Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Oct 29;356(1414):1583–1598. doi: 10.1098/rstb.2001.0973

Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium.

L Puelles 1
PMCID: PMC1088538  PMID: 11604125

Abstract

Various lines of evidence suggest that the development and evolution of the mammalian isocortex cannot be easily explained without an understanding of correlative changes in surrounding areas of the telencephalic pallium and subpallium. These are close neighbours in a common morphogenetic field and are postulated as sources of some cortical neuron types (and even of whole cortical areas). There is equal need to explain relevant developmental evolutionary changes in the dorsal thalamus, the major source of afferent inputs to the telencephalon (to both the pallium and subpallium). The mammalian isocortex evolved within an initially small dorsal part of the pallium of vertebrates, surrounded by other pallial parts, including some with a non-cortical, nuclear structure. Nuclear pallial elements are markedly voluminous in reptiles and birds, where they build the dorsal ventricular ridge, or hypopallium, which has been recently divided molecularly and structurally into a lateral pallium and a ventral pallium. Afferent pallial connections are often simplified as consisting of thalamic fibres that project either to focal cell aggregates in the ventral pallium (predominant in reptiles and birds) or to corticoid areas in the dorsal pallium (predominant in mammals). Karten's hypothesis, put forward in 1969, on the formation of some isocortical areas postulates an embryonic translocation into the nascent isocortex of the ventropallial thalamorecipient foci and respective downstream ventropallial target populations, as specific layer IV, layers II- III, or layers V-VI neuron populations. This view is considered critically in the light of various recent data, contrasting with the alternative possibility of a parallel, separate evolution of the different pallial parts. The new scenario reveals as well a separately evolving tiered structure of the dorsal thalamus, some of whose parts receive input from midbrain sensory centres (collothalamic nuclei), whereas other parts receive oligosynaptic 'lemniscal' connections bypassing the midbrain (lemnothalamic nuclei). An ampler look into known hodological patterns from this viewpoint suggests that ancient collothalamic pathways, which target ventropallial foci, are largely conserved in mammals, while some emergent cortical connections can be established by means of new collaterals in some of these pathways. The lemnothalamic pathways, which typically target ancestrally the dorsopallial isocortex, show parallel increments of relative size and structural diversification of both the thalamic cell populations and the cortical recipient areas. The evolving lemnothalamic pathways may interact developmentally with collothalamic corticopetal collaterals in the modality-specific invasion of the emergent new areas of isocortex.

Full Text

The Full Text of this article is available as a PDF (246.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboitiz F. Comparative development of the mammalian isocortex and the reptilian dorsal ventricular ridge. Evolutionary considerations. Cereb Cortex. 1999 Dec;9(8):783–791. doi: 10.1093/cercor/9.8.783. [DOI] [PubMed] [Google Scholar]
  2. Akimenko M. A., Ekker M., Wegner J., Lin W., Westerfield M. Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci. 1994 Jun;14(6):3475–3486. doi: 10.1523/JNEUROSCI.14-06-03475.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson S. A., Eisenstat D. D., Shi L., Rubenstein J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997 Oct 17;278(5337):474–476. doi: 10.1126/science.278.5337.474. [DOI] [PubMed] [Google Scholar]
  4. Anderson S., Mione M., Yun K., Rubenstein J. L. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex. 1999 Sep;9(6):646–654. doi: 10.1093/cercor/9.6.646. [DOI] [PubMed] [Google Scholar]
  5. Bar I., Goffinet A. M. Evolution of cortical lamination: the reelin/Dab1 pathway. Novartis Found Symp. 2000;228:114–128. doi: 10.1002/0470846631.ch9. [DOI] [PubMed] [Google Scholar]
  6. Brauth S. E., Reiner A. Calcitonin-gene related peptide is an evolutionarily conserved marker within the amniote thalamo-telencephalic auditory pathway. J Comp Neurol. 1991 Nov 8;313(2):227–239. doi: 10.1002/cne.903130204. [DOI] [PubMed] [Google Scholar]
  7. Bruce L. L., Neary T. J. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav Evol. 1995;46(4-5):224–234. doi: 10.1159/000113276. [DOI] [PubMed] [Google Scholar]
  8. Bulfone A., Smiga S. M., Shimamura K., Peterson A., Puelles L., Rubenstein J. L. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron. 1995 Jul;15(1):63–78. doi: 10.1016/0896-6273(95)90065-9. [DOI] [PubMed] [Google Scholar]
  9. Butler A. B. The dorsal thalamus of jawed vertebrates: a comparative viewpoint. Brain Behav Evol. 1995;46(4-5):209–223. doi: 10.1159/000113275. [DOI] [PubMed] [Google Scholar]
  10. Butler A. B. The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Brain Res Rev. 1994 Jan;19(1):66–101. doi: 10.1016/0165-0173(94)90004-3. [DOI] [PubMed] [Google Scholar]
  11. Butler A. B. The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Brain Res Rev. 1994 Jan;19(1):29–65. doi: 10.1016/0165-0173(94)90003-5. [DOI] [PubMed] [Google Scholar]
  12. Carder R. K., Hendry S. H. Neuronal characterization, compartmental distribution, and activity-dependent regulation of glutamate immunoreactivity in adult monkey striate cortex. J Neurosci. 1994 Jan;14(1):242–262. doi: 10.1523/JNEUROSCI.14-01-00242.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carey R. G., Neal T. L. Reciprocal connections between the claustrum and visual thalamus in the tree shrew (Tupaia glis). Brain Res. 1986 Oct 29;386(1-2):155–168. doi: 10.1016/0006-8993(86)90152-6. [DOI] [PubMed] [Google Scholar]
  14. Doron N. N., Ledoux J. E. Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J Comp Neurol. 2000 Sep 18;425(2):257–274. [PubMed] [Google Scholar]
  15. Doron N. N., Ledoux J. E. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J Comp Neurol. 1999 Sep 27;412(3):383–409. [PubMed] [Google Scholar]
  16. Dávila J. C., Guirado S., Puelles L. Expression of calcium-binding proteins in the diencephalon of the lizard Psammodromus algirus. J Comp Neurol. 2000 Nov 6;427(1):67–92. doi: 10.1002/1096-9861(20001106)427:1<67::aid-cne5>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  17. Eisenstat D. D., Liu J. K., Mione M., Zhong W., Yu G., Anderson S. A., Ghattas I., Puelles L., Rubenstein J. L. DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol. 1999 Nov 15;414(2):217–237. doi: 10.1002/(sici)1096-9861(19991115)414:2<217::aid-cne6>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  18. Fernandez A. S., Pieau C., Repérant J., Boncinelli E., Wassef M. Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development. 1998 Jun;125(11):2099–2111. doi: 10.1242/dev.125.11.2099. [DOI] [PubMed] [Google Scholar]
  19. Finlay B. L., Hersman M. N., Darlington R. B. Patterns of vertebrate neurogenesis and the paths of vertebrate evolution. Brain Behav Evol. 1998;52(4-5):232–242. doi: 10.1159/000006566. [DOI] [PubMed] [Google Scholar]
  20. Freund T. F., Martin K. A., Somogyi P., Whitteridge D. Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation. J Comp Neurol. 1985 Dec 8;242(2):275–291. doi: 10.1002/cne.902420209. [DOI] [PubMed] [Google Scholar]
  21. Furuta Y., Piston D. W., Hogan B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development. 1997 Jun;124(11):2203–2212. doi: 10.1242/dev.124.11.2203. [DOI] [PubMed] [Google Scholar]
  22. Hauptmann G., Gerster T. Regulatory gene expression patterns reveal transverse and longitudinal subdivisions of the embryonic zebrafish forebrain. Mech Dev. 2000 Mar 1;91(1-2):105–118. doi: 10.1016/s0925-4773(99)00277-4. [DOI] [PubMed] [Google Scholar]
  23. Holstege G., Collewijn H. The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol. 1982 Aug 1;209(2):139–175. doi: 10.1002/cne.902090204. [DOI] [PubMed] [Google Scholar]
  24. Huffman K. J., Molnár Z., Van Dellen A., Kahn D. M., Blakemore C., Krubitzer L. Formation of cortical fields on a reduced cortical sheet. J Neurosci. 1999 Nov 15;19(22):9939–9952. doi: 10.1523/JNEUROSCI.19-22-09939.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Höhl-Abrahão J. C., Creutzfeldt O. D. Topographical mapping of the thalamocortical projections in rodents and comparison with that in primates. Exp Brain Res. 1991;87(2):283–294. doi: 10.1007/BF00231845. [DOI] [PubMed] [Google Scholar]
  26. Kaas J. H. The evolution of isocortex. Brain Behav Evol. 1995;46(4-5):187–196. doi: 10.1159/000113273. [DOI] [PubMed] [Google Scholar]
  27. Karten H. J., Cox K., Mpodozis J. Two distinct populations of tectal neurons have unique connections within the retinotectorotundal pathway of the pigeon (Columba livia). J Comp Neurol. 1997 Oct 27;387(3):449–465. [PubMed] [Google Scholar]
  28. Karten H. J. Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2800–2804. doi: 10.1073/pnas.94.7.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Karten H. J. Homology and evolutionary origins of the 'neocortex'. Brain Behav Evol. 1991;38(4-5):264–272. doi: 10.1159/000114393. [DOI] [PubMed] [Google Scholar]
  30. Kaufman E. F., Rosenquist A. C. Efferent projections of the thalamic intralaminar nuclei in the cat. Brain Res. 1985 Jun 3;335(2):257–279. doi: 10.1016/0006-8993(85)90478-0. [DOI] [PubMed] [Google Scholar]
  31. Kriegstein A. R., Shen J. M., Eshhar N. Monoclonal antibodies to the turtle cortex reveal neuronal subsets, antigenic cross-reactivity with the mammalian neocortex, and forebrain structures sharing a pallial derivation. J Comp Neurol. 1986 Dec 15;254(3):330–340. doi: 10.1002/cne.902540306. [DOI] [PubMed] [Google Scholar]
  32. Krubitzer L., Künzle H., Kaas J. Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi). J Comp Neurol. 1997 Mar 17;379(3):399–414. [PubMed] [Google Scholar]
  33. Krubitzer L. The organization of neocortex in mammals: are species differences really so different? Trends Neurosci. 1995 Sep;18(9):408–417. doi: 10.1016/0166-2236(95)93938-t. [DOI] [PubMed] [Google Scholar]
  34. Kálmán M., Székely A. D., Csillag A. Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the domestic chicken (Gallus domesticus). J Comp Neurol. 1993 Apr 8;330(2):221–237. doi: 10.1002/cne.903300206. [DOI] [PubMed] [Google Scholar]
  35. Künzle H. Diencephalic connections of the superior colliculus in the hedgehog tenrec. Exp Brain Res. 1996 Oct;111(3):356–370. doi: 10.1007/BF00228725. [DOI] [PubMed] [Google Scholar]
  36. Künzle H. Thalamic territories innervated by cerebellar nuclear afferents in the hedgehog tenrec, Echinops telfairi. J Comp Neurol. 1998 Dec 21;402(3):313–326. doi: 10.1002/(sici)1096-9861(19981221)402:3<313::aid-cne3>3.3.co;2-5. [DOI] [PubMed] [Google Scholar]
  37. Lanuza E., Davies D. C., Landete J. M., Novejarque A., Martínez-García F. Distribution of CGRP-like immunoreactivity in the chick and quail brain. J Comp Neurol. 2000 Jun 12;421(4):515–532. doi: 10.1002/(sici)1096-9861(20000612)421:4<515::aid-cne4>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  38. Lavdas A. A., Grigoriou M., Pachnis V., Parnavelas J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci. 1999 Sep 15;19(18):7881–7888. doi: 10.1523/JNEUROSCI.19-18-07881.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Linke R., Schwegler H. Convergent and complementary projections of the caudal paralaminar thalamic nuclei to rat temporal and insular cortex. Cereb Cortex. 2000 Aug;10(8):753–771. doi: 10.1093/cercor/10.8.753. [DOI] [PubMed] [Google Scholar]
  40. Liu J. K., Ghattas I., Liu S., Chen S., Rubenstein J. L. Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev Dyn. 1997 Dec;210(4):498–512. doi: 10.1002/(SICI)1097-0177(199712)210:4<498::AID-AJA12>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  41. Luksch H., Cox K., Karten H. J. Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway. J Comp Neurol. 1998 Jul 6;396(3):399–414. [PubMed] [Google Scholar]
  42. Macdonald R., Xu Q., Barth K. A., Mikkola I., Holder N., Fjose A., Krauss S., Wilson S. W. Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebrafish forebrain. Neuron. 1994 Nov;13(5):1039–1053. doi: 10.1016/0896-6273(94)90044-2. [DOI] [PubMed] [Google Scholar]
  43. Medina L., Reiner A. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci. 2000 Jan;23(1):1–12. doi: 10.1016/s0166-2236(99)01486-1. [DOI] [PubMed] [Google Scholar]
  44. Milán F. J., Puelles L. Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon. J Comp Neurol. 2000 Mar 27;419(1):96–121. [PubMed] [Google Scholar]
  45. Mione M. C., Danevic C., Boardman P., Harris B., Parnavelas J. G. Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J Neurosci. 1994 Jan;14(1):107–123. doi: 10.1523/JNEUROSCI.14-01-00107.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Miyashita-Lin E. M., Hevner R., Wassarman K. M., Martinez S., Rubenstein J. L. Early neocortical regionalization in the absence of thalamic innervation. Science. 1999 Aug 6;285(5429):906–909. doi: 10.1126/science.285.5429.906. [DOI] [PubMed] [Google Scholar]
  47. Northcutt R. G., Kaas J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 1995 Sep;18(9):373–379. doi: 10.1016/0166-2236(95)93932-n. [DOI] [PubMed] [Google Scholar]
  48. Northcutt R. G. The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol. 1995;46(4-5):275–318. doi: 10.1159/000113279. [DOI] [PubMed] [Google Scholar]
  49. Ogren M. P., Racic P. The prenatal development of the pulvinar in the monkey: 3H-thymidine autoradiographic and morphometric analyses. Anat Embryol (Berl) 1981;162(1):1–20. doi: 10.1007/BF00318090. [DOI] [PubMed] [Google Scholar]
  50. Parnavelas J. G., Anderson S. A., Lavdas A. A., Grigoriou M., Pachnis V., Rubenstein J. L. The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex. Novartis Found Symp. 2000;228:129–147. doi: 10.1002/0470846631.ch10. [DOI] [PubMed] [Google Scholar]
  51. Pombal M. A., Puelles L. Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. J Comp Neurol. 1999 Nov 22;414(3):391–422. [PubMed] [Google Scholar]
  52. Puelles L. A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol. 1995;46(4-5):319–337. doi: 10.1159/000113282. [DOI] [PubMed] [Google Scholar]
  53. Puelles L., Javier Milán F., Martínez-de-la-Torre M. A segmental map of architectonic subdivisions in the diencephalon of the frog Rana perezi: acetylcholinesterase-histochemical observations. Brain Behav Evol. 1996;47(6):279–310. doi: 10.1159/000113247. [DOI] [PubMed] [Google Scholar]
  54. Puelles L., Kuwana E., Puelles E., Bulfone A., Shimamura K., Keleher J., Smiga S., Rubenstein J. L. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol. 2000 Aug 28;424(3):409–438. doi: 10.1002/1096-9861(20000828)424:3<409::aid-cne3>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  55. Puelles L., Kuwana E., Puelles E., Rubenstein J. L. Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. Eur J Morphol. 1999 Apr;37(2-3):139–150. doi: 10.1076/ejom.37.2.139.4756. [DOI] [PubMed] [Google Scholar]
  56. Puelles L., Robles C., Martínez-de-la-Torre M., Martínez S. New subdivision schema for the avian torus semicircularis: neurochemical maps in the chick. J Comp Neurol. 1994 Feb 1;340(1):98–125. doi: 10.1002/cne.903400108. [DOI] [PubMed] [Google Scholar]
  57. Puelles L., Rubenstein J. L. Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci. 1993 Nov;16(11):472–479. doi: 10.1016/0166-2236(93)90080-6. [DOI] [PubMed] [Google Scholar]
  58. Puelles L., Sánchez M. P., Spreafico R., Fairén A. Prenatal development of calbindin immunoreactivity in the dorsal thalamus of the rat. Neuroscience. 1992;46(1):135–147. doi: 10.1016/0306-4522(92)90013-r. [DOI] [PubMed] [Google Scholar]
  59. Püschel A. W., Gruss P., Westerfield M. Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice. Development. 1992 Mar;114(3):643–651. doi: 10.1242/dev.114.3.643. [DOI] [PubMed] [Google Scholar]
  60. Rakic P. Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J Comp Neurol. 1977 Nov 1;176(1):23–52. doi: 10.1002/cne.901760103. [DOI] [PubMed] [Google Scholar]
  61. Redies C., Ast M., Nakagawa S., Takeichi M., Martínez-de-la-Torre M., Puelles L. Morphologic fate of diencephalic prosomeres and their subdivisions revealed by mapping cadherin expression. J Comp Neurol. 2000 Jun 12;421(4):481–514. doi: 10.1002/(sici)1096-9861(20000612)421:4<481::aid-cne3>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  62. Redies C. Cadherins and the formation of neural circuitry in the vertebrate CNS. Cell Tissue Res. 1997 Nov;290(2):405–413. doi: 10.1007/s004410050947. [DOI] [PubMed] [Google Scholar]
  63. Redies C. Cadherins in the central nervous system. Prog Neurobiol. 2000 Aug;61(6):611–648. doi: 10.1016/s0301-0082(99)00070-2. [DOI] [PubMed] [Google Scholar]
  64. Rubenstein J. L., Shimamura K., Martinez S., Puelles L. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci. 1998;21:445–477. doi: 10.1146/annurev.neuro.21.1.445. [DOI] [PubMed] [Google Scholar]
  65. Sloniewski P., Usunoff K. G., Pilgrim C. Diencephalic and mesencephalic afferents of the rat claustrum. Anat Embryol (Berl) 1986;173(3):401–411. doi: 10.1007/BF00318925. [DOI] [PubMed] [Google Scholar]
  66. Stoykova A., Gruss P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci. 1994 Mar;14(3 Pt 2):1395–1412. doi: 10.1523/JNEUROSCI.14-03-01395.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Striedter G. F., Beydler S. Distribution of radial glia in the developing telencephalon of chicks. J Comp Neurol. 1997 Oct 27;387(3):399–420. doi: 10.1002/(sici)1096-9861(19971027)387:3<399::aid-cne6>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  68. Striedter G. F., Marchant T. A., Beydler S. The "neostriatum" develops as part of the lateral pallium in birds. J Neurosci. 1998 Aug 1;18(15):5839–5849. doi: 10.1523/JNEUROSCI.18-15-05839.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Striedter G. F. The telencephalon of tetrapods in evolution. Brain Behav Evol. 1997;49(4):179–213. doi: 10.1159/000112991. [DOI] [PubMed] [Google Scholar]
  70. Suzuki S. C., Inoue T., Kimura Y., Tanaka T., Takeichi M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol Cell Neurosci. 1997;9(5-6):433–447. doi: 10.1006/mcne.1997.0626. [DOI] [PubMed] [Google Scholar]
  71. Swanson L. W., Petrovich G. D. What is the amygdala? Trends Neurosci. 1998 Aug;21(8):323–331. doi: 10.1016/s0166-2236(98)01265-x. [DOI] [PubMed] [Google Scholar]
  72. Tan S. S., Kalloniatis M., Sturm K., Tam P. P., Reese B. E., Faulkner-Jones B. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron. 1998 Aug;21(2):295–304. doi: 10.1016/s0896-6273(00)80539-5. [DOI] [PubMed] [Google Scholar]
  73. Turner B. H., Herkenham M. Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing. J Comp Neurol. 1991 Nov 8;313(2):295–325. doi: 10.1002/cne.903130208. [DOI] [PubMed] [Google Scholar]
  74. Xu J., Lawshe A., MacArthur C. A., Ornitz D. M. Genomic structure, mapping, activity and expression of fibroblast growth factor 17. Mech Dev. 1999 May;83(1-2):165–178. doi: 10.1016/s0925-4773(99)00034-9. [DOI] [PubMed] [Google Scholar]
  75. Yasui Y., Saper C. B., Cechetto D. F. Calcitonin gene-related peptide (CGRP) immunoreactive projections from the thalamus to the striatum and amygdala in the rat. J Comp Neurol. 1991 Jun 8;308(2):293–310. doi: 10.1002/cne.903080212. [DOI] [PubMed] [Google Scholar]
  76. Yoon M. S., Puelles L., Redies C. Formation of cadherin-expressing brain nuclei in diencephalic alar plate divisions. J Comp Neurol. 2000 Jun 12;421(4):461–480. [PubMed] [Google Scholar]
  77. de Carlos J. A., López-Mascaraque L., Valverde F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci. 1996 Oct 1;16(19):6146–6156. doi: 10.1523/JNEUROSCI.16-19-06146.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES