Abstract
Two strategies used to uncover neural systems for episodic-like memory in animals are discussed: (i) an attribute of episodic memory (what? when? where?) is examined in order to reveal the neuronal interactions supporting that component of memory; and (ii) the connections of a structure thought to be central to episodic memory in humans are studied at a level of detail not feasible in humans. By focusing on spatial memory (where?) and the hippocampus, it has proved possible to bring the strategies together. A review of lesion, disconnection and immediate early-gene studies in animals reveals the importance of interactions between the hippocampus and specific nuclei in the diencephalon (most notably the anterior thalamic nuclei) for spatial memory. Other parts of this extended hippocampal system include the mammillary bodies and the posterior cingulate (retrosplenial) cortex. Furthermore, by combining lesion and immediate early-gene studies it is possible to show how the loss of one component structure or tract can influence the remaining regions in this group of structures. The validity of this convergent approach is supported by new findings showing that the same set of regions is implicated in anterograde amnesia in humans.
Full Text
The Full Text of this article is available as a PDF (787.2 KB).