey S., Bertocci B., Delbos F., Quint L., Weill J. C., Reynaud C. A. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Immunity. 1998 Jul;9(1):127–134. doi: 10.1016/s1074-7613(00)80594-4. [DOI] [PubMed] [Google Scholar]
  7. Fukita Y., Jacobs H., Rajewsky K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity. 1998 Jul;9(1):105–114. doi: 10.1016/s1074-7613(00)80592-0. [DOI] [PubMed] [Google Scholar]
  8. Goodman M. F., Tippin B. Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev. 2000 Apr;10(2):162–168. doi: 10.1016/s0959-437x(00)00057-5. [DOI] [PubMed] [Google Scholar]
  9. Jacobs H., Fukita Y., van der Horst G. T., de Boer J., Weeda G., Essers J., de Wind N., Engelward B. P., Samson L., Verbeek S. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice. J Exp Med. 1998 Jun 1;187(11):1735–1743. doi: 10.1084/jem.187.11.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jiricny J. Replication errors: cha(lle)nging the genome. EMBO J. 1998 Nov 16;17(22):6427–6436. doi: 10.1093/emboj/17.22.6427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim N., Bozek G., Lo J. C., Storb U. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J Exp Med. 1999 Jul 5;190(1):21–30. doi: 10.1084/jem.190.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim N., Storb U. The role of DNA repair in somatic hypermutation of immunoglobulin genes. J Exp Med. 1998 Jun 1;187(11):1729–1733. doi: 10.1084/jem.187.11.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klein U., Küppers R., Rajewsky K. Variable region gene analysis of B cell subsets derived from a 4-year-old child: somatically mutated memory B cells accumulate in the peripheral blood already at young age. J Exp Med. 1994 Oct 1;180(4):1383–1393. doi: 10.1084/jem.180.4.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klungland A., Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997 Jun 2;16(11):3341–3348. doi: 10.1093/emboj/16.11.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Papavasiliou F. N., Schatz D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature. 2000 Nov 9;408(6809):216–221. doi: 10.1038/35041599. [DOI] [PubMed] [Google Scholar]
  16. Pasqualucci L., Migliazza A., Fracchiolla N., William C., Neri A., Baldini L., Chaganti R. S., Klein U., Küppers R., Rajewsky K. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11816–11821. doi: 10.1073/pnas.95.20.11816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peng H. Z., Du M. Q., Koulis A., Aiello A., Dogan A., Pan L. X., Isaacson P. G. Nonimmunoglobulin gene hypermutation in germinal center B cells. Blood. 1999 Apr 1;93(7):2167–2172. [PubMed] [Google Scholar]
  18. Peters A., Storb U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity. 1996 Jan;4(1):57–65. doi: 10.1016/s1074-7613(00)80298-8. [DOI] [PubMed] [Google Scholar]
  19. Rabbitts T. H., Forster A., Hamlyn P., Baer R. Effect of somatic mutation within translocated c-myc genes in Burkitt's lymphoma. Nature. 1984 Jun 14;309(5969):592–597. doi: 10.1038/309592a0. [DOI] [PubMed] [Google Scholar]
  20. Rada C., Ehrenstein M. R., Neuberger M. S., Milstein C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity. 1998 Jul;9(1):135–141. doi: 10.1016/s1074-7613(00)80595-6. [DOI] [PubMed] [Google Scholar]
  21. Shapiro G. S., Aviszus K., Ikle D., Wysocki L. J. Predicting regional mutability in antibody V genes based solely on di- and trinucleotide sequence composition. J Immunol. 1999 Jul 1;163(1):259–268. [PubMed] [Google Scholar]
  22. Shen H. M., Michael N., Kim N., Storb U. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int Immunol. 2000 Jul;12(7):1085–1093. doi: 10.1093/intimm/12.7.1085. [DOI] [PubMed] [Google Scholar]
  23. Shen H. M., Peters A., Baron B., Zhu X., Storb U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science. 1998 Jun 12;280(5370):1750–1752. doi: 10.1126/science.280.5370.1750. [DOI] [PubMed] [Google Scholar]
  24. Smith D. S., Creadon G., Jena P. K., Portanova J. P., Kotzin B. L., Wysocki L. J. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J Immunol. 1996 Apr 1;156(7):2642–2652. [PubMed] [Google Scholar]
  25. Storb U., Klotz E. L., Hackett J., Jr, Kage K., Bozek G., Martin T. E. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J Exp Med. 1998 Aug 17;188(4):689–698. doi: 10.1084/jem.188.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Storb U., Peters A., Klotz E., Kim N., Shen H. M., Hackett J., Rogerson B., Martin T. E. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev. 1998 Apr;162:153–160. doi: 10.1111/j.1600-065x.1998.tb01438.x. [DOI] [PubMed] [Google Scholar]
  27. Storb U., Peters A., Klotz E., Kim N., Shen H. M., Kage K., Rogerson B., Martin T. E. Somatic hypermutation of immunoglobulin genes is linked to transcription. Curr Top Microbiol Immunol. 1998;229:11–19. doi: 10.1007/978-3-642-71984-4_2. [DOI] [PubMed] [Google Scholar]
  28. Storb U. The molecular basis of somatic hypermutation of immunoglobulin genes. Curr Opin Immunol. 1996 Apr;8(2):206–214. doi: 10.1016/s0952-7915(96)80059-8. [DOI] [PubMed] [Google Scholar]
  29. Tumas-Brundage K., Manser T. The transcriptional promoter regulates hypermutation of the antibody heavy chain locus. J Exp Med. 1997 Jan 20;185(2):239–250. doi: 10.1084/jem.185.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Winter D. B., Phung Q. H., Umar A., Baker S. M., Tarone R. E., Tanaka K., Liskay R. M., Kunkel T. A., Bohr V. A., Gearhart P. J. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6953–6958. doi: 10.1073/pnas.95.12.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES