Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Jan 29;356(1405):61–66. doi: 10.1098/rstb.2000.0749

The reverse transcriptase model of somatic hypermutation.

E J Steele 1, R V Blanden 1
PMCID: PMC1087692  PMID: 11205332

Abstract

The evidence supporting the reverse transcriptase model of somatic hypermutation is critically reviewed. The model provides a coherent explanation for many apparently unrelated findings. We also show that the somatic hypermutation pattern in the human BCL-6 gene can be interpreted in terms of the reverse transcriptase model and the notion of feedback of somatically mutated sequences to the germline over evolutionary time.

Full Text

The Full Text of this article is available as a PDF (166.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachl J., Olsson C., Chitkara N., Wabl M. The Ig mutator is dependent on the presence, position, and orientation of the large intron enhancer. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2396–2399. doi: 10.1073/pnas.95.5.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernardin F., Collyn-d'Hooghe M., Quief S., Bastard C., Leprince D., Kerckaert J. P. Small deletions occur in highly conserved regions of the LAZ3/BCL6 major translocation cluster in one case of non-Hodgkin's lymphoma without 3q27 translocation. Oncogene. 1997 Feb 20;14(7):849–855. doi: 10.1038/sj.onc.1200903. [DOI] [PubMed] [Google Scholar]
  3. Betz A. G., Milstein C., González-Fernández A., Pannell R., Larson T., Neuberger M. S. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994 Apr 22;77(2):239–248. doi: 10.1016/0092-8674(94)90316-6. [DOI] [PubMed] [Google Scholar]
  4. Blanden R. V., Rothenfluh H. S., Zylstra P., Weiller G. F., Steele E. J. The signature of somatic hypermutation appears to be written into the germline IgV segment repertoire. Immunol Rev. 1998 Apr;162:117–132. doi: 10.1111/j.1600-065x.1998.tb01435.x. [DOI] [PubMed] [Google Scholar]
  5. Blanden R. V., Steele E. J. A unifying hypothesis for the molecular mechanism of somatic mutation and gene conversion in rearranged immunoglobulin variable genes. Immunol Cell Biol. 1998 Jun;76(3):288–293. doi: 10.1046/j.1440-1711.1998.00738.x. [DOI] [PubMed] [Google Scholar]
  6. Both G. W., Taylor L., Pollard J. W., Steele E. J. Distribution of mutations around rearranged heavy-chain antibody variable-region genes. Mol Cell Biol. 1990 Oct;10(10):5187–5196. doi: 10.1128/mcb.10.10.5187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheynier R., Henrichwark S., Wain-Hobson S. Somatic hypermutation of the T cell receptor V beta gene in microdissected splenic white pulps from HIV-1-positive patients. Eur J Immunol. 1998 May;28(5):1604–1610. doi: 10.1002/(SICI)1521-4141(199805)28:05<1604::AID-IMMU1604>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  8. Ehrenstein M. R., Neuberger M. S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 1999 Jun 15;18(12):3484–3490. doi: 10.1093/emboj/18.12.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Esposito G., Texido G., Betz U. A., Gu H., Müller W., Klein U., Rajewsky K. Mice reconstituted with DNA polymerase beta-deficient fetal liver cells are able to mount a T cell-dependent immune response and mutate their Ig genes normally. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1166–1171. doi: 10.1073/pnas.97.3.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frey S., Bertocci B., Delbos F., Quint L., Weill J. C., Reynaud C. A. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Immunity. 1998 Jul;9(1):127–134. doi: 10.1016/s1074-7613(00)80594-4. [DOI] [PubMed] [Google Scholar]
  11. Fukita Y., Jacobs H., Rajewsky K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity. 1998 Jul;9(1):105–114. doi: 10.1016/s1074-7613(00)80592-0. [DOI] [PubMed] [Google Scholar]
  12. Ganzalo J. A., Jia G. Q., Aguirre V., Friend D., Coyle A. J., Jenkins N. A., Lin G. S., Katz H., Lichtman A., Copeland N. Mouse Eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity. 1996 Jan;4(1):1–14. doi: 10.1016/s1074-7613(00)80293-9. [DOI] [PubMed] [Google Scholar]
  13. Gearhart P. J., Bogenhagen D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3439–3443. doi: 10.1073/pnas.80.11.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gerstein R. M., Frankel W. N., Hsieh C. L., Durdik J. M., Rath S., Coffin J. M., Nisonoff A., Selsing E. Isotype switching of an immunoglobulin heavy chain transgene occurs by DNA recombination between different chromosomes. Cell. 1990 Nov 2;63(3):537–548. doi: 10.1016/0092-8674(90)90450-s. [DOI] [PubMed] [Google Scholar]
  15. Giordano R., Magnano A. R., Zaccagnini G., Pittoggi C., Moscufo N., Lorenzini R., Spadafora C. Reverse transcriptase activity in mature spermatozoa of mouse. J Cell Biol. 2000 Mar 20;148(6):1107–1113. doi: 10.1083/jcb.148.6.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Giusti A. M., Manser T. Hypermutation is observed only in antibody H chain V region transgenes that have recombined with endogenous immunoglobulin H DNA: implications for the location of cis-acting elements required for somatic mutation. J Exp Med. 1993 Mar 1;177(3):797–809. doi: 10.1084/jem.177.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hengstschläger M., Williams M., Maizels N. A lambda 1 transgene under the control of a heavy chain promoter and enhancer does not undergo somatic hypermutation. Eur J Immunol. 1994 Jul;24(7):1649–1656. doi: 10.1002/eji.1830240729. [DOI] [PubMed] [Google Scholar]
  18. Kelsoe G. V(D)J hypermutation and DNA mismatch repair: vexed by fixation. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6576–6577. doi: 10.1073/pnas.95.12.6576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klix N., Jolly C. J., Davies S. L., Brüggemann M., Williams G. T., Neuberger M. S. Multiple sequences from downstream of the J kappa cluster can combine to recruit somatic hypermutation to a heterologous, upstream mutation domain. Eur J Immunol. 1998 Jan;28(1):317–326. doi: 10.1002/(SICI)1521-4141(199801)28:01<317::AID-IMMU317>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  20. Lebecque S. G., Gearhart P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene. J Exp Med. 1990 Dec 1;172(6):1717–1727. doi: 10.1084/jem.172.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marshall B., Schulz R., Zhou M., Mellor A. Alternative splicing and hypermutation of a nonproductively rearranged TCR alpha-chain in a T cell hybridoma. J Immunol. 1999 Jan 15;162(2):871–877. [PubMed] [Google Scholar]
  22. Migliazza A., Martinotti S., Chen W., Fusco C., Ye B. H., Knowles D. M., Offit K., Chaganti R. S., Dalla-Favera R. Frequent somatic hypermutation of the 5' noncoding region of the BCL6 gene in B-cell lymphoma. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12520–12524. doi: 10.1073/pnas.92.26.12520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Motoyama N., Okada H., Azuma T. Somatic mutation in constant regions of mouse lambda 1 light chains. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7933–7937. doi: 10.1073/pnas.88.18.7933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Park K., Kim J., Kim H. S., Shin H. S. Isolated human germinal center centroblasts have an intact mismatch repair system. J Immunol. 1998 Dec 1;161(11):6128–6132. [PubMed] [Google Scholar]
  25. Pasqualucci L., Migliazza A., Fracchiolla N., William C., Neri A., Baldini L., Chaganti R. S., Klein U., Küppers R., Rajewsky K. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11816–11821. doi: 10.1073/pnas.95.20.11816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Perlmutter R. M., Crews S. T., Douglas R., Sorensen G., Johnson N., Nivera N., Gearhart P. J., Hood L. The generation of diversity in phosphorylcholine-binding antibodies. Adv Immunol. 1984;35:1–37. doi: 10.1016/s0065-2776(08)60572-6. [DOI] [PubMed] [Google Scholar]
  27. Perry A. C., Wakayama T., Kishikawa H., Kasai T., Okabe M., Toyoda Y., Yanagimachi R. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999 May 14;284(5417):1180–1183. doi: 10.1126/science.284.5417.1180. [DOI] [PubMed] [Google Scholar]
  28. Phung Q. H., Winter D. B., Alrefai R., Gearhart P. J. Hypermutation in Ig V genes from mice deficient in the MLH1 mismatch repair protein. J Immunol. 1999 Mar 15;162(6):3121–3124. [PubMed] [Google Scholar]
  29. Rothenfluh H. S. Hypothesis: a memory lymphocyte-specific soma-to-germline genetic feedback loop. Immunol Cell Biol. 1995 Apr;73(2):174–180. doi: 10.1038/icb.1995.28. [DOI] [PubMed] [Google Scholar]
  30. Rothenfluh H. S., Taylor L., Bothwell A. L., Both G. W., Steele E. J. Somatic hypermutation in 5' flanking regions of heavy chain antibody variable regions. Eur J Immunol. 1993 Sep;23(9):2152–2159. doi: 10.1002/eji.1830230916. [DOI] [PubMed] [Google Scholar]
  31. Selsing E., Xu B., Sigurdardottir D. Gene conversion and homologous recombination in murine B cells. Semin Immunol. 1996 Jun;8(3):151–158. doi: 10.1006/smim.1996.0019. [DOI] [PubMed] [Google Scholar]
  32. Shen H. M., Peters A., Baron B., Zhu X., Storb U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science. 1998 Jun 12;280(5370):1750–1752. doi: 10.1126/science.280.5370.1750. [DOI] [PubMed] [Google Scholar]
  33. Steele E. J., Pollard J. W. Hypothesis: somatic hypermutation by gene conversion via the error prone DNA----RNA----DNA information loop. Mol Immunol. 1987 Jun;24(6):667–673. doi: 10.1016/0161-5890(87)90049-6. [DOI] [PubMed] [Google Scholar]
  34. Steele E. J., Rothenfluh H. S., Blanden R. V. Mechanism of antigen-driven somatic hypermutation of rearranged immunoglobulin V(D)J genes in the mouse. Immunol Cell Biol. 1997 Feb;75(1):82–95. doi: 10.1038/icb.1997.12. [DOI] [PubMed] [Google Scholar]
  35. Steele E. J., Rothenfluh H. S., Both G. W. Defining the nucleic acid substrate for somatic hypermutation. Immunol Cell Biol. 1992 Apr;70(Pt 2):129–144. doi: 10.1038/icb.1992.18. [DOI] [PubMed] [Google Scholar]
  36. Storb U., Peters A., Klotz E., Kim N., Shen H. M., Hackett J., Rogerson B., Martin T. E. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev. 1998 Apr;162:153–160. doi: 10.1111/j.1600-065x.1998.tb01438.x. [DOI] [PubMed] [Google Scholar]
  37. Tumas-Brundage K., Vora K. A., Giusti A. M., Manser T. Characterization of the cis-acting elements required for somatic hypermutation of murine antibody V genes using conventional transgenic and transgene homologous recombination approaches. Semin Immunol. 1996 Jun;8(3):141–150. doi: 10.1006/smim.1996.0018. [DOI] [PubMed] [Google Scholar]
  38. Umar A., Gearhart P. J. Reciprocal homologous recombination in or near antibody VDJ genes. Eur J Immunol. 1995 Aug;25(8):2392–2400. doi: 10.1002/eji.1830250840. [DOI] [PubMed] [Google Scholar]
  39. Umar A., Schweitzer P. A., Levy N. S., Gearhart J. D., Gearhart P. J. Mutation in a reporter gene depends on proximity to and transcription of immunoglobulin variable transgenes. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4902–4906. doi: 10.1073/pnas.88.11.4902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weber J. S., Berry J., Manser T., Claflin J. L. Position of the rearranged V kappa and its 5' flanking sequences determines the location of somatic mutations in the J kappa locus. J Immunol. 1991 May 15;146(10):3652–3655. [PubMed] [Google Scholar]
  41. Wood R. D. DNA repair: knockouts still mutating after first round. Curr Biol. 1998 Oct 22;8(21):R757–R760. doi: 10.1016/s0960-9822(07)00479-4. [DOI] [PubMed] [Google Scholar]
  42. Xu B., Selsing E. Analysis of sequence transfers resembling gene conversion in a mouse antibody transgene. Science. 1994 Sep 9;265(5178):1590–1593. doi: 10.1126/science.8079173. [DOI] [PubMed] [Google Scholar]
  43. Zheng B., Xue W., Kelsoe G. Locus-specific somatic hypermutation in germinal centre T cells. Nature. 1994 Dec 8;372(6506):556–559. doi: 10.1038/372556a0. [DOI] [PubMed] [Google Scholar]
  44. Zoraqi G., Spadafora C. Integration of foreign DNA sequences into mouse sperm genome. DNA Cell Biol. 1997 Mar;16(3):291–300. doi: 10.1089/dna.1997.16.291. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES