Abstract
A novel DNA polymerase (Pol mu) has been recently identified in human cells. The amino-acid sequence of Pol mu is 42% identical to that of terminal deoxynucleotidyl transferase (TdT), a DNA-independent DNA polymerase that contributes to antigen-receptor diversity. In this paper we review the evidence supporting the role of Pol mu in somatic hypermutation of immunoglobulin genes, a T-dependent process that selectively occurs at germinal centres: (i) preferential expression in secondary lymphoid organs; (ii) expression associated to developing germinal centres; and (iii) very low base discrimination during DNA-dependent DNA polymerization by Pol mu, a mutator phenotype enormously accentuated by the presence of activating Mn2+ ions. Moreover, its similarity to TdT, together with extrapolation to the crystal structure of DNA polymerase beta complexed (Pol beta) with DNA, allows us to discuss the structural basis for the unprecedented error proneness of Pol mu, and to predict that Pol mu is structurally well suited to participate also in DNA end-filling steps occurring both during V(D)J recombination and repair of DNA double-strand breaks that are processed by non-homologous end-joining.
Full Text
The Full Text of this article is available as a PDF (4.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aravind L., Koonin E. V. Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res. 1998 Aug 15;26(16):3746–3752. doi: 10.1093/nar/26.16.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berek C., Berger A., Apel M. Maturation of the immune response in germinal centers. Cell. 1991 Dec 20;67(6):1121–1129. doi: 10.1016/0092-8674(91)90289-b. [DOI] [PubMed] [Google Scholar]
- Betz A. G., Milstein C., González-Fernández A., Pannell R., Larson T., Neuberger M. S. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994 Apr 22;77(2):239–248. doi: 10.1016/0092-8674(94)90316-6. [DOI] [PubMed] [Google Scholar]
- Betz A. G., Neuberger M. S., Milstein C. Discriminating intrinsic and antigen-selected mutational hotspots in immunoglobulin V genes. Immunol Today. 1993 Aug;14(8):405–411. doi: 10.1016/0167-5699(93)90144-a. [DOI] [PubMed] [Google Scholar]
- Bork P., Hofmann K., Bucher P., Neuwald A. F., Altschul S. F., Koonin E. V. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 1997 Jan;11(1):68–76. [PubMed] [Google Scholar]
- Brenner S., Milstein C. Origin of antibody variation. Nature. 1966 Jul 16;211(5046):242–243. doi: 10.1038/211242a0. [DOI] [PubMed] [Google Scholar]
- Casellas R., Nussenzweig A., Wuerffel R., Pelanda R., Reichlin A., Suh H., Qin X. F., Besmer E., Kenter A., Rajewsky K. Ku80 is required for immunoglobulin isotype switching. EMBO J. 1998 Apr 15;17(8):2404–2411. doi: 10.1093/emboj/17.8.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai Y. L., Cui J., Shao N., Shyam E., Reddy P., Rao V. N. The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene. 1999 Jan 7;18(1):263–268. doi: 10.1038/sj.onc.1202323. [DOI] [PubMed] [Google Scholar]
- Critchlow S. E., Bowater R. P., Jackson S. P. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol. 1997 Aug 1;7(8):588–598. doi: 10.1016/s0960-9822(06)00258-2. [DOI] [PubMed] [Google Scholar]
- Critchlow S. E., Jackson S. P. DNA end-joining: from yeast to man. Trends Biochem Sci. 1998 Oct;23(10):394–398. doi: 10.1016/s0968-0004(98)01284-5. [DOI] [PubMed] [Google Scholar]
- Delarue M., Poch O., Tordo N., Moras D., Argos P. An attempt to unify the structure of polymerases. Protein Eng. 1990 May;3(6):461–467. doi: 10.1093/protein/3.6.461. [DOI] [PubMed] [Google Scholar]
