Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Jan 29;356(1405):119–125. doi: 10.1098/rstb.2000.0756

Indirect and direct evidence for DNA double-strand breaks in hypermutating immunoglobulin genes.

H Jacobs 1, K Rajewsky 1, Y Fukita 1, L Bross 1
PMCID: PMC1087699  PMID: 11205324

Abstract

The generation of a diverse antigen receptor repertoire is fundamental for the functionality of the adaptive immune system. While the V(D)J recombination process that generates the primary antigen receptor repertoire is understood in great detail, it is still unclear by which mechanism immunoglobulin (Ig) genes are further diversified by somatic hypermutation. Using mouse strains that carry a non-functional, pre-defined V(H)D(H)J(H) gene segment in their IgH locus we demonstrate DNA double-strand breaks (DSBs) in and around V(H)D(H)J(H) in B cells undergoing somatic hypermutation. The generation of these DSBs depends on transcriptional activity, and their distribution along the V(H)D(H)J(H) segment parallels that of point mutations in the hypermutation domain. Furthermore, similar to hot spots of somatic hypermutation, 50-60% of all DSBs occur preferentially at RGYW motifs. DSBs may transiently dissociate the Ig promoter from the intronic enhancer to block further transcription and to initiate an error-prone non-homologous DSB repair pathway. In accord with this model large deletions are frequently produced, along with point mutations, in a V(H)D(H)J(H) segment inserted together with its promoter into the IgH locus in inverted orientation. Our data suggest that DSBs are reaction intermediates of the mechanism underlying somatic hypermutation.

Full Text

The Full Text of this article is available as a PDF (486.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D., Cumano A., Dildrop R., Kocks C., Rajewsky K., Rajewsky N., Roes J., Sablitzky F., Siekevitz M. Timing, genetic requirements and functional consequences of somatic hypermutation during B-cell development. Immunol Rev. 1987 Apr;96:5–22. doi: 10.1111/j.1600-065x.1987.tb00506.x. [DOI] [PubMed] [Google Scholar]
  2. Berek C., Berger A., Apel M. Maturation of the immune response in germinal centers. Cell. 1991 Dec 20;67(6):1121–1129. doi: 10.1016/0092-8674(91)90289-b. [DOI] [PubMed] [Google Scholar]
  3. Betz A. G., Milstein C., González-Fernández A., Pannell R., Larson T., Neuberger M. S. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994 Apr 22;77(2):239–248. doi: 10.1016/0092-8674(94)90316-6. [DOI] [PubMed] [Google Scholar]
  4. Betz A. G., Rada C., Pannell R., Milstein C., Neuberger M. S. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2385–2388. doi: 10.1073/pnas.90.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devon R. S., Porteous D. J., Brookes A. J. Splinkerettes--improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res. 1995 May 11;23(9):1644–1645. doi: 10.1093/nar/23.9.1644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dörner T., Foster S. J., Farner N. L., Lipsky P. E. Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands. Eur J Immunol. 1998 Oct;28(10):3384–3396. doi: 10.1002/(SICI)1521-4141(199810)28:10<3384::AID-IMMU3384>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  7. Fukita Y., Jacobs H., Rajewsky K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity. 1998 Jul;9(1):105–114. doi: 10.1016/s1074-7613(00)80592-0. [DOI] [PubMed] [Google Scholar]
  8. Goossens T., Klein U., Küppers R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2463–2468. doi: 10.1073/pnas.95.5.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacob J., Kelsoe G., Rajewsky K., Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991 Dec 5;354(6352):389–392. doi: 10.1038/354389a0. [DOI] [PubMed] [Google Scholar]
  10. Jacobs H., Puglisi A., Rajewsky K., Fukita Y. Tuning somatic hypermutation by transcription. Curr Top Microbiol Immunol. 1999;246:149–159. doi: 10.1007/978-3-642-60162-0_19. [DOI] [PubMed] [Google Scholar]
  11. Kabat E. A., Wu T. T. Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol. 1991 Sep 1;147(5):1709–1719. [PubMed] [Google Scholar]
  12. Lacy E., Roberts S., Evans E. P., Burtenshaw M. D., Costantini F. D. A foreign beta-globin gene in transgenic mice: integration at abnormal chromosomal positions and expression in inappropriate tissues. Cell. 1983 Sep;34(2):343–358. doi: 10.1016/0092-8674(83)90369-0. [DOI] [PubMed] [Google Scholar]
  13. Lam K. P., Kühn R., Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997 Sep 19;90(6):1073–1083. doi: 10.1016/s0092-8674(00)80373-6. [DOI] [PubMed] [Google Scholar]
  14. Lebecque S. G., Gearhart P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene. J Exp Med. 1990 Dec 1;172(6):1717–1727. doi: 10.1084/jem.172.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacLennan I. C. Germinal centers. Annu Rev Immunol. 1994;12:117–139. doi: 10.1146/annurev.iy.12.040194.001001. [DOI] [PubMed] [Google Scholar]
  16. McKean D., Huppi K., Bell M., Staudt L., Gerhard W., Weigert M. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc Natl Acad Sci U S A. 1984 May;81(10):3180–3184. doi: 10.1073/pnas.81.10.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Milstein C., Neuberger M. S., Staden R. Both DNA strands of antibody genes are hypermutation targets. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8791–8794. doi: 10.1073/pnas.95.15.8791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peters A., Storb U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity. 1996 Jan;4(1):57–65. doi: 10.1016/s1074-7613(00)80298-8. [DOI] [PubMed] [Google Scholar]
  19. Rogozin I. B., Kolchanov N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta. 1992 Nov 15;1171(1):11–18. doi: 10.1016/0167-4781(92)90134-l. [DOI] [PubMed] [Google Scholar]
  20. Rothenfluh H. S., Taylor L., Bothwell A. L., Both G. W., Steele E. J. Somatic hypermutation in 5' flanking regions of heavy chain antibody variable regions. Eur J Immunol. 1993 Sep;23(9):2152–2159. doi: 10.1002/eji.1830230916. [DOI] [PubMed] [Google Scholar]
  21. Sale J. E., Neuberger M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity. 1998 Dec;9(6):859–869. doi: 10.1016/s1074-7613(00)80651-2. [DOI] [PubMed] [Google Scholar]
  22. Schittek B., Rajewsky K. Natural occurrence and origin of somatically mutated memory B cells in mice. J Exp Med. 1992 Aug 1;176(2):427–438. doi: 10.1084/jem.176.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tumas-Brundage K., Manser T. The transcriptional promoter regulates hypermutation of the antibody heavy chain locus. J Exp Med. 1997 Jan 20;185(2):239–250. doi: 10.1084/jem.185.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weber J. S., Berry J., Manser T., Claflin J. L. Position of the rearranged V kappa and its 5' flanking sequences determines the location of somatic mutations in the J kappa locus. J Immunol. 1991 May 15;146(10):3652–3655. [PubMed] [Google Scholar]
  25. Weiss U., Rajewsky K. The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J Exp Med. 1990 Dec 1;172(6):1681–1689. doi: 10.1084/jem.172.6.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yélamos J., Klix N., Goyenechea B., Lozano F., Chui Y. L., González Fernández A., Pannell R., Neuberger M. S., Milstein C. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature. 1995 Jul 20;376(6537):225–229. doi: 10.1038/376225a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES