Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Oct 29;356(1414):1599–1613. doi: 10.1098/rstb.2001.0918

Origins of anteroposterior patterning and Hox gene regulation during chordate evolution.

T F Schilling 1, R D Knight 1
PMCID: PMC1088539  PMID: 11604126

Abstract

All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acampora D., Mazan S., Avantaggiato V., Barone P., Tuorto F., Lallemand Y., Brûlet P., Simeone A. Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet. 1996 Oct;14(2):218–222. doi: 10.1038/ng1096-218. [DOI] [PubMed] [Google Scholar]
  2. Acampora D., Mazan S., Lallemand Y., Avantaggiato V., Maury M., Simeone A., Brûlet P. Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development. 1995 Oct;121(10):3279–3290. doi: 10.1242/dev.121.10.3279. [DOI] [PubMed] [Google Scholar]
  3. Acampora D., Simeone A. The TINS Lecture. Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci. 1999 Mar;22(3):116–122. doi: 10.1016/s0166-2236(98)01387-3. [DOI] [PubMed] [Google Scholar]
  4. Alexandre D., Clarke J. D., Oxtoby E., Yan Y. L., Jowett T., Holder N. Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development. 1996 Mar;122(3):735–746. doi: 10.1242/dev.122.3.735. [DOI] [PubMed] [Google Scholar]
  5. Amores A., Force A., Yan Y. L., Joly L., Amemiya C., Fritz A., Ho R. K., Langeland J., Prince V., Wang Y. L. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998 Nov 27;282(5394):1711–1714. doi: 10.1126/science.282.5394.1711. [DOI] [PubMed] [Google Scholar]
  6. Bally-Cuif L., Boncinelli E. Transcription factors and head formation in vertebrates. Bioessays. 1997 Feb;19(2):127–135. doi: 10.1002/bies.950190207. [DOI] [PubMed] [Google Scholar]
  7. Bel-Vialar S., Coré N., Terranova R., Goudot V., Boned A., Djabali M. Altered retinoic acid sensitivity and temporal expression of Hox genes in polycomb-M33-deficient mice. Dev Biol. 2000 Aug 15;224(2):238–249. doi: 10.1006/dbio.2000.9791. [DOI] [PubMed] [Google Scholar]
  8. Bell E., Wingate R. J., Lumsden A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science. 1999 Jun 25;284(5423):2168–2171. doi: 10.1126/science.284.5423.2168. [DOI] [PubMed] [Google Scholar]
  9. Blumberg B., Bolado J., Jr, Moreno T. A., Kintner C., Evans R. M., Papalopulu N. An essential role for retinoid signaling in anteroposterior neural patterning. Development. 1997 Jan;124(2):373–379. doi: 10.1242/dev.124.2.373. [DOI] [PubMed] [Google Scholar]
  10. Capecchi M. R. Hox genes and mammalian development. Cold Spring Harb Symp Quant Biol. 1997;62:273–281. [PubMed] [Google Scholar]
  11. Chung A. C., Durica D. S., Clifton S. W., Roe B. A., Hopkins P. M. Cloning of crustacean ecdysteroid receptor and retinoid-X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Mol Cell Endocrinol. 1998 Apr 30;139(1-2):209–227. doi: 10.1016/s0303-7207(98)00056-2. [DOI] [PubMed] [Google Scholar]
  12. Crossley P. H., Martinez S., Martin G. R. Midbrain development induced by FGF8 in the chick embryo. Nature. 1996 Mar 7;380(6569):66–68. doi: 10.1038/380066a0. [DOI] [PubMed] [Google Scholar]
  13. Di Gregorio A., Spagnuolo A., Ristoratore F., Pischetola M., Aniello F., Branno M., Cariello L., Di Lauro R. Cloning of ascidian homeobox genes provides evidence for a primordial chordate cluster. Gene. 1995 Apr 24;156(2):253–257. doi: 10.1016/0378-1119(95)00035-5. [DOI] [PubMed] [Google Scholar]
  14. Dupé V., Davenne M., Brocard J., Dollé P., Mark M., Dierich A., Chambon P., Rijli F. M. In vivo functional analysis of the Hoxa-1 3' retinoic acid response element (3'RARE). Development. 1997 Jan;124(2):399–410. doi: 10.1242/dev.124.2.399. [DOI] [PubMed] [Google Scholar]
  15. Durston A. J., Timmermans J. P., Hage W. J., Hendriks H. F., de Vries N. J., Heideveld M., Nieuwkoop P. D. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature. 1989 Jul 13;340(6229):140–144. doi: 10.1038/340140a0. [DOI] [PubMed] [Google Scholar]
  16. Ferretti E., Marshall H., Pöpperl H., Maconochie M., Krumlauf R., Blasi F. Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, Pbx and Hox proteins. Development. 2000 Jan;127(1):155–166. doi: 10.1242/dev.127.1.155. [DOI] [PubMed] [Google Scholar]
  17. Ferrier D. E., Minguillón C., Holland P. W., Garcia-Fernàndez J. The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev. 2000 Sep-Oct;2(5):284–293. doi: 10.1046/j.1525-142x.2000.00070.x. [DOI] [PubMed] [Google Scholar]
  18. Fritzsch B., Northcutt R. G. Cranial and spinal nerve organization in amphioxus and lampreys: evidence for an ancestral craniate pattern. Acta Anat (Basel) 1993;148(2-3):96–109. doi: 10.1159/000147529. [DOI] [PubMed] [Google Scholar]
  19. Gamse J., Sive H. Vertebrate anteroposterior patterning: the Xenopus neurectoderm as a paradigm. Bioessays. 2000 Nov;22(11):976–986. doi: 10.1002/1521-1878(200011)22:11<976::AID-BIES4>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  20. Garcia-Fernández J., Holland P. W. Archetypal organization of the amphioxus Hox gene cluster. Nature. 1994 Aug 18;370(6490):563–566. doi: 10.1038/370563a0. [DOI] [PubMed] [Google Scholar]
  21. Gavalas A., Davenne M., Lumsden A., Chambon P., Rijli F. M. Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development. 1997 Oct;124(19):3693–3702. doi: 10.1242/dev.124.19.3693. [DOI] [PubMed] [Google Scholar]
  22. Gionti M., Ristoratore F., Di Gregorio A., Aniello F., Branno M., Di Lauro R. Cihox5, a new Ciona intestinalis Hox-related gene, is involved in regionalization of the spinal cord. Dev Genes Evol. 1998 Feb;207(8):515–523. doi: 10.1007/s004270050142. [DOI] [PubMed] [Google Scholar]
  23. Gould A., Itasaki N., Krumlauf R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron. 1998 Jul;21(1):39–51. doi: 10.1016/s0896-6273(00)80513-9. [DOI] [PubMed] [Google Scholar]
  24. Greer J. M., Puetz J., Thomas K. R., Capecchi M. R. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature. 2000 Feb 10;403(6770):661–665. doi: 10.1038/35001077. [DOI] [PubMed] [Google Scholar]
  25. Gürsoy H. C., Koper D., Benecke B. J. The vertebrate 7S K RNA separates hagfish (Myxine glutinosa) and lamprey (Lampetra fluviatilis). J Mol Evol. 2000 May;50(5):456–464. doi: 10.1007/s002390010048. [DOI] [PubMed] [Google Scholar]
  26. Harada Y., Okai N., Taguchi S., Tagawa K., Humphreys T., Satoh N. Developmental expression of the hemichordate otx ortholog. Mech Dev. 2000 Mar 1;91(1-2):337–339. doi: 10.1016/s0925-4773(99)00279-8. [DOI] [PubMed] [Google Scholar]
  27. Hisata K., Fujiwara S., Tsuchida Y., Ohashi M., Kawamura K. Expression and function of a retinoic acid receptor in budding ascidians. Dev Genes Evol. 1998 Dec;208(10):537–546. doi: 10.1007/s004270050213. [DOI] [PubMed] [Google Scholar]
  28. Holland L. Z., Holland N. D. Chordate origins of the vertebrate central nervous system. Curr Opin Neurobiol. 1999 Oct;9(5):596–602. doi: 10.1016/S0959-4388(99)00003-3. [DOI] [PubMed] [Google Scholar]
  29. Holland L. Z., Holland N. D. Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid: insights into evolution and patterning of the chordate nerve cord and pharynx. Development. 1996 Jun;122(6):1829–1838. doi: 10.1242/dev.122.6.1829. [DOI] [PubMed] [Google Scholar]
  30. Holland L. Z., Kene M., Williams N. A., Holland N. D. Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development. 1997 May;124(9):1723–1732. doi: 10.1242/dev.124.9.1723. [DOI] [PubMed] [Google Scholar]
  31. Holland P. W. Gene duplication: past, present and future. Semin Cell Dev Biol. 1999 Oct;10(5):541–547. doi: 10.1006/scdb.1999.0335. [DOI] [PubMed] [Google Scholar]
  32. Holland P. W., Williams N. A. Conservation of engrailed-like homeobox sequences during vertebrate evolution. FEBS Lett. 1990 Dec 17;277(1-2):250–252. doi: 10.1016/0014-5793(90)80858-g. [DOI] [PubMed] [Google Scholar]
  33. Hughes A. L. Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J Mol Evol. 1999 May;48(5):565–576. doi: 10.1007/pl00006499. [DOI] [PubMed] [Google Scholar]
  34. Irving C., Mason I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development. 2000 Jan;127(1):177–186. doi: 10.1242/dev.127.1.177. [DOI] [PubMed] [Google Scholar]
  35. Isaacs H. V., Pownall M. E., Slack J. M. Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J. 1998 Jun 15;17(12):3413–3427. doi: 10.1093/emboj/17.12.3413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jackman W. R., Langeland J. A., Kimmel C. B. islet reveals segmentation in the Amphioxus hindbrain homolog. Dev Biol. 2000 Apr 1;220(1):16–26. doi: 10.1006/dbio.2000.9630. [DOI] [PubMed] [Google Scholar]
  37. Jacobs Y., Schnabel C. A., Cleary M. L. Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol. 1999 Jul;19(7):5134–5142. doi: 10.1128/mcb.19.7.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Joyner A. L. Engrailed, Wnt and Pax genes regulate midbrain--hindbrain development. Trends Genet. 1996 Jan;12(1):15–20. doi: 10.1016/0168-9525(96)81383-7. [DOI] [PubMed] [Google Scholar]
  39. Kamimura M., Fujiwara S., Kawamura K., Yubisui T. Functional retinoid receptors in budding ascidians. Dev Growth Differ. 2000 Feb;42(1):1–8. doi: 10.1046/j.1440-169x.2000.00478.x. [DOI] [PubMed] [Google Scholar]
  40. Katsuyama Y., Saiga H. Retinoic acid affects patterning along the anterior-posterior axis of the ascidian embryo. Dev Growth Differ. 1998 Aug;40(4):413–422. doi: 10.1046/j.1440-169x.1998.t01-2-00006.x. [DOI] [PubMed] [Google Scholar]
  41. Katsuyama Y., Wada S., Yasugi S., Saiga H. Expression of the labial group Hox gene HrHox-1 and its alteration induced by retinoic acid in development of the ascidian Halocynthia roretzi. Development. 1995 Oct;121(10):3197–3205. doi: 10.1242/dev.121.10.3197. [DOI] [PubMed] [Google Scholar]
  42. Knight R. D., Panopoulou G. D., Holland P. W., Shimeld S. M. An amphioxus Krox gene: insights into vertebrate hindbrain evolution. Dev Genes Evol. 2000 Oct;210(10):518–521. doi: 10.1007/s004270000092. [DOI] [PubMed] [Google Scholar]
  43. Kozmik Z., Holland N. D., Kalousova A., Paces J., Schubert M., Holland L. Z. Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development. 1999 Mar;126(6):1295–1304. doi: 10.1242/dev.126.6.1295. [DOI] [PubMed] [Google Scholar]
  44. Kuratani S., Ueki T., Hirano S., Aizawa S. Rostral truncation of a cyclostome, Lampetra japonica, induced by all-trans retinoic acid defines the head/trunk interface of the vertebrate body. Dev Dyn. 1998 Jan;211(1):35–51. doi: 10.1002/(SICI)1097-0177(199801)211:1<35::AID-AJA4>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  45. Lacalli T. C. New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads. Philos Trans R Soc Lond B Biol Sci. 2001 Oct 29;356(1414):1565–1572. doi: 10.1098/rstb.2001.0974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Laudet V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol. 1997 Dec;19(3):207–226. doi: 10.1677/jme.0.0190207. [DOI] [PubMed] [Google Scholar]
  47. Locascio A., Aniello F., Amoroso A., Manzanares M., Krumlauf R., Branno M. Patterning the ascidian nervous system: structure, expression and transgenic analysis of the CiHox3 gene. Development. 1999 Nov;126(21):4737–4748. doi: 10.1242/dev.126.21.4737. [DOI] [PubMed] [Google Scholar]
  48. Lun K., Brand M. A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development. 1998 Aug;125(16):3049–3062. doi: 10.1242/dev.125.16.3049. [DOI] [PubMed] [Google Scholar]
  49. Maden M., Gale E., Kostetskii I., Zile M. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol. 1996 Apr 1;6(4):417–426. doi: 10.1016/s0960-9822(02)00509-2. [DOI] [PubMed] [Google Scholar]
  50. Maden M. Heads or tails? Retinoic acid will decide. Bioessays. 1999 Oct;21(10):809–812. doi: 10.1002/(SICI)1521-1878(199910)21:10<809::AID-BIES2>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  51. Mann R. S., Chan S. K. Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 1996 Jul;12(7):258–262. doi: 10.1016/0168-9525(96)10026-3. [DOI] [PubMed] [Google Scholar]
  52. Manzanares M., Cordes S., Kwan C. T., Sham M. H., Barsh G. S., Krumlauf R. Segmental regulation of Hoxb-3 by kreisler. Nature. 1997 May 8;387(6629):191–195. doi: 10.1038/387191a0. [DOI] [PubMed] [Google Scholar]
  53. Manzanares M., Wada H., Itasaki N., Trainor P. A., Krumlauf R., Holland P. W. Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature. 2000 Dec 14;408(6814):854–857. doi: 10.1038/35048570. [DOI] [PubMed] [Google Scholar]
  54. Mark M., Ghyselinck N. B., Wendling O., Dupé V., Mascrez B., Kastner P., Chambon P. A genetic dissection of the retinoid signalling pathway in the mouse. Proc Nutr Soc. 1999 Aug;58(3):609–613. doi: 10.1017/s0029665199000798. [DOI] [PubMed] [Google Scholar]
  55. Marshall H., Studer M., Pöpperl H., Aparicio S., Kuroiwa A., Brenner S., Krumlauf R. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature. 1994 Aug 18;370(6490):567–571. doi: 10.1038/370567a0. [DOI] [PubMed] [Google Scholar]
  56. Martin A. P. Choosing among alternative trees of multigene families. Mol Phylogenet Evol. 2000 Sep;16(3):430–439. doi: 10.1006/mpev.2000.0818. [DOI] [PubMed] [Google Scholar]
  57. McGrew L. L., Hoppler S., Moon R. T. Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev. 1997 Dec;69(1-2):105–114. doi: 10.1016/s0925-4773(97)00160-3. [DOI] [PubMed] [Google Scholar]
  58. McKay I. J., Muchamore I., Krumlauf R., Maden M., Lumsden A., Lewis J. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development. 1994 Aug;120(8):2199–2211. doi: 10.1242/dev.120.8.2199. [DOI] [PubMed] [Google Scholar]
  59. Medina-Martínez O., Bradley A., Ramírez-Solis R. A large targeted deletion of Hoxb1-Hoxb9 produces a series of single-segment anterior homeotic transformations. Dev Biol. 2000 Jun 1;222(1):71–83. doi: 10.1006/dbio.2000.9683. [DOI] [PubMed] [Google Scholar]
  60. Moens C. B., Cordes S. P., Giorgianni M. W., Barsh G. S., Kimmel C. B. Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development. 1998 Feb;125(3):381–391. doi: 10.1242/dev.125.3.381. [DOI] [PubMed] [Google Scholar]
  61. Moens C. B., Yan Y. L., Appel B., Force A. G., Kimmel C. B. valentino: a zebrafish gene required for normal hindbrain segmentation. Development. 1996 Dec;122(12):3981–3990. doi: 10.1242/dev.122.12.3981. [DOI] [PubMed] [Google Scholar]
  62. Muhr J., Graziano E., Wilson S., Jessell T. M., Edlund T. Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron. 1999 Aug;23(4):689–702. doi: 10.1016/s0896-6273(01)80028-3. [DOI] [PubMed] [Google Scholar]
  63. Muhr J., Jessell T. M., Edlund T. Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm. Neuron. 1997 Sep;19(3):487–502. doi: 10.1016/s0896-6273(00)80366-9. [DOI] [PubMed] [Google Scholar]
  64. Niederreither K., Vermot J., Schuhbaur B., Chambon P., Dollé P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development. 2000 Jan;127(1):75–85. doi: 10.1242/dev.127.1.75. [DOI] [PubMed] [Google Scholar]
  65. Nonchev S., Vesque C., Maconochie M., Seitanidou T., Ariza-McNaughton L., Frain M., Marshall H., Sham M. H., Krumlauf R., Charnay P. Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development. 1996 Feb;122(2):543–554. doi: 10.1242/dev.122.2.543. [DOI] [PubMed] [Google Scholar]
  66. Northcutt R. G., Gans C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol. 1983 Mar;58(1):1–28. doi: 10.1086/413055. [DOI] [PubMed] [Google Scholar]
  67. Ohno S. Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Semin Cell Dev Biol. 1999 Oct;10(5):517–522. doi: 10.1006/scdb.1999.0332. [DOI] [PubMed] [Google Scholar]
  68. Peifer M., Wieschaus E. Mutations in the Drosophila gene extradenticle affect the way specific homeo domain proteins regulate segmental identity. Genes Dev. 1990 Jul;4(7):1209–1223. doi: 10.1101/gad.4.7.1209. [DOI] [PubMed] [Google Scholar]
  69. Pfeffer P. L., Gerster T., Lun K., Brand M., Busslinger M. Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development. 1998 Aug;125(16):3063–3074. doi: 10.1242/dev.125.16.3063. [DOI] [PubMed] [Google Scholar]
  70. Popodi E., Kissinger J. C., Andrews M. E., Raff R. A. Sea urchin Hox genes: insights into the ancestral Hox cluster. Mol Biol Evol. 1996 Oct;13(8):1078–1086. doi: 10.1093/oxfordjournals.molbev.a025670. [DOI] [PubMed] [Google Scholar]
  71. Postlethwait J. H., Yan Y. L., Gates M. A., Horne S., Amores A., Brownlie A., Donovan A., Egan E. S., Force A., Gong Z. Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998 Apr;18(4):345–349. doi: 10.1038/ng0498-345. [DOI] [PubMed] [Google Scholar]
  72. Pownall M. E., Isaacs H. V., Slack J. M. Two phases of Hox gene regulation during early Xenopus development. Curr Biol. 1998 May 21;8(11):673–676. doi: 10.1016/s0960-9822(98)70257-x. [DOI] [PubMed] [Google Scholar]
  73. Pownall M. E., Tucker A. S., Slack J. M., Isaacs H. V. eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development. 1996 Dec;122(12):3881–3892. doi: 10.1242/dev.122.12.3881. [DOI] [PubMed] [Google Scholar]
  74. Prince V. E., Moens C. B., Kimmel C. B., Ho R. K. Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development. 1998 Feb;125(3):393–406. doi: 10.1242/dev.125.3.393. [DOI] [PubMed] [Google Scholar]
  75. Pöpperl H., Rikhof H., Chang H., Haffter P., Kimmel C. B., Moens C. B. lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol Cell. 2000 Aug;6(2):255–267. doi: 10.1016/s1097-2765(00)00027-7. [DOI] [PubMed] [Google Scholar]
  76. Reifers F., Böhli H., Walsh E. C., Crossley P. H., Stainier D. Y., Brand M. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development. 1998 Jul;125(13):2381–2395. doi: 10.1242/dev.125.13.2381. [DOI] [PubMed] [Google Scholar]
  77. Rossel M., Capecchi M. R. Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development. 1999 Nov;126(22):5027–5040. doi: 10.1242/dev.126.22.5027. [DOI] [PubMed] [Google Scholar]
  78. Schilling T. F. Genetic analysis of craniofacial development in the vertebrate embryo. Bioessays. 1997 Jun;19(6):459–468. doi: 10.1002/bies.950190605. [DOI] [PubMed] [Google Scholar]
  79. Schilling T. F., Prince V., Ingham P. W. Plasticity in zebrafish hox expression in the hindbrain and cranial neural crest. Dev Biol. 2001 Mar 1;231(1):201–216. doi: 10.1006/dbio.2000.9997. [DOI] [PubMed] [Google Scholar]
  80. Schneider-Maunoury S., Seitanidou T., Charnay P., Lumsden A. Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development. 1997 Mar;124(6):1215–1226. doi: 10.1242/dev.124.6.1215. [DOI] [PubMed] [Google Scholar]
  81. Schneider-Maunoury S., Topilko P., Seitandou T., Levi G., Cohen-Tannoudji M., Pournin S., Babinet C., Charnay P. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell. 1993 Dec 17;75(6):1199–1214. doi: 10.1016/0092-8674(93)90329-o. [DOI] [PubMed] [Google Scholar]
  82. Schubert M., Holland L. Z., Holland N. D., Jacobs D. K. A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Mol Biol Evol. 2000 Dec;17(12):1896–1903. doi: 10.1093/oxfordjournals.molbev.a026291. [DOI] [PubMed] [Google Scholar]
  83. Sharman A. C., Holland P. W. Estimation of Hox gene cluster number in lampreys. Int J Dev Biol. 1998 May;42(4):617–620. [PubMed] [Google Scholar]
  84. Simeone A., Acampora D., Nigro V., Faiella A., D'Esposito M., Stornaiuolo A., Mavilio F., Boncinelli E. Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech Dev. 1991 Mar;33(3):215–227. doi: 10.1016/0925-4773(91)90029-6. [DOI] [PubMed] [Google Scholar]
  85. Sordino P., Belluzzi L., De Santis R., Smith W. C. Developmental genetics in primitive chordates. Philos Trans R Soc Lond B Biol Sci. 2001 Oct 29;356(1414):1573–1582. doi: 10.1098/rstb.2001.0919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Suemori H., Noguchi S. Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Dev Biol. 2000 Apr 15;220(2):333–342. doi: 10.1006/dbio.2000.9651. [DOI] [PubMed] [Google Scholar]
  87. Swindell E. C., Thaller C., Sockanathan S., Petkovich M., Jessell T. M., Eichele G. Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol. 1999 Dec 1;216(1):282–296. doi: 10.1006/dbio.1999.9487. [DOI] [PubMed] [Google Scholar]
  88. Theil T., Frain M., Gilardi-Hebenstreit P., Flenniken A., Charnay P., Wilkinson D. G. Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development. 1998 Feb;125(3):443–452. doi: 10.1242/dev.125.3.443. [DOI] [PubMed] [Google Scholar]
  89. Tomsa J. M., Langeland J. A. Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. Dev Biol. 1999 Mar 1;207(1):26–37. doi: 10.1006/dbio.1998.9163. [DOI] [PubMed] [Google Scholar]
  90. Trainor P. A., Krumlauf R. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci. 2000 Nov;1(2):116–124. doi: 10.1038/35039056. [DOI] [PubMed] [Google Scholar]
  91. Trainor P. A., Manzanares M., Krumlauf R. Genetic interactions during hindbrain segmentation in the mouse embryo. Results Probl Cell Differ. 2000;30:51–89. doi: 10.1007/978-3-540-48002-0_3. [DOI] [PubMed] [Google Scholar]
  92. Trainor P., Krumlauf R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nat Cell Biol. 2000 Feb;2(2):96–102. doi: 10.1038/35000051. [DOI] [PubMed] [Google Scholar]
  93. Ueki T., Kuratani S., Hirano S., Aizawa S. Otx cognates in a lamprey, Lampetra japonica. Dev Genes Evol. 1998 Jun;208(4):223–228. doi: 10.1007/s004270050176. [DOI] [PubMed] [Google Scholar]
  94. Urbánek P., Wang Z. Q., Fetka I., Wagner E. F., Busslinger M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell. 1994 Dec 2;79(5):901–912. doi: 10.1016/0092-8674(94)90079-5. [DOI] [PubMed] [Google Scholar]
  95. Wada H., Garcia-Fernàndez J., Holland P. W. Colinear and segmental expression of amphioxus Hox genes. Dev Biol. 1999 Sep 1;213(1):131–141. doi: 10.1006/dbio.1999.9369. [DOI] [PubMed] [Google Scholar]
  96. Wada H., Saiga H., Satoh N., Holland P. W. Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development. 1998 Mar;125(6):1113–1122. doi: 10.1242/dev.125.6.1113. [DOI] [PubMed] [Google Scholar]
  97. Wada S., Katsuyama Y., Sato Y., Itoh C., Saiga H. Hroth an orthodenticle-related homeobox gene of the ascidian, Halocynthia roretzi: its expression and putative roles in the axis formation during embryogenesis. Mech Dev. 1996 Nov;60(1):59–71. doi: 10.1016/s0925-4773(96)00600-4. [DOI] [PubMed] [Google Scholar]
  98. Wada S., Saiga H. Vegetal cell fate specification and anterior neuroectoderm formation by Hroth, the ascidian homologue of orthodenticle/otx. Mech Dev. 1999 Apr;82(1-2):67–77. doi: 10.1016/s0925-4773(99)00012-x. [DOI] [PubMed] [Google Scholar]
  99. Weinstein D. C., Hemmati-Brivanlou A. Neural induction. Annu Rev Cell Dev Biol. 1999;15:411–433. doi: 10.1146/annurev.cellbio.15.1.411. [DOI] [PubMed] [Google Scholar]
  100. White J. C., Highland M., Kaiser M., Clagett-Dame M. Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo. Dev Biol. 2000 Apr 15;220(2):263–284. doi: 10.1006/dbio.2000.9635. [DOI] [PubMed] [Google Scholar]
  101. Wilkinson D. G., Bhatt S., Chavrier P., Bravo R., Charnay P. Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature. 1989 Feb 2;337(6206):461–464. doi: 10.1038/337461a0. [DOI] [PubMed] [Google Scholar]
  102. Williams N. A., Holland P. W. Gene and domain duplication in the chordate Otx gene family: insights from amphioxus Otx. Mol Biol Evol. 1998 May;15(5):600–607. doi: 10.1093/oxfordjournals.molbev.a025961. [DOI] [PubMed] [Google Scholar]
  103. Yan Y. L., Jowett T., Postlethwait J. H. Ectopic expression of hoxb2 after retinoic acid treatment or mRNA injection: disruption of hindbrain and craniofacial morphogenesis in zebrafish embryos. Dev Dyn. 1998 Dec;213(4):370–385. doi: 10.1002/(SICI)1097-0177(199812)213:4<370::AID-AJA3>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES