Abstract
Murine gamma-herpesvirus 68 (MHV-68) is a natural pathogen of small rodents and insectivores (mice, voles and shrews). The primary infection is characterized by virus replication in lung epithelial cells and the establishment of a latent infection in B lymphocytes. The virus is also observed to persist in lung epithelial cells, dendritic cells and macrophages. Splenomegaly is observed two weeks after infection, in which there is a CD4+ T-cell-mediated expansion of B and T cells in the spleen. At three weeks post-infection an infectious mononucleosis-like syndrome is observed involving a major expansion of Vbeta4+CD8+ T cells. Later in the course of persistent infection, ca. 10% of mice develop lymphoproliferative disease characterized as lymphomas of B-cell origin. The genome from MHV-68 strain g2.4 has been sequenced and contains ca. 73 genes, the majority of which are collinear and homologous to other gamma-herpesviruses. The genome includes cellular homologues for a complement-regulatory protein, Bcl-2, cyclin D and interleukin-8 receptor and a set of novel genes M1 to M4. The function of these genes in the context of latent infections, evasion of immune responses and virus-mediated pathologies is discussed. Both innate and adaptive immune responses play an active role in limiting virus infection. The absence of type I interferon (IFN) results in a lethal MHV-68 infection, emphasizing the central role of these cytokines at the initial stages of infection. In contrast, type II IFN is not essential for the recovery from infection in the lung, but a failure of type II IFN receptor signalling results in the atrophy of lymphoid tissue associated with virus persistence. Splenic atrophy appears to be the result of immunopathology, since in the absence of CD8+ T cells no pathology occurs. CD8+ T cells play a major role in recovery from the primary infection, and also in regulating latently infected cells expressing the M2 gene product. CD4+ T cells have a key role in surveillance against virus recurrences in the lung, in part mediated through 'help' in the genesis of neutralizing antibodies. In the absence of CD4+ T cells, virus-specific CD8+ T cells are able to control the primary infection in the respiratory tract, yet surprisingly the memory CD8+ T cells generated are unable to inhibit virus recurrences in the lung. This could be explained in part by the observations that this virus can downregulate major histocompatibility complex class I expression and also restrict inflammatory cell responses by producing a chemokine-binding protein (M3 gene product). MHV-68 provides an excellent model to explore methods for controlling gamma-herpesvirus infection through vaccination and chemotherapy. Vaccination with gp150 (a homologue of gp350 of Epstein-Barr virus) results in a reduction in splenomegaly and virus latency but does not block replication in the lung, nor the establishment of a latent infection. Even when lung virus infection is greatly reduced following the action of CD8+ T cells, induced via a prime-boost vaccination strategy, a latent infection is established. Potent antiviral compounds such as the nucleoside analogue 2'deoxy-5-ethyl-beta-4'-thiouridine, which disrupts virus replication in vivo, cannot inhibit the establishment of a latent infection. Clearly, devising strategies to interrupt the establishment of latent virus infections may well prove impossible with existing methods.
Full Text
The Full Text of this article is available as a PDF (203.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht J. C., Nicholas J., Biller D., Cameron K. R., Biesinger B., Newman C., Wittmann S., Craxton M. A., Coleman H., Fleckenstein B. Primary structure of the herpesvirus saimiri genome. J Virol. 1992 Aug;66(8):5047–5058. doi: 10.1128/jvi.66.8.5047-5058.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes A., Dyson H., Sunil-Chandra N. P., Collins P., Nash A. A. 2'-Deoxy-5-ethyl-beta-4'-thiouridine inhibits replication of murine gammaherpesvirus and delays the onset of virus latency. Antivir Chem Chemother. 1999 Nov;10(6):321–326. doi: 10.1177/095632029901000603. [DOI] [PubMed] [Google Scholar]
- Bellows D. S., Chau B. N., Lee P., Lazebnik Y., Burns W. H., Hardwick J. M. Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J Virol. 2000 Jun;74(11):5024–5031. doi: 10.1128/jvi.74.11.5024-5031.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belz G. T., Stevenson P. G., Castrucci M. R., Altman J. D., Doherty P. C. Postexposure vaccination massively increases the prevalence of gamma-herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2725–2730. doi: 10.1073/pnas.040575197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaskovic D., Stanceková M., Svobodová J., Mistríková J. Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol. 1980 Dec;24(6):468–468. [PubMed] [Google Scholar]
- Bowden R. J., Simas J. P., Davis A. J., Efstathiou S. Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol. 1997 Jul;78(Pt 7):1675–1687. doi: 10.1099/0022-1317-78-7-1675. [DOI] [PubMed] [Google Scholar]
- Cardin R. D., Brooks J. W., Sarawar S. R., Doherty P. C. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med. 1996 Sep 1;184(3):863–871. doi: 10.1084/jem.184.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chastel C., Beaucournu J. P., Chastel O., Legrand M. C., Le Goff F. A herpesvirus from an European shrew (Crocidura russula) Acta Virol. 1994 Oct;38(5):309–309. [PubMed] [Google Scholar]
- Clambey E. T., Virgin H. W., 4th, Speck S. H. Disruption of the murine gammaherpesvirus 68 M1 open reading frame leads to enhanced reactivation from latency. J Virol. 2000 Feb;74(4):1973–1984. doi: 10.1128/jvi.74.4.1973-1984.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutia B. M., Allen D. J., Dyson H., Nash A. A. Type I interferons and IRF-1 play a critical role in the control of a gammaherpesvirus infection. Virology. 1999 Sep 1;261(2):173–179. doi: 10.1006/viro.1999.9834. [DOI] [PubMed] [Google Scholar]
- Dutia B. M., Clarke C. J., Allen D. J., Nash A. A. Pathological changes in the spleens of gamma interferon receptor-deficient mice infected with murine gammaherpesvirus: a role for CD8 T cells. J Virol. 1997 Jun;71(6):4278–4283. doi: 10.1128/jvi.71.6.4278-4283.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutia B. M., Stewart J. P., Clayton R. A., Dyson H., Nash A. A. Kinetic and phenotypic changes in murine lymphocytes infected with murine gammaherpesvirus-68 in vitro. J Gen Virol. 1999 Oct;80(Pt 10):2729–2736. doi: 10.1099/0022-1317-80-10-2729. [DOI] [PubMed] [Google Scholar]
- Efstathiou S., Ho Y. M., Hall S., Styles C. J., Scott S. D., Gompels U. A. Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. J Gen Virol. 1990 Jun;71(Pt 6):1365–1372. doi: 10.1099/0022-1317-71-6-1365. [DOI] [PubMed] [Google Scholar]
- Efstathiou S., Ho Y. M., Minson A. C. Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol. 1990 Jun;71(Pt 6):1355–1364. doi: 10.1099/0022-1317-71-6-1355. [DOI] [PubMed] [Google Scholar]
- Ehtisham S., Sunil-Chandra N. P., Nash A. A. Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol. 1993 Sep;67(9):5247–5252. doi: 10.1128/jvi.67.9.5247-5252.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flaño E., Husain S. M., Sample J. T., Woodland D. L., Blackman M. A. Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol. 2000 Jul 15;165(2):1074–1081. doi: 10.4049/jimmunol.165.2.1074. [DOI] [PubMed] [Google Scholar]
- Hardy C. L., Silins S. L., Woodland D. L., Blackman M. A. Murine gamma-herpesvirus infection causes V(beta)4-specific CDR3-restricted clonal expansions within CD8(+) peripheral blood T lymphocytes. Int Immunol. 2000 Aug;12(8):1193–1204. doi: 10.1093/intimm/12.8.1193. [DOI] [PubMed] [Google Scholar]
- Henderson S., Huen D., Rowe M., Dawson C., Johnson G., Rickinson A. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8479–8483. doi: 10.1073/pnas.90.18.8479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husain S. M., Usherwood E. J., Dyson H., Coleclough C., Coppola M. A., Woodland D. L., Blackman M. A., Stewart J. P., Sample J. T. Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8(+) T lymphocytes. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7508–7513. doi: 10.1073/pnas.96.13.7508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulkarni A. B., Holmes K. L., Fredrickson T. N., Hartley J. W., Morse H. C., 3rd Characteristics of a murine gammaherpesvirus infection immunocompromised mice. In Vivo. 1997 Jul-Aug;11(4):281–291. [PubMed] [Google Scholar]
- Liu L., Usherwood E. J., Blackman M. A., Woodland D. L. T-cell vaccination alters the course of murine herpesvirus 68 infection and the establishment of viral latency in mice. J Virol. 1999 Dec;73(12):9849–9857. doi: 10.1128/jvi.73.12.9849-9857.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackett M., Stewart J. P., de V Pepper S., Chee M., Efstathiou S., Nash A. A., Arrand J. R. Genetic content and preliminary transcriptional analysis of a representative region of murine gammaherpesvirus 68. J Gen Virol. 1997 Jun;78(Pt 6):1425–1433. doi: 10.1099/0022-1317-78-6-1425. [DOI] [PubMed] [Google Scholar]
- Mistrikova J., Kozuch O., Klempa B., Kontsekova E., Labuda M., Mrmusova M. Nové poznatky o ekológii a epidemiológii mysieho herpetického vírusu izolovaného na Slovensku. Bratisl Lek Listy. 2000;101(3):157–162. [PubMed] [Google Scholar]
- Mistríková J., Mrmusová M., Durmanová V., Rajcáni J. Increased neoplasm development due to immunosuppressive treatment with FK-506 in BALB/C mice persistently infected with the mouse herpesvirus (MHV-72). Viral Immunol. 1999;12(3):237–247. doi: 10.1089/vim.1999.12.237. [DOI] [PubMed] [Google Scholar]
- Mistríkóva J., Rajcáni J., Mrmusová M., Oravcová I. Chronic infection of Balb/c mice with murine herpesvirus 72 is associated with neoplasm development. Acta Virol. 1996 Nov-Dec;40(5-6):297–301. [PubMed] [Google Scholar]
- Nash A. A., Sunil-Chandra N. P. Interactions of the murine gammaherpesvirus with the immune system. Curr Opin Immunol. 1994 Aug;6(4):560–563. doi: 10.1016/0952-7915(94)90141-4. [DOI] [PubMed] [Google Scholar]
- Nava V. E., Cheng E. H., Veliuona M., Zou S., Clem R. J., Mayer M. L., Hardwick J. M. Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. J Virol. 1997 May;71(5):4118–4122. doi: 10.1128/jvi.71.5.4118-4122.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neyts J., De Clercq E. In vitro and in vivo inhibition of murine gamma herpesvirus 68 replication by selected antiviral agents. Antimicrob Agents Chemother. 1998 Jan;42(1):170–172. doi: 10.1128/aac.42.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parry C. M., Simas J. P., Smith V. P., Stewart C. A., Minson A. C., Efstathiou S., Alcami A. A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med. 2000 Feb 7;191(3):573–578. doi: 10.1084/jem.191.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peacock J. W., Bost K. L. Infection of intestinal epithelial cells and development of systemic disease following gastric instillation of murine gammaherpesvirus-68. J Gen Virol. 2000 Feb;81(Pt 2):421–429. doi: 10.1099/0022-1317-81-2-421. [DOI] [PubMed] [Google Scholar]
- Roy D. J., Ebrahimi B. C., Dutia B. M., Nash A. A., Stewart J. P. Murine gammaherpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence. Arch Virol. 2000;145(11):2411–2420. doi: 10.1007/s007050070030. [DOI] [PubMed] [Google Scholar]
- Sangster M. Y., Topham D. J., D'Costa S., Cardin R. D., Marion T. N., Myers L. K., Doherty P. C. Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol. 2000 Feb 15;164(4):1820–1828. doi: 10.4049/jimmunol.164.4.1820. [DOI] [PubMed] [Google Scholar]
- Sarawar S. R., Brooks J. W., Cardin R. D., Mehrpooya M., Doherty P. C. Pathogenesis of murine gammaherpesvirus-68 infection in interleukin-6-deficient mice. Virology. 1998 Sep 30;249(2):359–366. doi: 10.1006/viro.1998.9309. [DOI] [PubMed] [Google Scholar]
- Sarawar S. R., Cardin R. D., Brooks J. W., Mehrpooya M., Tripp R. A., Doherty P. C. Cytokine production in the immune response to murine gammaherpesvirus 68. J Virol. 1996 May;70(5):3264–3268. doi: 10.1128/jvi.70.5.3264-3268.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarid R., Sato T., Bohenzky R. A., Russo J. J., Chang Y. Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med. 1997 Mar;3(3):293–298. doi: 10.1038/nm0397-293. [DOI] [PubMed] [Google Scholar]
- Simas J. P., Bowden R. J., Paige V., Efstathiou S. Four tRNA-like sequences and a serpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo. J Gen Virol. 1998 Jan;79(Pt 1):149–153. doi: 10.1099/0022-1317-79-1-149. [DOI] [PubMed] [Google Scholar]
- Simas J. P., Efstathiou S. Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol. 1998 Jul;6(7):276–282. doi: 10.1016/s0966-842x(98)01306-7. [DOI] [PubMed] [Google Scholar]
- Stevenson P. G., Belz G. T., Altman J. D., Doherty P. C. Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. Eur J Immunol. 1999 Apr;29(4):1059–1067. doi: 10.1002/(SICI)1521-4141(199904)29:04<1059::AID-IMMU1059>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Stevenson P. G., Belz G. T., Castrucci M. R., Altman J. D., Doherty P. C. A gamma-herpesvirus sneaks through a CD8(+) T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9281–9286. doi: 10.1073/pnas.96.16.9281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenson P. G., Cardin R. D., Christensen J. P., Doherty P. C. Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol. 1999 Feb;80(Pt 2):477–483. doi: 10.1099/0022-1317-80-2-477. [DOI] [PubMed] [Google Scholar]
- Stevenson P. G., Doherty P. C. Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol. 1999 Feb;73(2):1075–1079. doi: 10.1128/jvi.73.2.1075-1079.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenson P. G., Efstathiou S., Doherty P. C., Lehner P. J. Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8455–8460. doi: 10.1073/pnas.150240097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart J. P., Janjua N. J., Pepper S. D., Bennion G., Mackett M., Allen T., Nash A. A., Arrand J. R. Identification and characterization of murine gammaherpesvirus 68 gp150: a virion membrane glycoprotein. J Virol. 1996 Jun;70(6):3528–3535. doi: 10.1093/benz/9780199773787.article.b00034574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart J. P., Micali N., Usherwood E. J., Bonina L., Nash A. A. Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine. 1999 Jan;17(2):152–157. doi: 10.1016/s0264-410x(98)00190-x. [DOI] [PubMed] [Google Scholar]
- Stewart J. P., Usherwood E. J., Ross A., Dyson H., Nash T. Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med. 1998 Jun 15;187(12):1941–1951. doi: 10.1084/jem.187.12.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunil-Chandra N. P., Arno J., Fazakerley J., Nash A. A. Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol. 1994 Oct;145(4):818–826. [PMC free article] [PubMed] [Google Scholar]
- Sunil-Chandra N. P., Efstathiou S., Arno J., Nash A. A. Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J Gen Virol. 1992 Sep;73(Pt 9):2347–2356. doi: 10.1099/0022-1317-73-9-2347. [DOI] [PubMed] [Google Scholar]
- Sunil-Chandra N. P., Efstathiou S., Nash A. A. Interactions of murine gammaherpesvirus 68 with B and T cell lines. Virology. 1993 Apr;193(2):825–833. doi: 10.1006/viro.1993.1191. [DOI] [PubMed] [Google Scholar]
- Sunil-Chandra N. P., Efstathiou S., Nash A. A. Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol. 1992 Dec;73(Pt 12):3275–3279. doi: 10.1099/0022-1317-73-12-3275. [DOI] [PubMed] [Google Scholar]
- Svobodová J., Blaskovic D., Mistríková J. Growth characteristics of herpesviruses isolated from free living small rodents. Acta Virol. 1982 Jul;26(4):256–263. [PubMed] [Google Scholar]
- Terry L. A., Stewart J. P., Nash A. A., Fazakerley J. K. Murine gammaherpesvirus-68 infection of and persistence in the central nervous system. J Gen Virol. 2000 Nov;81(Pt 11):2635–2643. doi: 10.1099/0022-1317-81-11-2635. [DOI] [PubMed] [Google Scholar]
- Tripp R. A., Hamilton-Easton A. M., Cardin R. D., Nguyen P., Behm F. G., Woodland D. L., Doherty P. C., Blackman M. A. Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen? J Exp Med. 1997 May 5;185(9):1641–1650. doi: 10.1084/jem.185.9.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usherwood E. J., Ross A. J., Allen D. J., Nash A. A. Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol. 1996 Apr;77(Pt 4):627–630. doi: 10.1099/0022-1317-77-4-627. [DOI] [PubMed] [Google Scholar]
- Usherwood E. J., Roy D. J., Ward K., Surman S. L., Dutia B. M., Blackman M. A., Stewart J. P., Woodland D. L. Control of gammaherpesvirus latency by latent antigen-specific CD8(+) T cells. J Exp Med. 2000 Oct 2;192(7):943–952. doi: 10.1084/jem.192.7.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usherwood E. J., Stewart J. P., Nash A. A. Characterization of tumor cell lines derived from murine gammaherpesvirus-68-infected mice. J Virol. 1996 Sep;70(9):6516–6518. doi: 10.1128/jvi.70.9.6516-6518.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usherwood E. J., Stewart J. P., Robertson K., Allen D. J., Nash A. A. Absence of splenic latency in murine gammaherpesvirus 68-infected B cell-deficient mice. J Gen Virol. 1996 Nov;77(Pt 11):2819–2825. doi: 10.1099/0022-1317-77-11-2819. [DOI] [PubMed] [Google Scholar]
- Virgin H. W., 4th, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol. 1997 Aug;71(8):5894–5904. doi: 10.1128/jvi.71.8.5894-5904.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virgin H. W., 4th, Presti R. M., Li X. Y., Liu C., Speck S. H. Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. J Virol. 1999 Mar;73(3):2321–2332. doi: 10.1128/jvi.73.3.2321-2332.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virgin H. W., Speck S. H. Unraveling immunity to gamma-herpesviruses: a new model for understanding the role of immunity in chronic virus infection. Curr Opin Immunol. 1999 Aug;11(4):371–379. doi: 10.1016/s0952-7915(99)80063-6. [DOI] [PubMed] [Google Scholar]
- Wang G. H., Garvey T. L., Cohen J. I. The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. J Gen Virol. 1999 Oct;80(Pt 10):2737–2740. doi: 10.1099/0022-1317-80-10-2737. [DOI] [PubMed] [Google Scholar]
- Weck K. E., Kim S. S., Virgin HW I. V., Speck S. H. Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol. 1999 Apr;73(4):3273–3283. doi: 10.1128/jvi.73.4.3273-3283.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Berkel V., Barrett J., Tiffany H. L., Fremont D. H., Murphy P. M., McFadden G., Speck S. H., Virgin HW I. V. Identification of a gammaherpesvirus selective chemokine binding protein that inhibits chemokine action. J Virol. 2000 Aug;74(15):6741–6747. doi: 10.1128/jvi.74.15.6741-6747.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Dyk L. F., Hess J. L., Katz J. D., Jacoby M., Speck S. H., Virgin HW I. V. The murine gammaherpesvirus 68 v-cyclin gene is an oncogene that promotes cell cycle progression in primary lymphocytes. J Virol. 1999 Jun;73(6):5110–5122. doi: 10.1128/jvi.73.6.5110-5122.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]