- Doherty A. J., Serpell L. C., Ponting C. P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 1996 Jul 1;24(13):2488–2497. doi: 10.1093/nar/24.13.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domínguez O., Ruiz J. F., Laín de Lera T., García-Díaz M., González M. A., Kirchhoff T., Martínez-A C., Bernad A., Blanco L. DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 2000 Apr 3;19(7):1731–1742. doi: 10.1093/emboj/19.7.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedberg E. C., Feaver W. J., Gerlach V. L. The many faces of DNA polymerases: strategies for mutagenesis and for mutational avoidance. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5681–5683. doi: 10.1073/pnas.120152397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedberg E. C., Gerlach V. L. Novel DNA polymerases offer clues to the molecular basis of mutagenesis. Cell. 1999 Aug 20;98(4):413–416. doi: 10.1016/s0092-8674(00)81970-4. [DOI] [PubMed] [Google Scholar]
- Gilfillan S., Benoist C., Mathis D. Mice lacking terminal deoxynucleotidyl transferase: adult mice with a fetal antigen receptor repertoire. Immunol Rev. 1995 Dec;148:201–219. doi: 10.1111/j.1600-065x.1995.tb00099.x. [DOI] [PubMed] [Google Scholar]
- Gillert E., Leis T., Repp R., Reichel M., Hösch A., Breitenlohner I., Angermüller S., Borkhardt A., Harbott J., Lampert F. A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells. Oncogene. 1999 Aug 19;18(33):4663–4671. doi: 10.1038/sj.onc.1202842. [DOI] [PubMed] [Google Scholar]
- Han S., Dillon S. R., Zheng B., Shimoda M., Schlissel M. S., Kelsoe G. V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science. 1997 Oct 10;278(5336):301–305. doi: 10.1126/science.278.5336.301. [DOI] [PubMed] [Google Scholar]
- Han S., Zheng B., Schatz D. G., Spanopoulou E., Kelsoe G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science. 1996 Dec 20;274(5295):2094–2097. doi: 10.1126/science.274.5295.2094. [DOI] [PubMed] [Google Scholar]
- Hübscher U., Nasheuer H. P., Syväoja J. E. Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci. 2000 Mar;25(3):143–147. doi: 10.1016/s0968-0004(99)01523-6. [DOI] [PubMed] [Google Scholar]
- Islas L., Fairley C. F., Morgan W. F. DNA synthesis on discontinuous templates by human DNA polymerases: implications for non-homologous DNA recombination. Nucleic Acids Res. 1998 Aug 15;26(16):3729–3738. doi: 10.1093/nar/26.16.3729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito J., Braithwaite D. K. Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res. 1991 Aug 11;19(15):4045–4057. doi: 10.1093/nar/19.15.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacob J., Kelsoe G., Rajewsky K., Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991 Dec 5;354(6352):389–392. doi: 10.1038/354389a0. [DOI] [PubMed] [Google Scholar]
- Jacobo-Molina A., Ding J., Nanni R. G., Clark A. D., Jr, Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6320–6324. doi: 10.1073/pnas.90.13.6320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jäger U., Böcskör S., Le T., Mitterbauer G., Bolz I., Chott A., Kneba M., Mannhalter C., Nadel B. Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood. 2000 Jun 1;95(11):3520–3529. [PubMed] [Google Scholar]
- Kanaar R., Hoeijmakers J. H., van Gent D. C. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol. 1998 Dec;8(12):483–489. doi: 10.1016/s0962-8924(98)01383-x. [DOI] [PubMed] [Google Scholar]
- Karran P. DNA double strand break repair in mammalian cells. Curr Opin Genet Dev. 2000 Apr;10(2):144–150. doi: 10.1016/s0959-437x(00)00069-1. [DOI] [PubMed] [Google Scholar]
- Kenter A., Wuerffel R. Immunoglobulin switch recombination may occur by a DNA end-joining mechanism. Ann N Y Acad Sci. 1999 May 18;870:206–217. doi: 10.1111/j.1749-6632.1999.tb08880.x. [DOI] [PubMed] [Google Scholar]
- Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
- Komori T., Pricop L., Hatakeyama A., Bona C. A., Alt F. W. Repertoires of antigen receptors in Tdt congenitally deficient mice. Int Rev Immunol. 1996;13(4):317–325. doi: 10.3109/08830189609061755. [DOI] [PubMed] [Google Scholar]
- Labhart P. Nonhomologous DNA end joining in cell-free systems. Eur J Biochem. 1999 Nov;265(3):849–861. doi: 10.1046/j.1432-1327.1999.00805.x. [DOI] [PubMed] [Google Scholar]
- Levy S., Mendel E., Kon S., Avnur Z., Levy R. Mutational hot spots in Ig V region genes of human follicular lymphomas. J Exp Med. 1988 Aug 1;168(2):475–489. doi: 10.1084/jem.168.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manis J. P., Gu Y., Lansford R., Sonoda E., Ferrini R., Davidson L., Rajewsky K., Alt F. W. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J Exp Med. 1998 Jun 15;187(12):2081–2089. doi: 10.1084/jem.187.12.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto Y., Kim K. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science. 1995 Aug 4;269(5224):699–702. doi: 10.1126/science.7624801. [DOI] [PubMed] [Google Scholar]
- Matsumoto Y., Kim K., Katz D. S., Feng J. A. Catalytic center of DNA polymerase beta for excision of deoxyribose phosphate groups. Biochemistry. 1998 May 5;37(18):6456–6464. doi: 10.1021/bi9727545. [DOI] [PubMed] [Google Scholar]
- Mickelsen S., Snyder C., Trujillo K., Bogue M., Roth D. B., Meek K. Modulation of terminal deoxynucleotidyltransferase activity by the DNA-dependent protein kinase. J Immunol. 1999 Jul 15;163(2):834–843. [PubMed] [Google Scholar]
- Neuberger M. S., Milstein C. Somatic hypermutation. Curr Opin Immunol. 1995 Apr;7(2):248–254. doi: 10.1016/0952-7915(95)80010-7. [DOI] [PubMed] [Google Scholar]
- Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. 1985 Feb 28-Mar 6Nature. 313(6005):762–766. doi: 10.1038/313762a0. [DOI] [PubMed] [Google Scholar]
- Papavasiliou F., Casellas R., Suh H., Qin X. F., Besmer E., Pelanda R., Nemazee D., Rajewsky K., Nussenzweig M. C. V(D)J recombination in mature B cells: a mechanism for altering antibody responses. Science. 1997 Oct 10;278(5336):298–301. doi: 10.1126/science.278.5336.298. [DOI] [PubMed] [Google Scholar]
- Pelletier H., Sawaya M. R., Kumar A., Wilson S. H., Kraut J. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science. 1994 Jun 24;264(5167):1891–1903. [PubMed] [Google Scholar]
- Pelletier H., Sawaya M. R., Wolfle W., Wilson S. H., Kraut J. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta. Biochemistry. 1996 Oct 1;35(39):12762–12777. doi: 10.1021/bi9529566. [DOI] [PubMed] [Google Scholar]
- Prasad R., Beard W. A., Chyan J. Y., Maciejewski M. W., Mullen G. P., Wilson S. H. Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase beta as revealed by site-directed mutagenesis. DNA binding and 5'-deoxyribose phosphate lyase activities. J Biol Chem. 1998 May 1;273(18):11121–11126. doi: 10.1074/jbc.273.18.11121. [DOI] [PubMed] [Google Scholar]
- Prasad R., Beard W. A., Strauss P. R., Wilson S. H. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J Biol Chem. 1998 Jun 12;273(24):15263–15270. doi: 10.1074/jbc.273.24.15263. [DOI] [PubMed] [Google Scholar]
- Prasad R., Beard W. A., Wilson S. H. Studies of gapped DNA substrate binding by mammalian DNA polymerase beta. Dependence on 5'-phosphate group. J Biol Chem. 1994 Jul 8;269(27):18096–18101. [PubMed] [Google Scholar]
- Prasad R., Widen S. G., Singhal R. K., Watkins J., Prakash L., Wilson S. H. Yeast open reading frame YCR14C encodes a DNA beta-polymerase-like enzyme. Nucleic Acids Res. 1993 Nov 25;21(23):5301–5307. doi: 10.1093/nar/21.23.5301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. L., Birbeck M. S., Wallis V. J., Forrester J. A., Davies A. J. Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature. 1980 Mar 27;284(5754):364–366. doi: 10.1038/284364a0. [DOI] [PubMed] [Google Scholar]
- Sale J. E., Neuberger M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity. 1998 Dec;9(6):859–869. doi: 10.1016/s1074-7613(00)80651-2. [DOI] [PubMed] [Google Scholar]
- Sawaya M. R., Pelletier H., Kumar A., Wilson S. H., Kraut J. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24;264(5167):1930–1935. doi: 10.1126/science.7516581. [DOI] [PubMed] [Google Scholar]
- Sawaya M. R., Prasad R., Wilson S. H., Kraut J., Pelletier H. Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry. 1997 Sep 16;36(37):11205–11215. doi: 10.1021/bi9703812. [DOI] [PubMed] [Google Scholar]
- Smith D. S., Creadon G., Jena P. K., Portanova J. P., Kotzin B. L., Wysocki L. J. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J Immunol. 1996 Apr 1;156(7):2642–2652. [PubMed] [Google Scholar]
- Soulier J., Lowndes N. F. The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9-Rad9 interaction after DNA damage. Curr Biol. 1999 May 20;9(10):551–554. doi: 10.1016/s0960-9822(99)80242-5. [DOI] [PubMed] [Google Scholar]
- Sousa R., Chung Y. J., Rose J. P., Wang B. C. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature. 1993 Aug 12;364(6438):593–599. doi: 10.1038/364593a0. [DOI] [PubMed] [Google Scholar]
- Storb U., Peters A., Klotz E., Kim N., Shen H. M., Hackett J., Rogerson B., Martin T. E. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev. 1998 Apr;162:153–160. doi: 10.1111/j.1600-065x.1998.tb01438.x. [DOI] [PubMed] [Google Scholar]
- Taylor R. M., Wickstead B., Cronin S., Caldecott K. W. Role of a BRCT domain in the interaction of DNA ligase III-alpha with the DNA repair protein XRCC1. Curr Biol. 1998 Jul 16;8(15):877–880. doi: 10.1016/s0960-9822(07)00350-8. [DOI] [PubMed] [Google Scholar]
- Thornton K., Forstner M., Shen M. R., West M. G., Rupp B., Thelen M. P. Purification, characterization, and crystallization of the distal BRCT domain of the human XRCC1 DNA repair protein. Protein Expr Purif. 1999 Jul;16(2):236–242. doi: 10.1006/prep.1999.1070. [DOI] [PubMed] [Google Scholar]
- Torri A. F., Englund P. T. A DNA polymerase beta in the mitochondrion of the trypanosomatid Crithidia fasciculata. J Biol Chem. 1995 Feb 24;270(8):3495–3497. doi: 10.1074/jbc.270.8.3495. [DOI] [PubMed] [Google Scholar]
- Wilson T. E., Lieber M. R. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J Biol Chem. 1999 Aug 13;274(33):23599–23609. doi: 10.1074/jbc.274.33.23599. [DOI] [PubMed] [Google Scholar]
- Zelazowski P., Max E. E., Kehry M. R., Snapper C. M. Regulation of Ku expression in normal murine B cells by stimuli that promote switch recombination. J Immunol. 1997 Sep 15;159(6):2559–2562. [PubMed] [Google Scholar]
- Zhang X., Moréra S., Bates P. A., Whitehead P. C., Coffer A. I., Hainbucher K., Nash R. A., Sternberg M. J., Lindahl T., Freemont P. S. Structure of an XRCC1 BRCT domain: a new protein-protein interaction module. EMBO J. 1998 Nov 2;17(21):6404–6411. doi: 10.1093/emboj/17.21.6404. [DOI] [PMC free article] [PubMed] [Google Scholar]
