Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Oct 29;356(1414):1521–1531. doi: 10.1098/rstb.2001.0977

On the evolution of early development in the Nematoda.

B Goldstein 1
PMCID: PMC1088533  PMID: 11604120

Abstract

The phylum Nematoda serves as an excellent model system for exploring how development evolves, using a comparative approach to developmental genetics. More than 100 laboratories are studying developmental mechanisms in the nematode Caenorhabditis elegans, and many of the methods that have been developed for C. elegans can be applied to other nematodes. This review summarizes what is known so far about steps in early development that have evolved in the nematodes, and proposes potential experiments that could make use of these data to further our understanding of how development evolves. The promise of such a comparative approach to developmental genetics is to fill a wide gap in our understanding of evolution--a gap spanning from mutations in developmental genes through to their phenotypic results, on which natural selection may act.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaxter M. L., De Ley P., Garey J. R., Liu L. X., Scheldeman P., Vierstraete A., Vanfleteren J. R., Mackey L. Y., Dorris M., Frisse L. M. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998 Mar 5;392(6671):71–75. doi: 10.1038/32160. [DOI] [PubMed] [Google Scholar]
  2. Blaxter M., Aslett M., Guiliano D., Daub J. Parasitic helminth genomics. Filarial Genome Project. Parasitology. 1999;118 (Suppl):S39–S51. doi: 10.1017/s0031182099004060. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng N. N., Kirby C. M., Kemphues K. J. Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics. 1995 Feb;139(2):549–559. doi: 10.1093/genetics/139.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  6. Félix M. A. Evolution of developmental mechanisms in nematodes. J Exp Zool. 1999 Apr 15;285(1):3–18. doi: 10.1002/(sici)1097-010x(19990415)285:1<3::aid-jez2>3.3.co;2-a. [DOI] [PubMed] [Google Scholar]
  7. Goldstein B., Frisse L. M., Thomas W. K. Embryonic axis specification in nematodes: evolution of the first step in development. Curr Biol. 1998 Jan 29;8(3):157–160. doi: 10.1016/s0960-9822(98)70062-4. [DOI] [PubMed] [Google Scholar]
  8. Goldstein B., Hird S. N. Specification of the anteroposterior axis in Caenorhabditis elegans. Development. 1996 May;122(5):1467–1474. doi: 10.1242/dev.122.5.1467. [DOI] [PubMed] [Google Scholar]
  9. Goldstein B. When cells tell their neighbors which direction to divide. Dev Dyn. 2000 May;218(1):23–29. doi: 10.1002/(SICI)1097-0177(200005)218:1<23::AID-DVDY3>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  10. Haag E. S., Kimble J. Regulatory elements required for development of caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. Genetics. 2000 May;155(1):105–116. doi: 10.1093/genetics/155.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hird S. N., Paulsen J. E., Strome S. Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development. 1996 Apr;122(4):1303–1312. doi: 10.1242/dev.122.4.1303. [DOI] [PubMed] [Google Scholar]
  12. Hyman A. A. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J Cell Biol. 1989 Sep;109(3):1185–1193. doi: 10.1083/jcb.109.3.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hyman A. A., White J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol. 1987 Nov;105(5):2123–2135. doi: 10.1083/jcb.105.5.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kemphues K. J., Priess J. R., Morton D. G., Cheng N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell. 1988 Feb 12;52(3):311–320. doi: 10.1016/s0092-8674(88)80024-2. [DOI] [PubMed] [Google Scholar]
  15. Schierenberg E. Reversal of cellular polarity and early cell-cell interaction in the embryos of Caenorhabditis elegans. Dev Biol. 1987 Aug;122(2):452–463. doi: 10.1016/0012-1606(87)90309-5. [DOI] [PubMed] [Google Scholar]
  16. Schnabel R., Hutter H., Moerman D., Schnabel H. Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev Biol. 1997 Apr 15;184(2):234–265. doi: 10.1006/dbio.1997.8509. [DOI] [PubMed] [Google Scholar]
  17. Seydoux G., Strome S. Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development. 1999 Aug;126(15):3275–3283. doi: 10.1242/dev.126.15.3275. [DOI] [PubMed] [Google Scholar]
  18. Sharp P. A., Zamore P. D. Molecular biology. RNA interference. Science. 2000 Mar 31;287(5462):2431–2433. doi: 10.1126/science.287.5462.2431. [DOI] [PubMed] [Google Scholar]
  19. Skiba F., Schierenberg E. Cell lineages, developmental timing, and spatial pattern formation in embryos of free-living soil nematodes. Dev Biol. 1992 Jun;151(2):597–610. doi: 10.1016/0012-1606(92)90197-o. [DOI] [PubMed] [Google Scholar]
  20. Sommer R. J. Evolution and development--the nematode vulva as a case study. Bioessays. 1997 Mar;19(3):225–231. doi: 10.1002/bies.950190308. [DOI] [PubMed] [Google Scholar]
  21. Sommer R. J. Evolution of nematode development. Curr Opin Genet Dev. 2000 Aug;10(4):443–448. doi: 10.1016/s0959-437x(00)00110-6. [DOI] [PubMed] [Google Scholar]
  22. Streit A., Li W., Robertson B., Schein J., Kamal I. H., Marra M., Wood W. B. Homologs of the Caenorhabditis elegans masculinizing gene her-1 in C. briggsae and the filarial parasite Brugia malayi. Genetics. 1999 Aug;152(4):1573–1584. doi: 10.1093/genetics/152.4.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  24. Thomas C., DeVries P., Hardin J., White J. Four-dimensional imaging: computer visualization of 3D movements in living specimens. Science. 1996 Aug 2;273(5275):603–607. doi: 10.1126/science.273.5275.603. [DOI] [PubMed] [Google Scholar]
  25. Thorpe C. J., Schlesinger A., Bowerman B. Wnt signalling in Caenorhabditis elegans: regulating repressors and polarizing the cytoskeleton. Trends Cell Biol. 2000 Jan;10(1):10–17. doi: 10.1016/s0962-8924(99)01672-4. [DOI] [PubMed] [Google Scholar]
  26. Voronov D. A., Panchin Y. V. Cell lineage in marine nematode Enoplus brevis. Development. 1998 Jan;125(1):143–150. doi: 10.1242/dev.125.1.143. [DOI] [PubMed] [Google Scholar]
  27. Voronov D. A., Panchin Y. V., Spiridonov S. E. Nematode phylogeny and embryology. Nature. 1998 Sep 3;395(6697):28–28. doi: 10.1038/25637. [DOI] [PubMed] [Google Scholar]
  28. Wallenfang M. R., Seydoux G. Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process. Nature. 2000 Nov 2;408(6808):89–92. doi: 10.1038/35040562. [DOI] [PubMed] [Google Scholar]
  29. Wiegner O., Schierenberg E. Regulative development in a nematode embryo: a hierarchy of cell fate transformations. Dev Biol. 1999 Nov 1;215(1):1–12. doi: 10.1006/dbio.1999.9423. [DOI] [PubMed] [Google Scholar]
  30. Wiegner O., Schierenberg E. Specification of gut cell fate differs significantly between the nematodes Acrobeloides nanus and caenorhabditis elegans. Dev Biol. 1998 Dec 1;204(1):3–14. doi: 10.1006/dbio.1998.9054. [DOI] [PubMed] [Google Scholar]
  31. Wray G. A., Bely A. E. The evolution of echinoderm development is driven by several distinct factors. Dev Suppl. 1994:97–106. [PubMed] [Google Scholar]
  32. van den Biggelaar J. A., Guerrier P. Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusk Patella vulgata. Dev Biol. 1979 Feb;68(2):462–471. doi: 10.1016/0012-1606(79)90218-5. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES