Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Apr 29;356(1408):489–497. doi: 10.1098/rstb.2000.0776

Simian homologues of Epstein-Barr virus.

F Wang 1, P Rivailler 1, P Rao 1, Y Cho 1
PMCID: PMC1088440  PMID: 11313007

Abstract

Gamma-herpesviruses closely related to the Epstein-Barr virus (EBV) are known to naturally infect Old World non-human primates and are classified in the same lymphocryptovirus (LCV) genera. LCV infecting humans and Old World primates share similar biology, and recent studies have demonstrated that these viruses share a similar repertoire of viral genes. Surprisingly, the latent infection genes associated with cell growth transformation demonstrate the most striking sequence divergence, but the functional mechanisms for these genes are generally well conserved. The recent discovery of LCVs naturally infecting New World primates has rewritten the old paradigm of LCV host range restriction to humans and Old World non-human primates, so that these viruses are more widespread than previously believed. However, the New World LCV genome has significant and interesting differences from EBV and other Old World LCVs despite similar biological properties. Thus, the simian homologues of EBV can provide an important animal model for studying LCV pathogenesis, and the similarities and differences that have evolved among these related viruses can provide a unique perspective towards a better understanding of EBV.

Full Text

The Full Text of this article is available as a PDF (176.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake N. W., Moghaddam A., Rao P., Kaur A., Glickman R., Cho Y. G., Marchini A., Haigh T., Johnson R. P., Rickinson A. B. Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein-Barr virus nuclear antigen 1. J Virol. 1999 Sep;73(9):7381–7389. doi: 10.1128/jvi.73.9.7381-7389.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Böcker J. F., Tiedemann K. H., Bornkamm G. W., zur Hausen H. Characterization of an EBV-like virus from African green monkey lymphoblasts. Virology. 1980 Feb;101(1):291–295. doi: 10.1016/0042-6822(80)90506-1. [DOI] [PubMed] [Google Scholar]
  3. Cho Y. G., Gordadze A. V., Ling P. D., Wang F. Evolution of two types of rhesus lymphocryptovirus similar to type 1 and type 2 Epstein-Barr virus. J Virol. 1999 Nov;73(11):9206–9212. doi: 10.1128/jvi.73.11.9206-9212.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cho Y., Ramer J., Rivailler P., Quink C., Garber R. L., Beier D. R., Wang F. An Epstein-Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1224–1229. doi: 10.1073/pnas.98.3.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen J. I., Lekstrom K. Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol. 1999 Sep;73(9):7627–7632. doi: 10.1128/jvi.73.9.7627-7632.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Desrosiers R. C. The value of specific pathogen-free rhesus monkey breeding colonies for AIDS research. AIDS Res Hum Retroviruses. 1997 Jan 1;13(1):5–6. doi: 10.1089/aid.1997.13.5. [DOI] [PubMed] [Google Scholar]
  7. Dillner J., Rabin H., Letvin N., Henle W., Henle G., Klein G. Nuclear DNA-binding proteins determined by the Epstein-Barr virus-related simian lymphotropic herpesviruses H. gorilla, H. pan, H. pongo and H. papio. J Gen Virol. 1987 Jun;68(Pt 6):1587–1596. doi: 10.1099/0022-1317-68-6-1587. [DOI] [PubMed] [Google Scholar]
  8. Djatchenko A. G., Kakubava V. V., Lapin B. A., Agrba V. Z., Yakovleva L. A., Samilchuk E. I. Continuous lymphoblastoid suspension cultures from cells of haematopoietic organs of baboons with malignant lymphoma--biological characterization and biological properties of the herpes virus associated with culture cells. Exp Pathol (Jena) 1976;12(3-4):163–168. doi: 10.1016/s0014-4908(76)80039-7. [DOI] [PubMed] [Google Scholar]
  9. Dunkel V. C., Pry T. W., Henle G., Henle W. Immunofluorescence tests for antibodies to Epstein-Barr virus with sera of lower primates. J Natl Cancer Inst. 1972 Aug;49(2):435–440. [PubMed] [Google Scholar]
  10. Falk L. A., Henle G., Henle W., Deinhardt F., Schudel A. Transformation of lymphocytes by Herpesvirus papio. Int J Cancer. 1977 Aug 15;20(2):219–226. doi: 10.1002/ijc.2910200209. [DOI] [PubMed] [Google Scholar]
  11. Falk L., Deinhardt F., Nonoyama M., Wolfe L. G., Bergholz C. Properties of a baboon lymphotropic herpesvirus related to Epstein-Barr virus. Int J Cancer. 1976 Dec 15;18(6):798–807. doi: 10.1002/ijc.2910180611. [DOI] [PubMed] [Google Scholar]
  12. Feichtinger H., Putkonen P., Parravicini C., Li S. L., Kaaya E. E., Böttiger D., Biberfeld G., Biberfeld P. Malignant lymphomas in cynomolgus monkeys infected with simian immunodeficiency virus. Am J Pathol. 1990 Dec;137(6):1311–1315. [PMC free article] [PubMed] [Google Scholar]
  13. Frank A., Andiman W. A., Miller G. Epstein-Barr virus and nonhuman primates: natural and experimental infection. Adv Cancer Res. 1976;23:171–201. doi: 10.1016/s0065-230x(08)60546-1. [DOI] [PubMed] [Google Scholar]
  14. Franken M., Annis B., Ali A. N., Wang F. 5' Coding and regulatory region sequence divergence with conserved function of the Epstein-Barr virus LMP2A homolog in herpesvirus papio. J Virol. 1995 Dec;69(12):8011–8019. doi: 10.1128/jvi.69.12.8011-8019.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franken M., Devergne O., Rosenzweig M., Annis B., Kieff E., Wang F. Comparative analysis identifies conserved tumor necrosis factor receptor-associated factor 3 binding sites in the human and simian Epstein-Barr virus oncogene LMP1. J Virol. 1996 Nov;70(11):7819–7826. doi: 10.1128/jvi.70.11.7819-7826.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fujimoto K., Honjo S. Presence of antibody to Cyno-EBV in domestically bred cynomolgus monkeys (Macaca fascicularis). J Med Primatol. 1991;20(1):42–45. [PubMed] [Google Scholar]
  17. Fujimoto K., Terato K., Miyamoto J., Ishiko H., Fujisaki M., Cho F., Honjo S. Establishment of a B-lymphoblastoid cell line infected with Epstein-Barr-related virus from a cynomolgus monkey (Macaca fascicularis). J Med Primatol. 1990;19(1):21–30. [PubMed] [Google Scholar]
  18. Gerber P., Branch J. W., Rosenblum E. N. Attempts to transmit infectious mononucleosis to rhesus monkeys and marmosets and to isolate herpes-like virus. Proc Soc Exp Biol Med. 1969 Jan;130(1):14–19. doi: 10.3181/00379727-130-33478. [DOI] [PubMed] [Google Scholar]
  19. Gerber P., Kalter S. S., Schidlovsky G., Peterson W. D., Jr, Daniel M. D. Biologic and antigenic characteristics of Epstein-Barr virus-related Herpesviruses of chimpanzees and baboons. Int J Cancer. 1977 Sep 15;20(3):448–459. doi: 10.1002/ijc.2910200318. [DOI] [PubMed] [Google Scholar]
  20. Gerber P., Pritchett R. F., Kieff E. D. Antigens and DNA of a chimpanzee agent related to Epstein-Barr virus. J Virol. 1976 Sep;19(3):1090–1099. doi: 10.1128/jvi.19.3.1090-1099.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldman M., Landon J. C., Reisher J. I. Fluorescent antibody and gel diffusion reactions of human and chimpanzee sera with cells cultured from Burkitt tumors and normal chimpanzee blood. Cancer Res. 1968 Dec;28(12):2489–2495. [PubMed] [Google Scholar]
  22. Habis A., Baskin G., Simpson L., Fortgang I., Murphey-Corb M., Levy L. S. Rhesus lymphocryptovirus infection during the progression of SAIDS and SAIDS-associated lymphoma in the rhesus macaque. AIDS Res Hum Retroviruses. 2000 Jan 20;16(2):163–171. doi: 10.1089/088922200309502. [DOI] [PubMed] [Google Scholar]
  23. Hammarskjöld M. L., Simurda M. C. Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-kappa B activity. J Virol. 1992 Nov;66(11):6496–6501. doi: 10.1128/jvi.66.11.6496-6501.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Heller M., Gerber P., Kieff E. DNA of herpesvirus pan, a third member of the Epstein-Barr virus-Herpesvirus papio group. J Virol. 1982 Mar;41(3):931–939. doi: 10.1128/jvi.41.3.931-939.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Heller M., Gerber P., Kieff E. Herpesvirus papio DNA is similar in organization to Epstein-Barr virus DNA. J Virol. 1981 Feb;37(2):698–709. doi: 10.1128/jvi.37.2.698-709.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Heller M., Kieff E. Colinearity between the DNAs of Epstein-Barr virus and herpesvirus papio. J Virol. 1981 Feb;37(2):821–826. doi: 10.1128/jvi.37.2.821-826.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Huen D. S., Henderson S. A., Croom-Carter D., Rowe M. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene. 1995 Feb 2;10(3):549–560. [PubMed] [Google Scholar]
  28. Ishida T., Yamamoto K. Survey of nonhuman primates for antibodies reactive with Epstein-Barr virus (EBV) antigens and susceptibility of their lymphocytes for immortalization with EBV. J Med Primatol. 1987;16(6):359–371. [PubMed] [Google Scholar]
  29. Izumi K. M., Kieff E. D. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12592–12597. doi: 10.1073/pnas.94.23.12592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jenson H. B., Ench Y., Gao S. J., Rice K., Carey D., Kennedy R. C., Arrand J. R., Mackett M. Epidemiology of herpesvirus papio infection in a large captive baboon colony: similarities to Epstein-Barr virus infection in humans. J Infect Dis. 2000 Apr 13;181(4):1462–1466. doi: 10.1086/315385. [DOI] [PubMed] [Google Scholar]
  31. Jiang H., Cho Y. G., Wang F. Structural, functional, and genetic comparisons of Epstein-Barr virus nuclear antigen 3A, 3B, and 3C homologues encoded by the rhesus lymphocryptovirus. J Virol. 2000 Jul;74(13):5921–5932. doi: 10.1128/jvi.74.13.5921-5932.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kalter S. S., Heberling R. L., Ratner J. J. EBV antibody in sera of non-human primates. Nature. 1972 Aug 11;238(5363):353–354. doi: 10.1038/238353a0. [DOI] [PubMed] [Google Scholar]
  33. Kaye K. M., Izumi K. M., Mosialos G., Kieff E. The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J Virol. 1995 Feb;69(2):675–683. doi: 10.1128/jvi.69.2.675-683.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Laherty C. D., Hu H. M., Opipari A. W., Wang F., Dixit V. M. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem. 1992 Dec 5;267(34):24157–24160. [PubMed] [Google Scholar]
  35. Landon J. C., Ellis L. B., Zeve V. H., Fabrizio D. P. Herpes-type virus in cultured leukocytes from chimpanzees. J Natl Cancer Inst. 1968 Jan;40(1):181–192. [PubMed] [Google Scholar]
  36. Landon J. C., Malan L. B. Seroepidemiologic studies of Epstein-Barr virus antibody in monkeys. J Natl Cancer Inst. 1971 Apr;46(4):881–884. [PubMed] [Google Scholar]
  37. Lapin B. A. The epidemiologic and genetic aspects of an outbreak of leukemia among Hamadryas baboons of the Sukhumi monkey colony. Bibl Haematol. 1973;39:263–268. doi: 10.1159/000427851. [DOI] [PubMed] [Google Scholar]
  38. Lapin B. A., Timanovskaya V. V., Yakovleva L. A. Herpesvirus HVMA: a new representative in the group of the EBV-like B-lymphotropic herpesviruses of primates. Haematol Blood Transfus. 1985;29:312–313. doi: 10.1007/978-3-642-70385-0_65. [DOI] [PubMed] [Google Scholar]
  39. Levine P. H., Leiseca S. A., Hewetson J. F., Traul K. A., Andrese A. P., Granlund D. J., Fabrizio P., Stevens D. A. Infection of rhesus monkeys and chimpanzees with Epstein-Barr virus. Arch Virol. 1980;66(4):341–351. doi: 10.1007/BF01320630. [DOI] [PubMed] [Google Scholar]
  40. Levitskaya J., Coram M., Levitsky V., Imreh S., Steigerwald-Mullen P. M., Klein G., Kurilla M. G., Masucci M. G. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995 Jun 22;375(6533):685–688. doi: 10.1038/375685a0. [DOI] [PubMed] [Google Scholar]
  41. Levy J. A., Levy S. B., Hirshaut Y., Kafuko G., Prince A. Presence of EBV antibodies in sera from wild chimpanzees. Nature. 1971 Oct 22;233(5321):559–560. doi: 10.1038/233559a0. [DOI] [PubMed] [Google Scholar]
  42. Li S. L., Feichtinger H., Kaaya E., Migliorini P., Putkonen P., Biberfeld G., Middeldorp J. M., Biberfeld P., Ernberg I. Expression of Epstein-Barr-virus-related nuclear antigens and B-cell markers in lymphomas of SIV-immunosuppressed monkeys. Int J Cancer. 1993 Oct 21;55(4):609–615. doi: 10.1002/ijc.2910550416. [DOI] [PubMed] [Google Scholar]
  43. Ling P. D., Hayward S. D. Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJk. J Virol. 1995 Mar;69(3):1944–1950. doi: 10.1128/jvi.69.3.1944-1950.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mitchell T., Sugden B. Stimulation of NF-kappa B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J Virol. 1995 May;69(5):2968–2976. doi: 10.1128/jvi.69.5.2968-2976.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Moghaddam A., Koch J., Annis B., Wang F. Infection of human B lymphocytes with lymphocryptoviruses related to Epstein-Barr virus. J Virol. 1998 Apr;72(4):3205–3212. doi: 10.1128/jvi.72.4.3205-3212.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Moghaddam A., Rosenzweig M., Lee-Parritz D., Annis B., Johnson R. P., Wang F. An animal model for acute and persistent Epstein-Barr virus infection. Science. 1997 Jun 27;276(5321):2030–2033. doi: 10.1126/science.276.5321.2030. [DOI] [PubMed] [Google Scholar]
  47. Mosialos G., Birkenbach M., Yalamanchili R., VanArsdale T., Ware C., Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995 Feb 10;80(3):389–399. doi: 10.1016/0092-8674(95)90489-1. [DOI] [PubMed] [Google Scholar]
  48. Naito M., Ono K., Doi T., Kato S., Tanabe S. Antibodies in human and monkey sera to herpes-type virus from a chicken with Marek's disease and to EB virus detected by the immunofluorescence test. Biken J. 1971 Jun;14(2):161–166. [PubMed] [Google Scholar]
  49. Neubauer R. H., Rabin H., Strnad B. C., Nonoyama M., Nelson-Rees W. A. Establishment of a lymphoblastoid cell line and isolation of an Epstein-Barr-related virus of gorilla origin. J Virol. 1979 Sep;31(3):845–848. doi: 10.1128/jvi.31.3.845-848.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ohno S., Luka J., Falk L., Klein G. Detection of a nuclear, EBNA-type antigen in apparently EBNA-negative Herpesvirus papio (HVP)-transformed lymphoid lines by the acid-fixed nuclear binding technique. Int J Cancer. 1977 Dec 15;20(6):941–946. doi: 10.1002/ijc.2910200618. [DOI] [PubMed] [Google Scholar]
  51. Peng R., Gordadze A. V., Fuentes Pananá E. M., Wang F., Zong J., Hayward G. S., Tan J., Ling P. D. Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol. 2000 Jan;74(1):379–389. doi: 10.1128/jvi.74.1.379-389.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rabin H., Neubauer R. H., Hopkins R. F., 3rd, Dzhikidze E. K., Shevtsova Z. V., Lapin B. A. Transforming activity and antigenicity of an Epstein-Barr-like virus from lymphoblastoid cell lines of baboons with lymphoid disease. Intervirology. 1977;8(4):240–249. doi: 10.1159/000148899. [DOI] [PubMed] [Google Scholar]
  53. Rabin H., Neubauer R. H., Hopkins R. F., 3rd, Rasheed S. In vitro lymphocyte transformation by Epstein-Barr virus (EBV)-like viruses isolated from Old-World non-human primates. IARC Sci Publ. 1978;(24 Pt 1):553–557. [PubMed] [Google Scholar]
  54. Ramer J. C., Garber R. L., Steele K. E., Boyson J. F., O'Rourke C., Thomson J. A. Fatal lymphoproliferative disease associated with a novel gammaherpesvirus in a captive population of common marmosets. Comp Med. 2000 Feb;50(1):59–68. [PubMed] [Google Scholar]
  55. Rangan S. R., Martin L. N., Bozelka B. E., Wang N., Gormus B. J. Epstein-Barr virus-related herpesvirus from a rhesus monkey (Macaca mulatta) with malignant lymphoma. Int J Cancer. 1986 Sep 15;38(3):425–432. doi: 10.1002/ijc.2910380319. [DOI] [PubMed] [Google Scholar]
  56. Rao P., Jiang H., Wang F. Cloning of the rhesus lymphocryptovirus viral capsid antigen and Epstein-Barr virus-encoded small RNA homologues and use in diagnosis of acute and persistent infections. J Clin Microbiol. 2000 Sep;38(9):3219–3225. doi: 10.1128/jcm.38.9.3219-3225.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Rasheed S., Rongey R. W., Bruszweski J., Nelson-Rees W. A., Rabin H., Neubauer R. H., Esra G., Gardner M. B. Establishment of a cell line with associated Epstein-Barr-like virus from a leukemic orangutan. Science. 1977 Oct 28;198(4315):407–409. doi: 10.1126/science.198878. [DOI] [PubMed] [Google Scholar]
  58. Rivailler P., Quink C., Wang F. Strong selective pressure for evolution of an Epstein-Barr virus LMP2B homologue in the rhesus lymphocryptovirus. J Virol. 1999 Oct;73(10):8867–8872. doi: 10.1128/jvi.73.10.8867-8872.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ruf I. K., Moghaddam A., Wang F., Sample J. Mechanisms that regulate Epstein-Barr virus EBNA-1 gene transcription during restricted latency are conserved among lymphocryptoviruses of Old World primates. J Virol. 1999 Mar;73(3):1980–1989. doi: 10.1128/jvi.73.3.1980-1989.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Shope T., Dechairo D., Miller G. Malignant lymphoma in cottontop marmosets after inoculation with Epstein-Barr virus. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2487–2491. doi: 10.1073/pnas.70.9.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Stevens D. A., Pry T. W., Blackham E. A., Manaker R. A. Comparison of antigens from human and chimpanzee herpes-type virus-infected hemic cell lines. Proc Soc Exp Biol Med. 1970 Feb;133(2):678–683. doi: 10.3181/00379727-133-34543. [DOI] [PubMed] [Google Scholar]
  62. Strockbine L. D., Cohen J. I., Farrah T., Lyman S. D., Wagener F., DuBose R. F., Armitage R. J., Spriggs M. K. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol. 1998 May;72(5):4015–4021. doi: 10.1128/jvi.72.5.4015-4021.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wang F., Gregory C., Sample C., Rowe M., Liebowitz D., Murray R., Rickinson A., Kieff E. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 1990 May;64(5):2309–2318. doi: 10.1128/jvi.64.5.2309-2318.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Werner J., Henle G., Pinto C. A., Haff R. F., Henle W. Establishment of continuous lymphoblast cultures from leukocytes of gibbons (Hylobates lar). Int J Cancer. 1972 Nov;10(3):557–567. doi: 10.1002/ijc.2910100315. [DOI] [PubMed] [Google Scholar]
  65. Yates J. L., Camiolo S. M., Ali S., Ying A. Comparison of the EBNA1 proteins of Epstein-Barr virus and herpesvirus papio in sequence and function. Virology. 1996 Aug 1;222(1):1–13. doi: 10.1006/viro.1996.0392. [DOI] [PubMed] [Google Scholar]
  66. van Grunsven W. M., Spaan W. J., Middeldorp J. M. Localization and diagnostic application of immunodominant domains of the BFRF3-encoded Epstein-Barr virus capsid protein. J Infect Dis. 1994 Jul;170(1):13–19. doi: 10.1093/infdis/170.1.13. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES