Abstract
Cladistic analyses generally place tunicates close to the base of the chordate lineage, consistent with the assumption that the tunicate tail is primitively simple, not secondarily reduced from a segmented trunk. Cephalochordates (i.e. amphioxus) are segmented and resemble vertebrates in having two distinct locomotory modes, slow for distance swimming and fast for escape, that depend on separate sets of motor neurons and muscle cells. The sense organs of both amphioxus and tunicate larvae serve essentially as navigational aids and, despite some uncertainty as to homologies, current molecular and ultrastructural data imply a close relationship between them. There are far fewer signs of modification and reduction in the amphioxus central nervous system (CNS), however, so it is arguably the closer to the ancestral condition. Similarities between amphioxus and tunicate sense organs are then most easily explained if distance swimming evolved before and escape behaviour after the two lineages diverged, leaving tunicates to adopt more passive means of avoiding predation. Neither group has the kind of sense organs or sensory integration centres an organism would need to monitor predators, yet mobile predators with eyes were probably important in the early Palaeozoic. For a predator, improvements in vision and locomotion are mutually reinforcing. Both features probably evolved rapidly and together, in an 'arms race' of eyes, brains and segments that left protochordates behind, and ultimately produced the vertebrate head.
Full Text
The Full Text of this article is available as a PDF (217.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Artinger K. B., Chitnis A. B., Mercola M., Driever W. Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons. Development. 1999 Sep;126(18):3969–3979. doi: 10.1242/dev.126.18.3969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cinnamon Y., Kahane N., Kalcheim C. Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Development. 1999 Oct;126(19):4305–4315. doi: 10.1242/dev.126.19.4305. [DOI] [PubMed] [Google Scholar]
- Crowther R. J., Whittaker J. R. Serial repetition of cilia pairs along the tail surface of an ascidian larva. J Exp Zool. 1994 Jan 1;268(1):9–16. doi: 10.1002/jez.1402680103. [DOI] [PubMed] [Google Scholar]
- Devoto S. H., Melançon E., Eisen J. S., Westerfield M. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development. 1996 Nov;122(11):3371–3380. doi: 10.1242/dev.122.11.3371. [DOI] [PubMed] [Google Scholar]
- Donoghue P. C., Forey P. L., Aldridge R. J. Conodont affinity and chordate phylogeny. Biol Rev Camb Philos Soc. 2000 May;75(2):191–251. doi: 10.1017/s0006323199005472. [DOI] [PubMed] [Google Scholar]
- Gans C. Stages in the origin of vertebrates: analysis by means of scenarios. Biol Rev Camb Philos Soc. 1989 Aug;64(3):221–268. doi: 10.1111/j.1469-185x.1989.tb00471.x. [DOI] [PubMed] [Google Scholar]
- Gee H. Vertebrate morphology. Return of the amphioxus. Nature. 1994 Aug 18;370(6490):504–505. doi: 10.1038/370504a0. [DOI] [PubMed] [Google Scholar]
- Gorman A. L., McReynolds J. S., Barnes S. N. Photoreceptors in primitive chordates: fine structure, hyperpolarizing receptor potentials, and evolution. Science. 1971 Jun 4;172(3987):1052–1054. doi: 10.1126/science.172.3987.1052. [DOI] [PubMed] [Google Scholar]
- Holland L. Z., Holland N. D. Chordate origins of the vertebrate central nervous system. Curr Opin Neurobiol. 1999 Oct;9(5):596–602. doi: 10.1016/S0959-4388(99)00003-3. [DOI] [PubMed] [Google Scholar]
- Holland L. Z., Schubert M., Holland N. D., Neuman T. Evolutionary conservation of the presumptive neural plate markers AmphiSox1/2/3 and AmphiNeurogenin in the invertebrate chordate amphioxus. Dev Biol. 2000 Oct 1;226(1):18–33. doi: 10.1006/dbio.2000.9810. [DOI] [PubMed] [Google Scholar]
- Holland P. W. Embryonic development of heads, skeletons and amphioxus: Edwin S. Goodrich revisited. Int J Dev Biol. 2000;44(1):29–34. [PubMed] [Google Scholar]
- Jackman W. R., Langeland J. A., Kimmel C. B. islet reveals segmentation in the Amphioxus hindbrain homolog. Dev Biol. 2000 Apr 1;220(1):16–26. doi: 10.1006/dbio.2000.9630. [DOI] [PubMed] [Google Scholar]
- Locascio A., Aniello F., Amoroso A., Manzanares M., Krumlauf R., Branno M. Patterning the ascidian nervous system: structure, expression and transgenic analysis of the CiHox3 gene. Development. 1999 Nov;126(21):4737–4748. doi: 10.1242/dev.126.21.4737. [DOI] [PubMed] [Google Scholar]
- Manni L., Lane N. J., Sorrentino M., Zaniolo G., Burighel P. Mechanism of neurogenesis during the embryonic development of a tunicate. J Comp Neurol. 1999 Sep 27;412(3):527–541. doi: 10.1002/(sici)1096-9861(19990927)412:3<527::aid-cne11>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Nicol D., Meinertzhagen I. A. Cell counts and maps in the larval central nervous system of the ascidian Ciona intestinalis (L.). J Comp Neurol. 1991 Jul 22;309(4):415–429. doi: 10.1002/cne.903090402. [DOI] [PubMed] [Google Scholar]
- Northcutt R. G., Gans C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol. 1983 Mar;58(1):1–28. doi: 10.1086/413055. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1998.0385. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rspb.1999.0801. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rstb.1998.0347. [DOI] [PMC free article] [Google Scholar]
- Ruiz S., Anadón R. The fine structure of lamellate cells in the brain of amphioxus (Branchiostoma lanceolatum, Cephalochordata). Cell Tissue Res. 1991 Mar;263(3):597–600. doi: 10.1007/BF00327295. [DOI] [PubMed] [Google Scholar]
- Wada H. Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18S rDNA molecular phylogeny. Mol Biol Evol. 1998 Sep;15(9):1189–1194. doi: 10.1093/oxfordjournals.molbev.a026026. [DOI] [PubMed] [Google Scholar]
- Wada H., Garcia-Fernàndez J., Holland P. W. Colinear and segmental expression of amphioxus Hox genes. Dev Biol. 1999 Sep 1;213(1):131–141. doi: 10.1006/dbio.1999.9369. [DOI] [PubMed] [Google Scholar]
- Wada H., Saiga H., Satoh N., Holland P. W. Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development. 1998 Mar;125(6):1113–1122. doi: 10.1242/dev.125.6.1113. [DOI] [PubMed] [Google Scholar]
- Welsch U. Die Feinstruktur der Josephschen Zellen im Gehirn von Amphioxus. Z Zellforsch Mikrosk Anat. 1968;86(2):252–261. [PubMed] [Google Scholar]
- Williams N. A., Holland P. W. Molecular evolution of the brain of chordates. Brain Behav Evol. 1998;52(4-5):177–185. doi: 10.1159/000006562. [DOI] [PubMed] [Google Scholar]