Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Jan 29;356(1405):41–46. doi: 10.1098/rstb.2000.0746

Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p.

C W Lawrence 1, V M Maher 1
PMCID: PMC1087689  PMID: 11205328

Abstract

DNA polymerase zeta (Pol zeta) and Rev1p carry out translesion replication in budding yeast, Saccharomyces cerevisiae, and are jointly responsible for almost all base pair substitution and frameshift mutations induced by DNA damage in this organism. In addition, Pol zeta is responsible for the majority of spontaneous mutations in yeast and has been proposed as the enzyme responsible for somatic hypermutability. Pol zeta, a non-processive enzyme that lacks a 3' to 5' exonuclease proofreading activity, is composed of Rev3p, the catalytic subunit, and a second subunit encoded by REV7. In keeping with its role, extension by Pol zeta is relatively tolerant of abnormal DNA structure at the primer terminus and is much more capable of extension from terminal mismatches than yeast DNA polymerase alpha (Pol alpha). Rev1p is a bifunctional enzyme that possesses a deoxycytidyl transferase activity that incorporates deoxycytidyl opposite abasic sites in the template and a second, at present poorly defined, activity that is required for the bypass of a variety of lesions as well as abasic sites. Human homologues of the yeast REV1 and REV3 have been identified and, based on the phenotype of cells producing antisense RNA to one or other of these genes, their products appear also to be employed in translation replication and spontaneous mutagenesis. We suggest that Pol zeta is best regarded as a replication enzyme, albeit one that is used only intermittently, that promotes extension at forks the progress of which is blocked for any reason, whether the presence of an unedited terminal mismatch or unrepaired DNA lesion.

Full Text

The Full Text of this article is available as a PDF (131.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Datta A., Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science. 1995 Jun 16;268(5217):1616–1619. doi: 10.1126/science.7777859. [DOI] [PubMed] [Google Scholar]
  3. Diaz M., Velez J., Singh M., Cerny J., Flajnik M. F. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol. 1999 May;11(5):825–833. doi: 10.1093/intimm/11.5.825. [DOI] [PubMed] [Google Scholar]
  4. Fijalkowska I. J., Dunn R. L., Schaaper R. M. Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity. J Bacteriol. 1997 Dec;179(23):7435–7445. doi: 10.1128/jb.179.23.7435-7445.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garkavtsev I., Grigorian I. A., Ossovskaya V. S., Chernov M. V., Chumakov P. M., Gudkov A. V. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature. 1998 Jan 15;391(6664):295–298. doi: 10.1038/34675. [DOI] [PubMed] [Google Scholar]
  6. Gerlach V. L., Aravind L., Gotway G., Schultz R. A., Koonin E. V., Friedberg E. C. Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11922–11927. doi: 10.1073/pnas.96.21.11922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbs P. E., Borden A., Lawrence C. W. The T-T pyrimidine (6-4) pyrimidinone UV photoproduct is much less mutagenic in yeast than in Escherichia coli. Nucleic Acids Res. 1995 Jun 11;23(11):1919–1922. doi: 10.1093/nar/23.11.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibbs P. E., Lawrence C. W. Novel mutagenic properties of abasic sites in Saccharomyces cerevisiae. J Mol Biol. 1995 Aug 11;251(2):229–236. doi: 10.1006/jmbi.1995.0430. [DOI] [PubMed] [Google Scholar]
  9. Gibbs P. E., McGregor W. G., Maher V. M., Nisson P., Lawrence C. W. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6876–6880. doi: 10.1073/pnas.95.12.6876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibbs P. E., Wang X. D., Li Z., McManus T. P., McGregor W. G., Lawrence C. W., Maher V. M. The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4186–4191. doi: 10.1073/pnas.97.8.4186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glassner B. J., Rasmussen L. J., Najarian M. T., Posnick L. M., Samson L. D. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9997–10002. doi: 10.1073/pnas.95.17.9997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holbeck S. L., Strathern J. N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics. 1997 Nov;147(3):1017–1024. doi: 10.1093/genetics/147.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. E., Prakash S., Prakash L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science. 1999 Feb 12;283(5404):1001–1004. doi: 10.1126/science.283.5404.1001. [DOI] [PubMed] [Google Scholar]
  14. Lawrence C. W., Borden A., Banerjee S. K., LeClerc J. E. Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucleic Acids Res. 1990 Apr 25;18(8):2153–2157. doi: 10.1093/nar/18.8.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lawrence C. W., Christensen R. B. Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. I. rev1 Mutant strains. J Mol Biol. 1978 Jun 15;122(1):1–21. doi: 10.1016/0022-2836(78)90104-3. [DOI] [PubMed] [Google Scholar]
  16. Lawrence C. W., Christensen R. B. Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. III. rev3 mutant strains. Genetics. 1979 Jun;92(2):397–408. doi: 10.1093/genetics/92.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lawrence C. W., Das G., Christensen R. B. REV7, a new gene concerned with UV mutagenesis in yeast. Mol Gen Genet. 1985;200(1):80–85. doi: 10.1007/BF00383316. [DOI] [PubMed] [Google Scholar]
  18. Lawrence C. W., Hinkle D. C. DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv. 1996;28:21–31. [PubMed] [Google Scholar]
  19. Lawrence C. W., Krauss B. R., Christensen R. B. New mutations affecting induced mutagenesis in yeast. Mutat Res. 1985 Jun-Jul;150(1-2):211–216. doi: 10.1016/0027-5107(85)90117-4. [DOI] [PubMed] [Google Scholar]
  20. Lawrence C. W., Nisson P. E., Christensen R. B. UV and chemical mutagenesis in rev7 mutants of yeast. Mol Gen Genet. 1985;200(1):86–91. doi: 10.1007/BF00383317. [DOI] [PubMed] [Google Scholar]
  21. Lawrence C. W., O'Brien T., Bond J. UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast. Mol Gen Genet. 1984;195(3):487–490. doi: 10.1007/BF00341451. [DOI] [PubMed] [Google Scholar]
  22. Lawrence C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays. 1994 Apr;16(4):253–258. doi: 10.1002/bies.950160408. [DOI] [PubMed] [Google Scholar]
  23. Lemontt J. F. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics. 1971 May;68(1):21–33. doi: 10.1093/genetics/68.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lin W., Wu X., Wang Z. A full-length cDNA of hREV3 is predicted to encode DNA polymerase zeta for damage-induced mutagenesis in humans. Mutat Res. 1999 Mar 10;433(2):89–98. doi: 10.1016/s0921-8777(98)00065-2. [DOI] [PubMed] [Google Scholar]
  25. Lin W., Xin H., Zhang Y., Wu X., Yuan F., Wang Z. The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. 1999 Nov 15;27(22):4468–4475. doi: 10.1093/nar/27.22.4468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McDonald J. P., Levine A. S., Woodgate R. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics. 1997 Dec;147(4):1557–1568. doi: 10.1093/genetics/147.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McKee R. H., Lawrence C. W. Genetic analysis of gamma-ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains. Genetics. 1979 Oct;93(2):361–373. doi: 10.1093/genetics/93.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morelli C., Mungall A. J., Negrini M., Barbanti-Brodano G., Croce C. M. Alternative splicing, genomic structure, and fine chromosome localization of REV3L. Cytogenet Cell Genet. 1998;83(1-2):18–20. doi: 10.1159/000015157. [DOI] [PubMed] [Google Scholar]
  29. Morrison A., Christensen R. B., Alley J., Beck A. K., Bernstine E. G., Lemontt J. F., Lawrence C. W. REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J Bacteriol. 1989 Oct;171(10):5659–5667. doi: 10.1128/jb.171.10.5659-5667.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murakumo Y., Roth T., Ishii H., Rasio D., Numata S., Croce C. M., Fishel R. A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem. 2000 Feb 11;275(6):4391–4397. doi: 10.1074/jbc.275.6.4391. [DOI] [PubMed] [Google Scholar]
  31. Nelson J. R., Gibbs P. E., Nowicka A. M., Hinkle D. C., Lawrence C. W. Evidence for a second function for Saccharomyces cerevisiae Rev1p. Mol Microbiol. 2000 Aug;37(3):549–554. doi: 10.1046/j.1365-2958.2000.01997.x. [DOI] [PubMed] [Google Scholar]
  32. Nelson J. R., Lawrence C. W., Hinkle D. C. Deoxycytidyl transferase activity of yeast REV1 protein. Nature. 1996 Aug 22;382(6593):729–731. doi: 10.1038/382729a0. [DOI] [PubMed] [Google Scholar]
  33. Nelson J. R., Lawrence C. W., Hinkle D. C. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science. 1996 Jun 14;272(5268):1646–1649. doi: 10.1126/science.272.5268.1646. [DOI] [PubMed] [Google Scholar]
  34. Nisson P. E., Lawrence C. W. The isolation and characterization of ngm2, a mutation that affects nitrosoguanidine mutagenesis in yeast. Mol Gen Genet. 1986 Jul;204(1):90–97. doi: 10.1007/BF00330193. [DOI] [PubMed] [Google Scholar]
  35. Quah S. K., von Borstel R. C., Hastings P. J. The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 1980 Dec;96(4):819–839. doi: 10.1093/genetics/96.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roche H., Gietz R. D., Kunz B. A. Specificity of the yeast rev3 delta antimutator and REV3 dependency of the mutator resulting from a defect (rad1 delta) in nucleotide excision repair. Genetics. 1994 Jul;137(3):637–646. doi: 10.1093/genetics/137.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Takeshita M., Eisenberg W. Mechanism of mutation on DNA templates containing synthetic abasic sites: study with a double strand vector. Nucleic Acids Res. 1994 May 25;22(10):1897–1902. doi: 10.1093/nar/22.10.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Torpey L. E., Gibbs P. E., Nelson J., Lawrence C. W. Cloning and sequence of REV7, a gene whose function is required for DNA damage-induced mutagenesis in Saccharomyces cerevisiae. Yeast. 1994 Nov;10(11):1503–1509. doi: 10.1002/yea.320101115. [DOI] [PubMed] [Google Scholar]
  39. Woodgate R. A plethora of lesion-replicating DNA polymerases. Genes Dev. 1999 Sep 1;13(17):2191–2195. doi: 10.1101/gad.13.17.2191. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES