Abstract
目的
探讨过表达LncRNA MEG3对肝癌细胞HepG2和LM3增殖、迁移和顺铂化疗敏感性的影响及机制。
方法
生物信息学在线网站分析MEG3在健康人群与肝细胞癌(HCC)患者的表达情况;将HepG2和LM3细胞各自分成2组,NC组:转染pcDNA3.1(+)空载体的细胞;MEG3-OE组:转染pcDNA3.1(+)-MEG3质粒的细胞。另外在检测活性氧(ROS)和丙二醛(MDA)实验中,将上述两组细胞分别各自给予顺铂(DDP)或铁死亡抑制剂Fer-1处理,实时荧光定量聚合酶链反应(qRT-PCR)检测细胞中MEG3的表达;CCK8和划痕实验检测肝癌细胞的增殖和迁移;另外采用CCK8实验检测DDP对肝癌细胞的抑制率;活性氧荧光探针(DCFH-DA)检测肝癌细胞中ROS的表达,MDA试剂盒检测肝癌细胞中MDA的浓度;Western blotting实验检测铁死亡相关蛋白谷胱甘肽过氧化物酶4(GPX4)和铁蛋白重链1(FTH1)的蛋白表达水平。
结果
MEG3在肝癌细胞中的表达显著低于LO2细胞,与生物信息学分析结果一致(P<0.05);与阴性对照组相比,MEG3-OE组肝癌细胞增殖迁移能力降低(P<0.05)、DDP的抑制率增高(P<0.05)、ROS水平升高、MDA表达水平升高(P<0.05);MEG3-OE组肝癌细胞GPX4和FTH1蛋白表达均显著降低。
结论
肝癌细胞中LncRNA-MEG3表达降低,过表达MEG3可抑制肝癌细胞增殖与迁移,增强DDP的化疗敏感性,其机制与促进肝癌细胞铁死亡有关。
Keywords: 肝细胞癌, LncRNA MEG3, 顺铂, 化疗敏感性, 铁死亡
Abstract
Objective
To investigate the effect of overexpression of LncRNA MEG3 on proliferation, migration and cisplatin sensitivity of hepatoma cells HepG2 and LM3 and explore the underlying and mechanism.
Methods
The expression of MEG3 in healthy individuals and patients with hepatocellular carcinoma (HCC) was analyzed by online bioinformatics analysis, and Real-time fluorescence quantitative PCR (qRT-PCR) was used to detect MEG3 expression in different HCC cell lines. A MEG3-overexpresing plasmid was transfected in HepG2 and LM3 cells, and the changes in cell proliferation and migration were examined using CCK8 assay and scratch assay. CCK8 assay was used to determine the inhibitory rate of cisplatin on the transfected cells. A reactive oxygen species (ROS) fluorescence probe (DCFH-DA) and malondialdehyde (MDA) kit were used to assess the changes in ROS production and MDA level in the cells. Western blotting was performed to detect the expression levels of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1).
Results
The expression of MEG3 was significantly lower in HCC cells than in LO2 cells, which was consistent with the results of bioinformatic analysis (P < 0.05). Overexpression of MEG3 in the HCC cell lines significantly suppressed cell proliferation and migration (P < 0.05), increased the cell inhibition rate of cisplatin (P < 0.05), enhanced cellular ROS production and increased MDA levels in the cells (P < 0.05). MEG3 overexpression significantly decreased the expressions of GPX4 and FTH1 in the HCC cell lines.
Conclusion
The expression of MEG3 is decreased in HCC cells, and its overexpression inhibits proliferation and migration and enhances cisplatin sensitivity of HCC cells by promoting ferroptosis of the cells.
Keywords: hepatocellular carcinoma, LncRNA MEG3, cisplatin, sensitivity to chemotherapy, ferroptosis
肝细胞癌(HCC)是临床上常见的消化系统恶性肿瘤之一,脂肪肝、病毒感染、纤维化等多种致病因素可诱导HCC的发生[1-3]。对于晚期HCC患者,化疗是主要的治疗手段,但HCC对常见的化疗药物如阿霉素、顺铂(DDP)等耐药率很高[4, 5],在很大程度上阻碍了治疗效果和生存时间的改善,增强肝癌细胞对化疗药物的敏感性对提高晚期HCC患者生存时间、改善患者生存质量具有重要意义。肝癌细胞基因表达谱紊乱,多种癌基因上调和抑癌基因下调等基因表达失调与HCC化疗耐药密切相关,调控这些基因表达水平有助于逆转HCC化疗耐药现象[6, 7]。长链非编码RNA(lncRNAs)是参与多种生理病理过程的关键调控因子,在肿瘤发生中起着重要作用。母系表达基因3(MEG3)定位于14q32.3,作为一种lncRNA广泛表达于正常组织中,在肿瘤组织中表达较低,过表达MEG3可抑制胃癌细胞、前列腺癌细胞及胶质瘤细胞的增殖迁移能力[8-10],提示MEG3是一种具有抑癌功能的lncRNA,研究表明MEG3在HCC中表达降低且具有抑癌功能[11-13],但有关MEG3与HCC化疗耐药的相关研究较少,MEG3基因在DDP对HCC化疗敏感性的研究亦未见报道。
铁死亡是近年发现的一种铁依赖性的新型细胞程序性死亡方式,多种化疗药物或抑癌基因发挥抑制肿瘤细胞生长的机制是诱导肿瘤细胞凋亡或铁死亡,诱导肿瘤细胞铁死亡有助于逆转化疗耐药现象[14-16]。有关MEG3与铁死亡的相关研究非常少见,Chen等[17]报道在氧糖剥夺的高血糖大鼠模型中发现MEG3可通过调控p53/GPX4信号通路从而诱导大鼠脑血管内皮细胞发生铁死亡。此外,MEG3在支气管肺发育不良疾病中可参与调控铁死亡的发生[18, 19],这些研究报道提示MEG3是调控细胞铁死亡的一个潜在因素。因此本研究拟探讨MEG3在肝癌细胞中的作用,探讨MEG3通过调控铁死亡影响肝癌细胞对DDP化疗敏感性及分子机制,为阐明HCC的发生发展及提高HCC治疗效果提供实验依据。
1. 材料和方法
1.1. 材料
人正常肝细胞LO2、人肝癌细胞HepG2和LM3细胞(中国科学院细胞库),胎牛血清(FBS, Gibco)、DMEM高糖培养基(Hyclone)、RPMI 1640培养基(Hyclone)、胰蛋白酶(Gibco);细胞总RNA提取试剂(天根生物有限公司),qPCR Mix和逆转录试剂盒(Invitrogen),CCK8试剂盒(Invitrogen)、BCA试剂盒(Thermo)、转染试剂Lipofectamine2000(碧云天生物技术研究所),活性氧(ROS)检测试剂(长沙雅美生物公司)、丙二醛检测试剂盒(MDA,南京建成生物公司),铁死亡抑制剂Fer-1(TargetMol),兔抗谷胱甘肽过氧化物酶4(GPX4)、兔抗铁蛋白重链1(FTH1)、兔抗GAPDH抗体和辣根过氧化物酶(HRP)标记的羊抗兔IgG(华美生物公司),DDP(GlpBio),本实验室前期构建的pcDNA3.1(+)-MEG3质粒(记为MEG3-OE)、pcDNA3.1(+)-NC质粒(记为NC)。
1.2. 方法
1.2.1. 细胞培养
正常肝细胞LO2细胞在含有10% FBS的RPMI 1640培养基中,人肝癌HepG2、LM3细胞在含有10% FBS的DMEM高糖培养基中,置于37 ℃,5% CO2培养箱中培养。1次/2 d换液,当细胞生长融合度达到90%以上时,用0.25%的胰蛋白酶消化后传代,取对数生长期的细胞用于后续实验。
1.2.2. 生物信息学分析
MEG3的表达采用生物信息学在线网站(http://gepia2.cancer-pku.cn)分析MEG3在HCC患者与健康对照人群之间的表达情况。
1.2.3. 质粒转染
取生长至对数期的人肝癌HepG2、LM3细胞,以2×105/孔的浓度接种于6孔细胞培养板中,细胞生长密度达到70%以上时,按照脂质体Lipofectamine2000转染试剂盒的操作说明书步骤,分别将NC、MEG3-OE质粒及Lipofectamine2000在无血清的DMEM培养基中溶解,每孔加入2 μg目的质粒和6 μL的Lipofectamine2000,分别溶解于100 μL的无血清DMEM培养基中,两者混合后在室温下静置15 min,缓慢加入细胞培养基中,8~10 h后更换新鲜的含有10% FBS的DMEM培养基。
1.2.4. qRT-PCR检测LO2、HepG2及LM3细胞中MEG3 mRNA的表达
按照RNA试剂盒操作说明提取细胞中的总RNA,采用逆转录试剂盒将总RNA反转录为cDNA。设计目的基因MEG3的qRT-PCR定量引物序列,上游引物5'-atagcgccccct attcatgc-3',下游引物5'-gggagcagctatggatcacc-3';内参β-actin上游引物5'-aggg gccggactcgtcatact-3',下游引物5'-ggcggcaccaccatgtacc ct-3';按照下列反应条件进行PCR扩增:95 ℃预变性2 min,95 ℃ 30 s,60 ℃ 30 s,72 ℃ 15 s,35个循环,72 ℃ 5 min终止反应。根据2-ΔΔCt方法分析计算MEG3的相对表达水平。
1.2.5. CCK8实验检测细胞增殖
取瞬时转染0、24、48、72 h的细胞,调整细胞浓度为6000/孔,接种于96孔细胞培养板中,每组细胞设置4个复孔,置于37 ℃,5% CO2培养箱中培养,48 h后,每孔加入20 μL的CCK-8试剂,置入37 ℃,5% CO2培养箱中培养4 h,酶标仪测定吸光度A450 nm值,每组复孔取平均值。
1.2.6. 细胞迁移实验
将NC组、MEG3-OE组HepG2和LM3细胞均匀铺在6孔板中,37 ℃,5% CO2培养箱内培养24 h,形成密度达100%的单层细胞时,用直径0.5 mm的无菌划痕棒从6孔板中间划出一片无细胞区域,用无血清DMEM培养基清洗并更换为无血清的DMEM培养基,分别于0 h和24 h在显微镜下记录无细胞区域的宽度。取样拍照,Image J软件测量划痕间的距离,并计算迁移率,细胞迁移率=[(0 h划痕宽度-24 h划痕宽度)/0 h划痕宽度]×100%。
1.2.7. DDP处理
将肝癌细胞分为NC组、MEG3-OE组,细胞以4000/孔接种至96孔板,在培养箱内培养24 h后,分别采用不同浓度(0.5、1.0、2.0、4.0、8.0 μg/mL)的DDP处理48 h,每组设置3个复孔。按照CCK8实验操作步骤,用酶标仪测定各组细胞在450 nm波长下的吸光度A450 nm。根据下列公式:抑制率=(1-药物组A450 nm/对照组A450nm)×100%,计算抑制率。
1.2.8. ROS测定
将NC组、MEG3-OE组、NC+DDP组、MEG3-OE+Fer-1组、MEG3-OE+DDP组、MEG3-OE+ DDP+Fer-1组的HepG2和LM3细胞均匀铺在6孔板中,Fer-1的终浓度为100 nmol/L,37 ℃,5% CO2培养箱内培养24 h,细胞形成单细胞层时,采用ROS检测试剂DCFH-DA荧光探针检测各组HepG2和LM3细胞的ROS水平。将DCFH-DA按1∶2000的比例直接加入细胞培养基中稀释,37 ℃,5% CO2孵育20 min,在488 nm激发光下用荧光显微镜检测绿色荧光。
1.2.9. MDA测定
分组同1.2.8,将NC、MEG3-OE质粒分别转染HepG2和LM3细胞48 h后,收集细胞,超声破碎,在586 nm处测定吸光度A586 nm,按照MDA试剂盒说明书方法检测各组细胞MDA水平,MDA的浓度按照下列公式计算:MDA含量=[(A实验组-A对照组)/(A标准孔-A空白孔)]×标准品浓度/样本蛋白浓度,其中标准品浓度为10 nmol/mL,所得MDA的单位为pg/mL。
1.2.10. Western blotting检测
收集转染48 h的肝癌细胞,用细胞蛋白提取试剂盒提取细胞总蛋白,BCA试剂盒对蛋白进行定量。取50 μg蛋白样品煮沸变性10 min,配制12%分离胶及5%的浓缩胶,SDS-PAGE对蛋白分离,电泳结束后转印蛋白至PVDF膜上,5%脱脂奶粉37 ℃条件下封闭2 h,分别加入兔抗GPX4、兔抗FTH1及兔抗GAPDH抗体,4 ℃孵育过夜,TBST洗膜,加入辣根过氧化物酶标记的羊抗兔IgG二抗(1∶5000稀释),37 ℃孵育1 h。TBST清洗后化学发光法(ECL)显色,采用Bio-Rad凝胶成像仪观察结果并拍照,蛋白条带灰度值用image J软件扫描并分析,以相对蛋白表达(GPX4/GAPDH、FTH1/GAPDH)水平反映相关蛋白的表达程度。
1.3. 统计学处理
所有实验数据采用SPSS 21.0软件进行分析,计量资料用均数±标准差表示,各组间差异比较采用单因素方差分析,两组比较采用独立样本t检验,以P < 0.05为差异有统计学意义。
2. 结果
2.1. MEG3在肝癌细胞中表达降低
生物信息学分析结果发现,与健康对照组(N)比较,MEG3在HCC患者组(T)中的表达显著降低(P < 0.05,图 1A)。qRT-PCR结果发现,肝癌细胞HepG2和LM3中MEG3表达显著低于正常肝细胞LO2(P < 0.05,图 1B)
图 1.

MEG3在肝癌细胞中的表达
Expression of MEG3 in hepatoma cells. A: Expression of MEG3 in healthy population and HCC patients. T: Treatment group; N: Normal group. *P < 0.05. B: Expression of MEG3 in HepG2 and LM3 cells. *P < 0.05 vs LO2.
2.2. 过表达MEG3抑制肝癌细胞增殖
CCK8实验结果显示,与NC组比较,MEG3-OE组的HepG2和LM3细胞的增殖能力从第72 h开始显著下降(均P < 0.05,图 2)。
图 2.

过表达MEG3对肝癌细胞增殖的影响
Effect of MEG3 overexpression on proliferation of HepG2 (A) and LM3 cells (B). *P < 0.05 vs NC group.
2.3. 过表达MEG3抑制肝癌细胞迁移
细胞迁移实验结果发现,与转染NC组比较,MEG3-OE组的HepG2和LM3细胞的迁移率显著降低(均P < 0.001,图 3)。
图 3.

过表达MEG3对肝癌细胞迁移的影响
Effect of overexpression of MEG3 on migration of HepG2 and LM3 cells. ***P < 0.001 vs NC group (Original magnification: ×50).
2.4. 过表达MEG3增强肝癌细胞对DDP的化疗敏感性
与NC组比较,MEG3-OE组肝癌细胞随着DDP处理浓度的增加其抑制率显著升高,即过表达MEG3可增强肝癌细胞对DDP的化疗敏感性(P < 0.05,图 4),4.0 μg/mL和8.0 μg/mL的DDP对肝癌细胞抑制效果无统计学差异,因此我们选择浓度为4.0 μg/mL的DDP进行后续实验。
图 4.

MEG3-OE对HepG2、LM3细胞耐DDP的影响
Effect of overexpression of MEG3 on DDP resistance in HepG2 and LM3 cells. A: Effect of overexpression of MEG3 on DDP resistance in HepG2 cells, *P < 0.05, **P < 0.01, ***P < 0.001 vs NC group. B: Effect of overexpression of MEG3 on DDP resistance in LM3 cells, *P < 0.05, **P < 0.01, ***P < 0.001 vs NC group.
2.5. 过表达MEG3增强DDP诱导的肝癌细胞铁死亡
与NC组比较,MEG3-OE组细胞增殖能力显著降低(P < 0.05),而与MEG3-OE+Fer-1组比较,MEG3-OE组细胞增殖能力也显著降低(P < 0.05,图 5A、B)。
图 5.

MEG3过表达促进肝癌细胞发生铁死亡
Overexpression of MEG3 induces ferroptosis in HepG2 and LM3 cells. A: Effect of overexpression of MEG3 and Fer-1 on proliferation of HepG2 cells. *P < 0.05 vs NC group; #P < 0.05 vs MEG3-OE group. B: Effect of overexpression of MEG3 and Fer-1 on proliferation of LM3 cells. *P < 0.05 vs NC group; #P < 0.05 vs MEG3-OE group. C: ROS levels in HepG2 and LM3 cells with different treatments detected by DCFH- DA fluorescent probe (× 200). D, E: MDA levels in HepG2 and LM3 cells detected using MDAkit. *P < 0.05, #P < 0.05 vs NC group.
在相应的组中用浓度4.0 μg/mL的DDP处理24 h,Fer-1在细胞培养基中的终浓度为100 nmol/L;采用DCFH-DA荧光探针检测其ROS表达水平,与NC组比较,NC+DDP组ROS的表达水平无差异,MEG3-OE组肝癌细胞中ROS的表达水平显著增高,而MEG3-OE+DDP组ROS的表达水平进一步显著增高,加入Fer-1后,MEG3或MEG3+DDP诱导的ROS显著减少(图 5C);同时发现与NC组比较,NC+DDP组脂质过氧化标志物MDA差异无统计学意义(P > 0.05),MEG3-OE组的MDA水平显著高于NC组(P < 0.05),与NC+DDP组比较,MEG3-OE+DDP组的MDA水平显著升高(P < 0.05),且加入Fer-1后,MEG3或MEG3+DDP诱导的MDA显著降低(图 5D、E)。
2.6. 过表达MEG3增强DDP抑制铁死亡相关蛋白的表达
Western blotting结果显示,与NC组比较,MEG3-OE组及MEG3-OE+DDP组肝癌细胞中GPX4和FTH1的表达水平均显著降低(P < 0.001,图 6A~D)。
图 6.

过表达MEG3抑制铁死亡相关蛋白的表达
Effect of MEG3 overexpression on expressions of ferroptosis-related proteins in HepG2 and LM3 cells. A, B: Protein expression of GPX4 and FTH1 in HepG2 (A) and LM3 cells (B) with different treatments detected by Western blotting. C, D: Quantitative analysis of the protein expressions in HepG2 (C) and LM3 cells (D). ***P < 0.001 vs NC group
3. 讨论
HCC是严重威胁人类生命的恶性肿瘤,其发病机制非常复杂,至今尚未完全阐明。长链非编码RNA参与肿瘤的增殖、侵袭及转移等[20, 21],在基因调控方面发挥重要作用。MEG3在前列腺癌、肝癌等恶性肿瘤细胞系中表达缺失[22, 23],其表达缺失可促进肿瘤细胞生长,反之MEG3在非小细胞肺癌、宫颈癌等高表达可促进肿瘤细胞凋亡[24, 25],提示MEG3在肿瘤发生发展中发挥重要作用。本研究结果发现肝癌细胞HepG2、LM3中MEG3的表达显著降低,与生物信息学分析结果一致;过表达MEG3显著降低肝癌细胞HepG2、LM3的增殖,抑制其迁移能力,并能通过诱导铁死亡从而增强DDP对肝癌细胞的化疗敏感性,表明MEG3在HCC中发挥抑癌作用,是HCC中的潜在抑癌基因。
铁死亡是细胞内Fe2+介导产生的ROS将细胞膜上多不饱和脂肪酸氧化而导致细胞死亡的过程,也是多种抑癌基因发挥抑制肿瘤的方式,其重要生化指标是关键调控基因GPX4和FTH1等表达降低和以MDA为主的脂质过氧化物形成。GPX4和FTH1可受到多种分子的调控[26, 27]。GPX4也是细胞内抗氧化和维持氧化-抗氧化平衡的重要分子,GPX4在肺癌[28]、直肠癌[29]、甲状腺癌[30]等多种肿瘤中高表达且与预后不良密切相关,与GPX4表达趋势一致的FTH1也是细胞内抗氧化体系的分子,该分子在肺癌[31]、肝癌[32]等多种肿瘤中高表达,GPX4和FTH1的表达降低提示铁死亡的发生[33]。抑癌基因通过诱导细胞发生铁死亡的方式抑制肿瘤细胞增殖,关键是要打破肿瘤细胞内氧化-抗氧化平衡,产生大量ROS将细胞膜和细胞器膜上的多不饱和脂肪酸氧化;Chen等[34]研究报道在肝癌细胞中过表达抑癌基因p53可显著诱导大量的ROS生成,且这种调控关系可被铁死亡抑制剂Fer-1所抵消。Yi等[35]发现抑癌基因PTEN突变的前列腺癌动物模型具有对铁死亡显著的抵抗作用,PTEN基因突变的肿瘤细胞对诱导铁死亡的药物不再敏感。这些研究表明抑癌基因可通过诱导铁死亡而抑制肿瘤细胞增殖,目前尚未有关于MEG3在肝癌中调控铁死亡的报道,本研究发现在肝癌细胞中过表达MEG3可降低GPX4和FTH1的蛋白表达水平,并诱导ROS和MDA的生成从而抑制肝癌细胞增殖,提示MEG3有望成为HCC治疗的一个潜在候选靶点,阐明MEG3在肝癌中发挥抑癌作用的分子机制具有重要价值。
化疗抵抗是HCC的一个显著特征,HCC患者产生耐药的机制较复杂多样,包括肝癌细胞药物代谢酶表达增高[36]、耐药相关分子P-糖蛋白高表达[37]、肿瘤微环境改变[38]、细胞抗氧化功能增强以抵抗铁死亡等[39]。由于诱导细胞发生铁死亡是很多抗肿瘤化疗药物的重要机制,因此近年来关于肿瘤细胞铁死亡与化疗抵抗的研究有较多报道,DDP是临床治疗HCC常用的化疗药物之一,其发挥杀伤肿瘤细胞的机制之一是诱导肿瘤细胞发生铁死亡[14],但由于自然选择压力,越来越多的肿瘤细胞出现了对DDP的耐药现象,肿瘤细胞对DDP的耐药机制之一是产生铁死亡抵抗作用。对人类结肠癌耐DDP的机制进行研究发现,对耐DDP的结肠癌细胞给予DDP处理,细胞中GPX4蛋白表达水平显著高于对照组细胞,但ROS的表达无差异[40];在DDP联合铁死亡激活剂Erastin处理结肠癌细胞后可显著诱导细胞GPX4表达下降和ROS水平增高,同时发现p53蛋白表达显著增加。我们对肝癌细胞系HepG2、LM3细胞进行单独DDP处理,或过表达MEG3后进行DDP处理,结果发现对肝癌细胞系单独用DDP处理不能有效诱导ROS和MDA的形成,细胞内GPX4和FTH1的蛋白表达水平亦无差异;而过表达MEG3后可见细胞内形成大量ROS和MDA,且GPX4和FTH1的表达水平显著降低,提示MEG3可显著诱导肝癌细胞发生铁死亡,MEG3和DDP在诱导肝癌细胞铁死亡反应上具有协同效应,MEG3可显著增强DDP诱导肝癌细胞的铁死亡,增强DDP对肝癌细胞的杀伤效率,从而提高肝癌细胞对DDP的化疗敏感性。
综上所述,本研究发现MEG3在肝癌细胞中表达下调,过表达MEG3可抑制肝癌细胞HepG2、LM3的增殖和迁移并增强化疗药物DDP对肝癌细胞的化疗敏感性,其机制与促进铁死亡有关。本研究的结果对深入认识MEG3在HCC中的生物学功能,以及阐明MEG3抑制肝癌细胞生长的分子机制具有重要参考价值,有望将MEG3作为HCC临床治疗的潜在靶点,但仍需在体内水平进一步研究。
Biography
朱权,在读博士研究生,E-mail: 243790933@qq.com
Funding Statement
湖南省自然科学基金(2019JJ40398,2020JJ4768);长沙市2022年度指导性科技计划项目(kzd22002)
Contributor Information
朱 权 (Quan ZHU), Email: 243790933@qq.com.
罗 奇志 (Qizhi LUO), Email: luoqz1025@163.com.
References
- 1.Rajesh Y, Sarkar D. Molecular mechanisms regulating obesity-associated hepatocellular carcinoma. Cancers. 2020;12(5):1290. doi: 10.3390/cancers12051290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Sun SF, Li Y, Han SY, et al. A comprehensive genome-wide profiling comparison between HBV and HCV infected hepatocellular carcinoma. BMC Med Genomics. 2019;12(1):147. doi: 10.1186/s12920-019-0580-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Ke MY, Xu T, Fang Y, et al. Liver fibrosis promotes immune escape in hepatocellular carcinoma via GOLM1- mediated PD- L1 upregulation. Cancer Lett. 2021;513:14–25. doi: 10.1016/j.canlet.2021.05.007. [DOI] [PubMed] [Google Scholar]
- 4.Cao YX, Zhang F, Wang HT, et al. LncRNA MALAT1 mediates doxorubicin resistance of hepatocellular carcinoma by regulating miR-3129-5p/Nova1 axis. Mol Cell Biochem. 2021;476(1):279–92. doi: 10.1007/s11010-020-03904-6. [DOI] [PubMed] [Google Scholar]
- 5.Li P, Song RJ, Yin F, et al. circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther. 2022;30(1):431–47. doi: 10.1016/j.ymthe.2021.08.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Fang SJ, Zheng LY, Shen L, et al. Inactivation of KDM5A suppresses growth and enhances chemosensitivity in liver cancer by modulating ROCK1/PTEN/AKT pathway. Eur J Pharmacol. 2023;940:175465. doi: 10.1016/j.ejphar.2022.175465. [DOI] [PubMed] [Google Scholar]
- 7.Fang T, Lv HW, Wu FQ, et al. Musashi 2 contributes to the stemness and chemoresistance of liver cancer stem cells via LIN28A activation. Cancer Lett. 2017;384:50–9. doi: 10.1016/j.canlet.2016.10.007. [DOI] [PubMed] [Google Scholar]
- 8.Dan J, Wang J, Wang YH, et al. LncRNA-MEG3 inhibits proliferation and metastasis by regulating miRNA-21 in gastric cancer. Biomed Pharmacother. 2018;99:931–8. doi: 10.1016/j.biopha.2018.01.164. [DOI] [PubMed] [Google Scholar]
- 9.Zhou YJ, Yang HQ, Xia W, et al. LncRNA MEG3 inhibits the progression of prostate cancer by facilitating H3K27 trimethylation of EN2 through binding to EZH2. J Biochem. 2020;167(3):295–301. doi: 10.1093/jb/mvz097. [DOI] [PubMed] [Google Scholar]
- 10.罗 奇志, 张 帆, 李 威, et al. LncRNA MEG3通过抑制HIF1α的表达降低胶质瘤U251细胞的增殖与侵袭能力. 南方医科大学学报. 2021;41(1):141–5. doi: 10.12122/j.issn.1673-4254.2021.01.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Mohammed SR, Shaker OG, Mohamed MM, et al. The emerging role of lncRNA MEG3 and MEG3 rs7158663 in hepatocellular carci-noma. Eur Rev Med Pharmacol Sci. 2022;26(1):11–21. doi: 10.26355/eurrev_202201_27742. [DOI] [PubMed] [Google Scholar]
- 12.Wu JA, Pang RH, Li MN, et al. m6A-induced LncRNA MEG3 suppresses the proliferation, migration and invasion of hepatocellular carcinoma cell through miR-544b/BTG2 signaling. OncoTargets Ther. 2021;14:3745–55. doi: 10.2147/OTT.S289198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Wei Q, Liu GM, Huang ZH, et al. LncRNA MEG3 inhibits tumor progression by modulating macrophage phenotypic polarization via miR-145-5p/DAB2 axis in hepatocellular carcinoma. J Hepatocell Carcinoma. 2023;10:1019–35. doi: 10.2147/JHC.S408800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Roh JL, Kim EH, Jang H, et al. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017;11:254–62. doi: 10.1016/j.redox.2016.12.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Meza-Sosa KF, Miao R, Navarro F, et al. SPARCLE, a p53-induced lncRNA, controls apoptosis after genotoxic stress by promoting PARP-1 cleavage. Mol Cell. 2022;82(4):785–802. e10. doi: 10.1016/j.molcel.2022.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Zhang ZL, Guo M, Li YJ, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy. 2020;16(8):1482–505. doi: 10.1080/15548627.2019.1687985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Chen C, Huang Y, Xia PP, et al. Long noncoding RNA Meg3 mediates ferroptosis induced by oxygen and glucose deprivation combined with hyperglycemia in rat brain microvascular endothelial cells, through modulating the p53/GPX4 axis. Eur J Histochem. 2021;65(3):3224. doi: 10.4081/ejh.2021.3224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Ma XX, Tao ZY, Chen LM, et al. Genetic analysis of potential biomarkers and therapeutic targets associated with ferroptosis from bronchopulmonary dysplasia. Medicine. 2023;102(29):e34371. doi: 10.1097/MD.0000000000034371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Hu ZY, Liu C, Mao Y, et al. Integration of transcriptomics reveals ferroptosis-related signatures and immune cell infiltration in bronchopulmonary dysplasia. Heliyon. 2023;9(10):e21093. doi: 10.1016/j.heliyon.2023.e21093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Zhao WY, Geng DH, Li SQ, et al. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 2018;7(3):842–55. doi: 10.1002/cam4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 21.Dai GC, Huang CC, Yang JH, et al. LncRNA SNHG3 promotes bladder cancer proliferation and metastasis through miR-515-5p/GINS2 axis. J Cellular Molecular Medi. 2020;24(16):9231–43. doi: 10.1111/jcmm.15564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Ribarska T, Goering W, Droop J, et al. Deregulation of an imprinted gene network in prostate cancer. Epigenetics. 2014;9(5):704–17. doi: 10.4161/epi.28006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Sun Y, Cao FL, Qu LL, et al. MEG3 promotes liver cancer by activating PI3K/AKT pathway through regulating AP1G1. Eur Rev Med Pharmacol Sci. 2019;23(4):1459–67. doi: 10.26355/eurrev_201902_17103. [DOI] [PubMed] [Google Scholar]
- 24.Yang Z, Wang ZT, Duan Y. LncRNA MEG3 inhibits non-small cell lung cancer via interaction with DKC1 protein. Oncol Lett. 2020;20(3):2183–90. doi: 10.3892/ol.2020.11770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Du Y, Geng G, Zhao CQ, et al. LncRNA MEG3 promotes cisplatin sensitivity of cervical cancer cells by regulating the miR-21/PTEN axis. BMC Cancer. 2022;22(1):1145. doi: 10.1186/s12885-022-10188-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Ouyang SM, Li HX, Lou LL, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol. 2022;52:102317. doi: 10.1016/j.redox.2022.102317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Hu ZW, Wen YH, Ma RQ, et al. Ferroptosis driver SOCS1 and suppressor FTH1 independently correlate with M1 and M2 macrophage infiltration in head and neck squamous cell carcinoma. Front Cell Dev Biol. 2021;9:727762. doi: 10.3389/fcell.2021.727762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Deng SH, Wu DM, Li L, et al. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun. 2021;549:54–60. doi: 10.1016/j.bbrc.2021.02.077. [DOI] [PubMed] [Google Scholar]
- 29.Sui XB, Zhang RN, Liu SP, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 2018;9:1371. doi: 10.3389/fphar.2018.01371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Arora C, Kaur D, Naorem LD, et al. Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway. PLoS One. 2021;16(11):e0259534. doi: 10.1371/journal.pone.0259534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Zhang RN, Pan T, Xiang Y, et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater. 2021;13:23–36. doi: 10.1016/j.bioactmat.2021.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Muhammad JS, Bajbouj K, Shafarin J, et al. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics. 2020;15(12):1302–18. doi: 10.1080/15592294.2020.1770917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Fang YY, Chen XC, Tan QY, et al. Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent Sci. 2021;7(6):980–9. doi: 10.1021/acscentsci.0c01592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Chen JY, Zhao FX, Yang HX, et al. Gentian violet induces apoptosis and ferroptosis via modulating p53 and MDM2 in hepatocellular carcinoma. Am J Cancer Res. 2022;12(7):3357–72. [PMC free article] [PubMed] [Google Scholar]
- 35.Yi JM, Zhu JJ, Wu J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc NatlAcad Sci USA. 2020;117(49):31189–97. doi: 10.1073/pnas.2017152117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Lu PP, Huang Y, Zhang CY, et al. An aggregation-induced emission fluorescence probe for evaluating the effect of CYP450 changes under tumor chemotherapy. Talanta. 2022;239:123111. doi: 10.1016/j.talanta.2021.123111. [DOI] [PubMed] [Google Scholar]
- 37.夏 黄帅, 余 卓伦, 张 其海, et al. 没药甾酮下调PXR/P-gp通路逆转肝癌化疗耐药机制. 中国药理学通报. 2022;38(5):684–91. doi: 10.12360/CPB202104036. [DOI] [Google Scholar]
- 38.Zhao CY, Liu SS, Gao F, et al. The role of tumor microenvironment reprogramming in primary liver cancer chemotherapy resistance. Front Oncol. 2022;12:1008902. doi: 10.3389/fonc.2022.1008902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Shi LA, Chen ZG, Wu LL, et al. miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev. 2015;15(23):10439–44. doi: 10.7314/APJCP.2014.15.23.10439. [DOI] [PubMed] [Google Scholar]
- 40.牛 爽, 何 忠时, 曾 炼, et al. p53介导的铁死亡在调控人结直肠癌顺铂耐药中的作用及机制. 中国病理生理杂志. 2023;39(1):9–19. [Google Scholar]
