Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Apr 29;356(1408):421–435. doi: 10.1098/rstb.2000.0775

Molecular evolution of the gamma-Herpesvirinae.

D J McGeoch 1
PMCID: PMC1088436  PMID: 11313003

Abstract

Genomic sequences available for members of the gamma-Herpesvirinae allow analysis of many aspects of the group's evolution. This paper examines four topics: (i) the phylogeny of the group; (ii) the histories of gamma-herpesvirus-specific genes; (iii) genomic variation of human herpesvirus 8 (HHV-8); and (iv) the relationship between Epstein-Barr virus types 1 and 2 (EBV-1 and EBV-2). A phylogenetic tree based on eight conserved genes has been constructed for eight gamma-herpesviruses and extended to 14 species with smaller gene sets. This gave a generally robust assignment of evolutionary relationships, with the exception of murine herpesvirus 4 (MHV-4), which could not be placed unambiguously on the tree and which has evidently experienced an unusually high rate of genomic change. The gamma-herpesviruses possess a variable complement of genes with cellular homologues. In the clearest cases these virus genes were shown to have originated from host genome lineages in the distant past. HHV-8 possesses at its left genomic terminus a highly diverse gene (K1) and at its right terminus a gene (K15) having two diverged alleles. It was proposed that the high diversity of K1 results from a positive selection on K1 and a hitchhiking effect that reduces diversity elsewhere in the genome. EBV-1 and EBV-2 differ in their alleles of the EBNA-2, EBNA-3A, EBNA-3B and EBNA-3C genes. It was suggested that EBV-1 and EBV-2 may recombine in mixed infections so that their sequences outside these genes remain homogeneous. Models for genesis of the types, by recombination between diverged parents or by local divergence from a single lineage, both present difficulties.

Full Text

The Full Text of this article is available as a PDF (293.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius C. T., Nagesha H. S., Studdert M. J. Equine herpesvirus 5: comparisons with EHV2 (equine cytomegalovirus), cloning, and mapping of a new equine herpesvirus with a novel genome structure. Virology. 1992 Nov;191(1):176–186. doi: 10.1016/0042-6822(92)90179-s. [DOI] [PubMed] [Google Scholar]
  2. Albrecht J. C., Nicholas J., Biller D., Cameron K. R., Biesinger B., Newman C., Wittmann S., Craxton M. A., Coleman H., Fleckenstein B. Primary structure of the herpesvirus saimiri genome. J Virol. 1992 Aug;66(8):5047–5058. doi: 10.1128/jvi.66.8.5047-5058.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albrecht J. C. Primary structure of the Herpesvirus ateles genome. J Virol. 2000 Jan;74(2):1033–1037. doi: 10.1128/jvi.74.2.1033-1037.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alexander L., Denekamp L., Knapp A., Auerbach M. R., Damania B., Desrosiers R. C. The primary sequence of rhesus monkey rhadinovirus isolate 26-95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol. 2000 Apr;74(7):3388–3398. doi: 10.1128/jvi.74.7.3388-3398.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. doi: 10.1038/310207a0. [DOI] [PubMed] [Google Scholar]
  6. Bhatia K., Raj A., Guitierrez M. I., Judde J. G., Spangler G., Venkatesh H., Magrath I. T. Variation in the sequence of Epstein Barr virus nuclear antigen 1 in normal peripheral blood lymphocytes and in Burkitt's lymphomas. Oncogene. 1996 Jul 4;13(1):177–181. [PubMed] [Google Scholar]
  7. Broll H., Finsterbusch T., Buhk H. J., Goltz M. Genetic analysis of the bovine herpesvirus type 4 gene locus for the putative terminase. Virus Genes. 1999;19(3):243–250. doi: 10.1023/a:1008145015954. [DOI] [PubMed] [Google Scholar]
  8. Cameron K. R., Stamminger T., Craxton M., Bodemer W., Honess R. W., Fleckenstein B. The 160,000-Mr virion protein encoded at the right end of the herpesvirus saimiri genome is homologous to the 140,000-Mr membrane antigen encoded at the left end of the Epstein-Barr virus genome. J Virol. 1987 Jul;61(7):2063–2070. doi: 10.1128/jvi.61.7.2063-2070.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cho Y. G., Gordadze A. V., Ling P. D., Wang F. Evolution of two types of rhesus lymphocryptovirus similar to type 1 and type 2 Epstein-Barr virus. J Virol. 1999 Nov;73(11):9206–9212. doi: 10.1128/jvi.73.11.9206-9212.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook P. M., Whitby D., Calabro M. L., Luppi M., Kakoola D. N., Hjalgrim H., Ariyoshi K., Ensoli B., Davison A. J., Schulz T. F. Variability and evolution of Kaposi's sarcoma-associated herpesvirus in Europe and Africa. International Collaborative Group. AIDS. 1999 Jul 9;13(10):1165–1176. doi: 10.1097/00002030-199907090-00004. [DOI] [PubMed] [Google Scholar]
  11. Dambaugh T., Hennessy K., Chamnankit L., Kieff E. U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7632–7636. doi: 10.1073/pnas.81.23.7632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. doi: 10.1099/0022-1317-67-9-1759. [DOI] [PubMed] [Google Scholar]
  13. Ehlers B., Borchers K., Grund C., Frölich K., Ludwig H., Buhk H. J. Detection of new DNA polymerase genes of known and potentially novel herpesviruses by PCR with degenerate and deoxyinosine-substituted primers. Virus Genes. 1999;18(3):211–220. doi: 10.1023/a:1008064118057. [DOI] [PubMed] [Google Scholar]
  14. Ensser A., Pflanz R., Fleckenstein B. Primary structure of the alcelaphine herpesvirus 1 genome. J Virol. 1997 Sep;71(9):6517–6525. doi: 10.1128/jvi.71.9.6517-6525.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goltz M., Broll H., Mankertz A., Weigelt W., Ludwig H., Buhk H. J., Borchers K. Glycoprotein B of bovine herpesvirus type 4: its phylogenetic relationship to gB equivalents of the herpesviruses. Virus Genes. 1994 Sep;9(1):53–59. doi: 10.1007/BF01703435. [DOI] [PubMed] [Google Scholar]
  16. Habeshaw G., Yao Q. Y., Bell A. I., Morton D., Rickinson A. B. Epstein-barr virus nuclear antigen 1 sequences in endemic and sporadic Burkitt's lymphoma reflect virus strains prevalent in different geographic areas. J Virol. 1999 Feb;73(2):965–975. doi: 10.1128/jvi.73.2.965-975.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hayward G. S. KSHV strains: the origins and global spread of the virus. Semin Cancer Biol. 1999 Jun;9(3):187–199. doi: 10.1006/scbi.1998.0116. [DOI] [PubMed] [Google Scholar]
  18. Holloway S. A., Lindquester G. J., Studdert M. J., Drummer H. E. Identification, sequence analysis and characterisation of equine herpesvirus 5 glycoprotein B. Arch Virol. 1999;144(2):287–307. doi: 10.1007/s007050050504. [DOI] [PubMed] [Google Scholar]
  19. Honess R. W., Gompels U. A., Barrell B. G., Craxton M., Cameron K. R., Staden R., Chang Y. N., Hayward G. S. Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J Gen Virol. 1989 Apr;70(Pt 4):837–855. doi: 10.1099/0022-1317-70-4-837. [DOI] [PubMed] [Google Scholar]
  20. Ishido S., Choi J. K., Lee B. S., Wang C., DeMaria M., Johnson R. P., Cohen G. B., Jung J. U. Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity. 2000 Sep;13(3):365–374. doi: 10.1016/s1074-7613(00)00036-4. [DOI] [PubMed] [Google Scholar]
  21. Ishido S., Wang C., Lee B. S., Cohen G. B., Jung J. U. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J Virol. 2000 Jun;74(11):5300–5309. doi: 10.1128/jvi.74.11.5300-5309.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones D. T., Taylor W. R., Thornton J. M. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992 Jun;8(3):275–282. doi: 10.1093/bioinformatics/8.3.275. [DOI] [PubMed] [Google Scholar]
  23. Jung J. U., Trimble J. J., King N. W., Biesinger B., Fleckenstein B. W., Desrosiers R. C. Identification of transforming genes of subgroup A and C strains of Herpesvirus saimiri. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7051–7055. doi: 10.1073/pnas.88.16.7051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaplan N. L., Darden T., Hudson R. R. The coalescent process in models with selection. Genetics. 1988 Nov;120(3):819–829. doi: 10.1093/genetics/120.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Khanna R., Slade R. W., Poulsen L., Moss D. J., Burrows S. R., Nicholls J., Burrows J. M. Evolutionary dynamics of genetic variation in Epstein-Barr virus isolates of diverse geographical origins: evidence for immune pressure-independent genetic drift. J Virol. 1997 Nov;71(11):8340–8346. doi: 10.1128/jvi.71.11.8340-8346.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Koseki T., Inohara N., Chen S., Carrio R., Merino J., Hottiger M. O., Nabel G. J., Núez G. CIPER, a novel NF kappaB-activating protein containing a caspase recruitment domain with homology to Herpesvirus-2 protein E10. J Biol Chem. 1999 Apr 9;274(15):9955–9961. doi: 10.1074/jbc.274.15.9955. [DOI] [PubMed] [Google Scholar]
  28. Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
  29. Lacoste V., Mauclère P., Dubreuil G., Lewis J., Georges-Courbot M. C., Gessain A. KSHV-like herpesviruses in chimps and gorillas. Nature. 2000 Sep 14;407(6801):151–152. doi: 10.1038/35025145. [DOI] [PubMed] [Google Scholar]
  30. Lee H., Veazey R., Williams K., Li M., Guo J., Neipel F., Fleckenstein B., Lackner A., Desrosiers R. C., Jung J. U. Deregulation of cell growth by the K1 gene of Kaposi's sarcoma-associated herpesvirus. Nat Med. 1998 Apr;4(4):435–440. doi: 10.1038/nm0498-435. [DOI] [PubMed] [Google Scholar]
  31. Lee S. P., Morgan S., Skinner J., Thomas W. A., Jones S. R., Sutton J., Khanna R., Whittle H. C., Rickinson A. B. Epstein-Barr virus isolates with the major HLA B35.01-restricted cytotoxic T lymphocyte epitope are prevalent in a highly B35.01-positive African population. Eur J Immunol. 1995 Jan;25(1):102–110. doi: 10.1002/eji.1830250119. [DOI] [PubMed] [Google Scholar]
  32. Lees J. F., Arrand J. E., Pepper S. D., Stewart J. P., Mackett M., Arrand J. R. The Epstein-Barr virus candidate vaccine antigen gp340/220 is highly conserved between virus types A and B. Virology. 1993 Aug;195(2):578–586. doi: 10.1006/viro.1993.1409. [DOI] [PubMed] [Google Scholar]
  33. MacKenzie J., Gray D., Pinto-Paes R., Barrezueta L. F., Armstrong A. A., Alexander F. A., McGeoch D. J., Jarrett R. F. Analysis of Epstein-Barr virus (EBV) nuclear antigen 1 subtypes in EBV-associated lymphomas from Brazil and the United Kingdom. J Gen Virol. 1999 Oct;80(Pt 10):2741–2745. doi: 10.1099/0022-1317-80-10-2741. [DOI] [PubMed] [Google Scholar]
  34. McGeoch D. J., Cook S., Dolan A., Jamieson F. E., Telford E. A. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol. 1995 Mar 31;247(3):443–458. doi: 10.1006/jmbi.1995.0152. [DOI] [PubMed] [Google Scholar]
  35. McGeoch D. J., Cook S. Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale. J Mol Biol. 1994 Apr 22;238(1):9–22. doi: 10.1006/jmbi.1994.1264. [DOI] [PubMed] [Google Scholar]
  36. McGeoch D. J., Davison A. J. The descent of human herpesvirus 8. Semin Cancer Biol. 1999 Jun;9(3):201–209. doi: 10.1006/scbi.1999.0093. [DOI] [PubMed] [Google Scholar]
  37. Meng Y. X., Spira T. J., Bhat G. J., Birch C. J., Druce J. D., Edlin B. R., Edwards R., Gunthel C., Newton R., Stamey F. R. Individuals from North America, Australasia, and Africa are infected with four different genotypes of human herpesvirus 8. Virology. 1999 Aug 15;261(1):106–119. doi: 10.1006/viro.1999.9853. [DOI] [PubMed] [Google Scholar]
  38. Midgley R. S., Blake N. W., Yao Q. Y., Croom-Carter D., Cheung S. T., Leung S. F., Chan A. T., Johnson P. J., Huang D., Rickinson A. B. Novel intertypic recombinants of epstein-barr virus in the chinese population. J Virol. 2000 Feb;74(3):1544–1548. doi: 10.1128/jvi.74.3.1544-1548.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Neipel F., Albrecht J. C., Fleckenstein B. Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol. 1997 Jun;71(6):4187–4192. doi: 10.1128/jvi.71.6.4187-4192.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Neipel F., Fleckenstein B. The role of HHV-8 in Kaposi's sarcoma. Semin Cancer Biol. 1999 Jun;9(3):151–164. doi: 10.1006/scbi.1999.0129. [DOI] [PubMed] [Google Scholar]
  41. Nicholas J., Zong J. C., Alcendor D. J., Ciufo D. M., Poole L. J., Sarisky R. T., Chiou C. J., Zhang X., Wan X., Guo H. G. Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. J Natl Cancer Inst Monogr. 1998;(23):79–88. doi: 10.1093/oxfordjournals.jncimonographs.a024179. [DOI] [PubMed] [Google Scholar]
  42. Parker B. D., Bankier A., Satchwell S., Barrell B., Farrell P. J. Sequence and transcription of Raji Epstein-Barr virus DNA spanning the B95-8 deletion region. Virology. 1990 Nov;179(1):339–346. doi: 10.1016/0042-6822(90)90302-8. [DOI] [PubMed] [Google Scholar]
  43. Peng R., Gordadze A. V., Fuentes Pananá E. M., Wang F., Zong J., Hayward G. S., Tan J., Ling P. D. Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol. 2000 Jan;74(1):379–389. doi: 10.1128/jvi.74.1.379-389.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Poole L. J., Zong J. C., Ciufo D. M., Alcendor D. J., Cannon J. S., Ambinder R., Orenstein J. M., Reitz M. S., Hayward G. S. Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi's sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end. J Virol. 1999 Aug;73(8):6646–6660. doi: 10.1128/jvi.73.8.6646-6660.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rickinson A. B., Young L. S., Rowe M. Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol. 1987 May;61(5):1310–1317. doi: 10.1128/jvi.61.5.1310-1317.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rivailler P., Quink C., Wang F. Strong selective pressure for evolution of an Epstein-Barr virus LMP2B homologue in the rhesus lymphocryptovirus. J Virol. 1999 Oct;73(10):8867–8872. doi: 10.1128/jvi.73.10.8867-8872.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rovnak J., Quackenbush S. L., Reyes R. A., Baines J. D., Parrish C. R., Casey J. W. Detection of a novel bovine lymphotropic herpesvirus. J Virol. 1998 May;72(5):4237–4242. doi: 10.1128/jvi.72.5.4237-4242.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ruf I. K., Moghaddam A., Wang F., Sample J. Mechanisms that regulate Epstein-Barr virus EBNA-1 gene transcription during restricted latency are conserved among lymphocryptoviruses of Old World primates. J Virol. 1999 Mar;73(3):1980–1989. doi: 10.1128/jvi.73.3.1980-1989.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sample J., Young L., Martin B., Chatman T., Kieff E., Rickinson A., Kieff E. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol. 1990 Sep;64(9):4084–4092. doi: 10.1128/jvi.64.9.4084-4092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schultz E. R., Rankin G. W., Jr, Blanc M. P., Raden B. W., Tsai C. C., Rose T. M. Characterization of two divergent lineages of macaque rhadinoviruses related to Kaposi's sarcoma-associated herpesvirus. J Virol. 2000 May;74(10):4919–4928. doi: 10.1128/jvi.74.10.4919-4928.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Searles R. P., Bergquam E. P., Axthelm M. K., Wong S. W. Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol. 1999 Apr;73(4):3040–3053. doi: 10.1128/jvi.73.4.3040-3053.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Snudden D. K., Smith P. R., Lai D., Ng M. H., Griffin B. E. Alterations in the structure of the EBV nuclear antigen, EBNA1, in epithelial cell tumours. Oncogene. 1995 Apr 20;10(8):1545–1552. [PubMed] [Google Scholar]
  53. Telford E. A., Watson M. S., Aird H. C., Perry J., Davison A. J. The DNA sequence of equine herpesvirus 2. J Mol Biol. 1995 Jun 9;249(3):520–528. doi: 10.1006/jmbi.1995.0314. [DOI] [PubMed] [Google Scholar]
  54. Thome M., Martinon F., Hofmann K., Rubio V., Steiner V., Schneider P., Mattmann C., Tschopp J. Equine herpesvirus-2 E10 gene product, but not its cellular homologue, activates NF-kappaB transcription factor and c-Jun N-terminal kinase. J Biol Chem. 1999 Apr 9;274(15):9962–9968. doi: 10.1074/jbc.274.15.9962. [DOI] [PubMed] [Google Scholar]
  55. Triantos D., Boulter A. W., Leao J. C., Di Alberti L., Porter S. R., Scully C. M., Birnbaum W., Johnson N. W., Teo C. G. Diversity of naturally occurring Epstein-Barr virus revealed by nucleotide sequence polymorphism in hypervariable domains in the BamHI K and N subgenomic regions. J Gen Virol. 1998 Nov;79(Pt 11):2809–2817. doi: 10.1099/0022-1317-79-11-2809. [DOI] [PubMed] [Google Scholar]
  56. Ulrich S., Goltz M., Ehlers B. Characterization of the DNA polymerase loci of the novel porcine lymphotropic herpesviruses 1 and 2 in domestic and feral pigs. J Gen Virol. 1999 Dec;80(Pt 12):3199–3205. doi: 10.1099/0022-1317-80-12-3199. [DOI] [PubMed] [Google Scholar]
  57. Vanderplasschen A., Markine-Goriaynoff N., Lomonte P., Suzuki M., Hiraoka N., Yeh J. C., Bureau F., Willems L., Thiry E., Fukuda M. A multipotential beta -1,6-N-acetylglucosaminyl-transferase is encoded by bovine herpesvirus type 4. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5756–5761. doi: 10.1073/pnas.100058897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Virgin H. W., 4th, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol. 1997 Aug;71(8):5894–5904. doi: 10.1128/jvi.71.8.5894-5904.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wrightham M. N., Stewart J. P., Janjua N. J., Pepper S. D., Sample C., Rooney C. M., Arrand J. R. Antigenic and sequence variation in the C-terminal unique domain of the Epstein-Barr virus nuclear antigen EBNA-1. Virology. 1995 Apr 20;208(2):521–530. doi: 10.1006/viro.1995.1183. [DOI] [PubMed] [Google Scholar]
  60. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]
  61. Yates J. L., Camiolo S. M., Ali S., Ying A. Comparison of the EBNA1 proteins of Epstein-Barr virus and herpesvirus papio in sequence and function. Virology. 1996 Aug 1;222(1):1–13. doi: 10.1006/viro.1996.0392. [DOI] [PubMed] [Google Scholar]
  62. Zimber U., Adldinger H. K., Lenoir G. M., Vuillaume M., Knebel-Doeberitz M. V., Laux G., Desgranges C., Wittmann P., Freese U. K., Schneider U. Geographical prevalence of two types of Epstein-Barr virus. Virology. 1986 Oct 15;154(1):56–66. doi: 10.1016/0042-6822(86)90429-0. [DOI] [PubMed] [Google Scholar]
  63. Zong J. C., Ciufo D. M., Alcendor D. J., Wan X., Nicholas J., Browning P. J., Rady P. L., Tyring S. K., Orenstein J. M., Rabkin C. S. High-level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi's sarcoma-associated herpesvirus genome defines four major virus subtypes and multiple variants or clades in different human populations. J Virol. 1999 May;73(5):4156–4170. doi: 10.1128/jvi.73.5.4156-4170.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. de Campos-Lima P. O., Gavioli R., Zhang Q. J., Wallace L. E., Dolcetti R., Rowe M., Rickinson A. B., Masucci M. G. HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population. Science. 1993 Apr 2;260(5104):98–100. doi: 10.1126/science.7682013. [DOI] [PubMed] [Google Scholar]
  65. van Santen V. L. Characterization of the bovine herpesvirus 4 major immediate-early transcript. J Virol. 1991 Oct;65(10):5211–5224. doi: 10.1128/jvi.65.10.5211-5224.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES