Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Oct 29;356(1414):1573–1582. doi: 10.1098/rstb.2001.0919

Developmental genetics in primitive chordates.

P Sordino 1, L Belluzzi 1, R De Santis 1, W C Smith 1
PMCID: PMC1088537  PMID: 11604124

Abstract

Recent advances in the study of the genetics and genomics of urochordates testify to a renewed interest in this chordate subphylum, believed to be the most primitive extant chordate relatives of the vertebrates. In addition to their primitive nature, many features of their reproduction and early development make the urochordates ideal model chordates for developmental genetics. Many urochordates spawn large numbers of transparent and externally developing embryos on a daily basis. Additionally, the embryos have a defined and well-characterized cell lineage until the end of gastrulation. Furthermore, the genomes of the urochordates have been estimated to be only 5-10% of the size of the vertebrates and to have fewer genes and less genetic redundancy than vertebrates. Genetic screens, which are powerful tools for investigating developmental mechanisms, have recently become feasible due to new culturing techniques in ascidians. Because hermaphrodite ascidians are able to self-fertilize, recessive mutations can be detected in a single generation. Several recent studies have demonstrated the feasibility of applying modern genetic techniques to the study of ascidian biology.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Burgess S., Golling G., Chen W., Sun Z., Townsend K., Farrington S., Haldi M., Hopkins N. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 1999 Oct 15;13(20):2713–2724. doi: 10.1101/gad.13.20.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowerman B. Maternal control of pattern formation in early Caenorhabditis elegans embryos. Curr Top Dev Biol. 1998;39:73–117. doi: 10.1016/s0070-2153(08)60453-6. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byrd J., Lambert C. C. Mechanism of the block to hybridization and selfing between the sympatric ascidians Ciona intestinalis and Ciona savignyi. Mol Reprod Dev. 2000 Jan;55(1):109–116. doi: 10.1002/(SICI)1098-2795(200001)55:1<109::AID-MRD15>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  5. Di Gregorio A., Levine M. Ascidian embryogenesis and the origins of the chordate body plan. Curr Opin Genet Dev. 1998 Aug;8(4):457–463. doi: 10.1016/s0959-437x(98)80118-4. [DOI] [PubMed] [Google Scholar]
  6. Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000 Feb 17;403(6771):776–781. doi: 10.1038/35001596. [DOI] [PubMed] [Google Scholar]
  7. Fujimura M., Takamura K. Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev Genes Evol. 2000 Feb;210(2):64–72. doi: 10.1007/s004270050012. [DOI] [PubMed] [Google Scholar]
  8. Halpern M. E., Ho R. K., Walker C., Kimmel C. B. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell. 1993 Oct 8;75(1):99–111. [PubMed] [Google Scholar]
  9. Ishida K., Satoh N. Quantity of prelocalized maternal factor is associated with the timing of initiation of an epidermis-specific gene expression of the ascidian embryo. Dev Genes Evol. 1998 May;208(3):151–156. doi: 10.1007/s004270050166. [DOI] [PubMed] [Google Scholar]
  10. Kano S., Chiba S., Satoh N. Genetic relatedness and variability in inbred and wild populations of the solitary ascidian Ciona intestinalis revealed by arbitrarily primed polymerase chain reaction. Mar Biotechnol (NY) 2001 Jan;3(1):58–67. doi: 10.1007/s101260000048. [DOI] [PubMed] [Google Scholar]
  11. King M. L., Zhou Y., Bubunenko M. Polarizing genetic information in the egg: RNA localization in the frog oocyte. Bioessays. 1999 Jul;21(7):546–557. doi: 10.1002/(SICI)1521-1878(199907)21:7<546::AID-BIES3>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  12. Kishimoto Y., Lee K. H., Zon L., Hammerschmidt M., Schulte-Merker S. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development. 1997 Nov;124(22):4457–4466. doi: 10.1242/dev.124.22.4457. [DOI] [PubMed] [Google Scholar]
  13. Meyer A., Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999 Dec;11(6):699–704. doi: 10.1016/s0955-0674(99)00039-3. [DOI] [PubMed] [Google Scholar]
  14. Miyamoto D. M., Crowther R. J. Formation of the notochord in living ascidian embryos. J Embryol Exp Morphol. 1985 Apr;86:1–17. [PubMed] [Google Scholar]
  15. Moody R., Davis S. W., Cubas F., Smith W. C. Isolation of developmental mutants of the ascidian Ciona savignyi. Mol Gen Genet. 1999 Aug;262(1):199–206. doi: 10.1007/s004380051075. [DOI] [PubMed] [Google Scholar]
  16. Mullins M. C., Hammerschmidt M., Haffter P., Nüsslein-Volhard C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol. 1994 Mar 1;4(3):189–202. doi: 10.1016/s0960-9822(00)00048-8. [DOI] [PubMed] [Google Scholar]
  17. Mullins M. C., Nüsslein-Volhard C. Mutational approaches to studying embryonic pattern formation in the zebrafish. Curr Opin Genet Dev. 1993 Aug;3(4):648–654. doi: 10.1016/0959-437x(93)90102-u. [DOI] [PubMed] [Google Scholar]
  18. Nakatani Y., Moody R., Smith W. C. Mutations affecting tail and notochord development in the ascidian Ciona savignyi. Development. 1999 Aug;126(15):3293–3301. doi: 10.1242/dev.126.15.3293. [DOI] [PubMed] [Google Scholar]
  19. Nishida H. Cell fate specification by localized cytoplasmic determinants and cell interactions in ascidian embryos. Int Rev Cytol. 1997;176:245–306. doi: 10.1016/s0074-7696(08)61612-5. [DOI] [PubMed] [Google Scholar]
  20. Nishida H., Morokuma J., Nishikata T. Maternal cytoplasmic factors for generation of unique cleavage patterns in animal embryos. Curr Top Dev Biol. 1999;46:1–37. doi: 10.1016/s0070-2153(08)60324-5. [DOI] [PubMed] [Google Scholar]
  21. Nishida H. Vegetal egg cytoplasm promotes gastrulation and is responsible for specification of vegetal blastomeres in embryos of the ascidian Halocynthia roretzi. Development. 1996 Apr;122(4):1271–1279. doi: 10.1242/dev.122.4.1271. [DOI] [PubMed] [Google Scholar]
  22. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980 Oct 30;287(5785):795–801. doi: 10.1038/287795a0. [DOI] [PubMed] [Google Scholar]
  23. Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
  24. Pelegri F., Knaut H., Maischein H. M., Schulte-Merker S., Nüsslein-Volhard C. A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr Biol. 1999 Dec 16;9(24):1431–1440. doi: 10.1016/s0960-9822(00)80112-8. [DOI] [PubMed] [Google Scholar]
  25. Pelegri F., Schulte-Merker S. A gynogenesis-based screen for maternal-effect genes in the zebrafish, Danio rerio. Methods Cell Biol. 1999;60:1–20. doi: 10.1016/s0091-679x(08)61891-9. [DOI] [PubMed] [Google Scholar]
  26. Procaccini G., Pischetola M., Di Lauro R. Isolation and characterization of microsatellite loci in the ascidian Ciona intestinalis (L.). Mol Ecol. 2000 Nov;9(11):1924–1926. doi: 10.1046/j.1365-294x.2000.01071-4.x. [DOI] [PubMed] [Google Scholar]
  27. Roegiers F., Djediat C., Dumollard R., Rouvière C., Sardet C. Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development. 1999 Jun;126(14):3101–3117. doi: 10.1242/dev.126.14.3101. [DOI] [PubMed] [Google Scholar]
  28. Sasakura Y., Ogasawara M., Makabe K. W. HrWnt-5: a maternally expressed ascidian Wnt gene with posterior localization in early embryos. Int J Dev Biol. 1998 May;42(4):573–579. [PubMed] [Google Scholar]
  29. Satoh N., Araki I., Satou Y. An intrinsic genetic program for autonomous differentiation of muscle cells in the ascidian embryo. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9315–9321. doi: 10.1073/pnas.93.18.9315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Satou Y., Satoh N. Posterior end mark 2 (pem-2), pem-4, pem-5, and pem-6: maternal genes with localized mRNA in the ascidian embryo. Dev Biol. 1997 Dec 15;192(2):467–481. doi: 10.1006/dbio.1997.8730. [DOI] [PubMed] [Google Scholar]
  31. Schulte-Merker S., Lee K. J., McMahon A. P., Hammerschmidt M. The zebrafish organizer requires chordino. Nature. 1997 Jun 26;387(6636):862–863. doi: 10.1038/43092. [DOI] [PubMed] [Google Scholar]
  32. Sidow A. Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev. 1996 Dec;6(6):715–722. doi: 10.1016/s0959-437x(96)80026-8. [DOI] [PubMed] [Google Scholar]
  33. Solnica-Krezel L., Schier A. F., Driever W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics. 1994 Apr;136(4):1401–1420. doi: 10.1093/genetics/136.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992 Jan 24;68(2):201–219. doi: 10.1016/0092-8674(92)90466-p. [DOI] [PubMed] [Google Scholar]
  35. Talbot W. S., Hopkins N. Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev. 2000 Apr 1;14(7):755–762. [PubMed] [Google Scholar]
  36. Yoshida S., Marikawa Y., Satoh N. Posterior end mark, a novel maternal gene encoding a localized factor in the ascidian embryo. Development. 1996 Jul;122(7):2005–2012. doi: 10.1242/dev.122.7.2005. [DOI] [PubMed] [Google Scholar]
  37. Zhang J., Talbot W. S., Schier A. F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell. 1998 Jan 23;92(2):241–251. doi: 10.1016/s0092-8674(00)80918-6. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES