Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Oct 29;356(1414):1615–1632. doi: 10.1098/rstb.2001.0976

Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives.

S Kuratani 1, Y Nobusada 1, N Horigome 1, Y Shigetani 1
PMCID: PMC1088540  PMID: 11604127

Abstract

Evolution of the vertebrate jaw has been reviewed and discussed based on the developmental pattern of the Japanese marine lamprey, Lampetra japonica. Though it never forms a jointed jaw apparatus, the L. japonica embryo exhibits the typical embryonic structure as well as the conserved regulatory gene expression patterns of vertebrates. The lamprey therefore shares the phylotype of vertebrates, the conserved embryonic pattern that appears at pharyngula stage, rather than representing an intermediate evolutionary state. Both gnathostomes and lampreys exhibit a tripartite configuration of the rostral-most crest-derived ectomesenchyme, each part occupying an anatomically equivalent site. Differentiated oral structure becomes apparent in post-pharyngula development. Due to the solid nasohypophyseal plate, the post-optic ectomesenchyme of the lamprey fails to grow rostromedially to form the medial nasal septum as in gnathostomes, but forms the upper lip instead. The gnathostome jaw may thus have arisen through a process of ontogenetic repatterning, in which a heterotopic shift of mesenchyme-epithelial relationships would have been involved. Further identification of shifts in tissue interaction and expression of regulatory genes are necessary to describe the evolution of the jaw fully from the standpoint of evolutionary developmental biology.

Full Text

The Full Text of this article is available as a PDF (8.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carr J. L., Shashikant C. S., Bailey W. J., Ruddle F. H. Molecular evolution of Hox gene regulation: cloning and transgenic analysis of the lamprey HoxQ8 gene. J Exp Zool. 1998 Jan 1;280(1):73–85. doi: 10.1002/(sici)1097-010x(19980101)280:1<73::aid-jez9>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  2. Couly G. F., Coltey P. M., Le Douarin N. M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development. 1992 Jan;114(1):1–15. doi: 10.1242/dev.114.1.1. [DOI] [PubMed] [Google Scholar]
  3. Couly G. F., Coltey P. M., Le Douarin N. M. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development. 1993 Feb;117(2):409–429. doi: 10.1242/dev.117.2.409. [DOI] [PubMed] [Google Scholar]
  4. Couly G., Le Douarin N. M. The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development. 1988;103 (Suppl):101–113. doi: 10.1242/dev.103.Supplement.101. [DOI] [PubMed] [Google Scholar]
  5. Duboule D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl. 1994:135–142. [PubMed] [Google Scholar]
  6. EDE D. A., KELLY W. A. DEVELOPMENTAL ABNORMALITIES IN THE HEAD REGION OF THE TALPID MUTANT OF THE FOWL. J Embryol Exp Morphol. 1964 Mar;12:161–182. [PubMed] [Google Scholar]
  7. Gans C., Northcutt R. G. Neural crest and the origin of vertebrates: a new head. Science. 1983 Apr 15;220(4594):268–273. doi: 10.1126/science.220.4594.268. [DOI] [PubMed] [Google Scholar]
  8. Gleiberman A. S., Fedtsova N. G., Rosenfeld M. G. Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Dev Biol. 1999 Sep 15;213(2):340–353. doi: 10.1006/dbio.1999.9386. [DOI] [PubMed] [Google Scholar]
  9. Horigome N., Myojin M., Ueki T., Hirano S., Aizawa S., Kuratani S. Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw. Dev Biol. 1999 Mar 15;207(2):287–308. doi: 10.1006/dbio.1998.9175. [DOI] [PubMed] [Google Scholar]
  10. Hunt P., Krumlauf R. Deciphering the Hox code: clues to patterning branchial regions of the head. Cell. 1991 Sep 20;66(6):1075–1078. doi: 10.1016/0092-8674(91)90029-x. [DOI] [PubMed] [Google Scholar]
  11. Hunt P., Wilkinson D., Krumlauf R. Patterning the vertebrate head: murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest. Development. 1991 May;112(1):43–50. doi: 10.1242/dev.112.1.43. [DOI] [PubMed] [Google Scholar]
  12. Johnston M. C. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat Rec. 1966 Oct;156(2):143–155. doi: 10.1002/ar.1091560204. [DOI] [PubMed] [Google Scholar]
  13. Kuraku S., Hoshiyama D., Katoh K., Suga H., Miyata T. Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes. J Mol Evol. 1999 Dec;49(6):729–735. doi: 10.1007/pl00006595. [DOI] [PubMed] [Google Scholar]
  14. Kuratani S. C., Eichele G. Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein. Development. 1993 Jan;117(1):105–117. doi: 10.1242/dev.117.1.105. [DOI] [PubMed] [Google Scholar]
  15. Kuratani S., Horigome N., Hirano S. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate, Lampetra japonica. Dev Biol. 1999 Jun 15;210(2):381–400. doi: 10.1006/dbio.1999.9266. [DOI] [PubMed] [Google Scholar]
  16. Kuratani S., Horigome N., Ueki T., Aizawa S., Hirano S. Stereotyped axonal bundle formation and neuromeric patterns in embryos of a cyclostome, Lampetra japonica. J Comp Neurol. 1998 Feb 2;391(1):99–114. [PubMed] [Google Scholar]
  17. Kuratani S., Matsuo I., Aizawa S. Developmental patterning and evolution of the mammalian viscerocranium: genetic insights into comparative morphology. Dev Dyn. 1997 Jun;209(2):139–155. doi: 10.1002/(SICI)1097-0177(199706)209:2<139::AID-AJA1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  18. Kuratani S. Spatial distribution of postotic crest cells defines the head/trunk interface of the vertebrate body: embryological interpretation of peripheral nerve morphology and evolution of the vertebrate head. Anat Embryol (Berl) 1997 Jan;195(1):1–13. doi: 10.1007/s004290050020. [DOI] [PubMed] [Google Scholar]
  19. Kuratani S., Tanaka S. Peripheral development of avian trigeminal nerves. Am J Anat. 1990 Jan;187(1):65–80. doi: 10.1002/aja.1001870108. [DOI] [PubMed] [Google Scholar]
  20. Kuratani S., Ueki T., Aizawa S., Hirano S. Peripheral development of cranial nerves in a cyclostome, Lampetra japonica: morphological distribution of nerve branches and the vertebrate body plan. J Comp Neurol. 1997 Aug 11;384(4):483–500. [PubMed] [Google Scholar]
  21. Köntges G., Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development. 1996 Oct;122(10):3229–3242. doi: 10.1242/dev.122.10.3229. [DOI] [PubMed] [Google Scholar]
  22. Le Lièvre C. S. Participation of neural crest-derived cells in the genesis of the skull in birds. J Embryol Exp Morphol. 1978 Oct;47:17–37. [PubMed] [Google Scholar]
  23. Lumsden A., Keynes R. Segmental patterns of neuronal development in the chick hindbrain. Nature. 1989 Feb 2;337(6206):424–428. doi: 10.1038/337424a0. [DOI] [PubMed] [Google Scholar]
  24. Lumsden A., Sprawson N., Graham A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development. 1991 Dec;113(4):1281–1291. doi: 10.1242/dev.113.4.1281. [DOI] [PubMed] [Google Scholar]
  25. Mallatt J., Sullivan J. 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Mol Biol Evol. 1998 Dec;15(12):1706–1718. doi: 10.1093/oxfordjournals.molbev.a025897. [DOI] [PubMed] [Google Scholar]
  26. Matsuo I., Kuratani S., Kimura C., Takeda N., Aizawa S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 1995 Nov 1;9(21):2646–2658. doi: 10.1101/gad.9.21.2646. [DOI] [PubMed] [Google Scholar]
  27. McGinnis W., Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283–302. doi: 10.1016/0092-8674(92)90471-n. [DOI] [PubMed] [Google Scholar]
  28. Myojin M., Ueki T., Sugahara F., Murakami Y., Shigetani Y., Aizawa S., Hirano S., Kuratani S. Isolation of Dlx and Emx gene cognates in an agnathan species, Lampetra japonica, and their expression patterns during embryonic and larval development: conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution. J Exp Zool. 2001 Apr 15;291(1):68–84. doi: 10.1002/jez.6. [DOI] [PubMed] [Google Scholar]
  29. Müller M., v Weizsäcker E., Campos-Ortega J. A. Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. Development. 1996 Jul;122(7):2071–2078. doi: 10.1242/dev.122.7.2071. [DOI] [PubMed] [Google Scholar]
  30. Noden D. M. An analysis of migratory behavior of avian cephalic neural crest cells. Dev Biol. 1975 Jan;42(1):106–130. doi: 10.1016/0012-1606(75)90318-8. [DOI] [PubMed] [Google Scholar]
  31. Noden D. M. Interactions and fates of avian craniofacial mesenchyme. Development. 1988;103 (Suppl):121–140. doi: 10.1242/dev.103.Supplement.121. [DOI] [PubMed] [Google Scholar]
  32. O'Connor R., Tessier-Lavigne M. Identification of maxillary factor, a maxillary process-derived chemoattractant for developing trigeminal sensory axons. Neuron. 1999 Sep;24(1):165–178. doi: 10.1016/s0896-6273(00)80830-2. [DOI] [PubMed] [Google Scholar]
  33. Ogasawara M., Shigetani Y., Hirano S., Satoh N., Kuratani S. Pax1/Pax9-Related genes in an agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan. Dev Biol. 2000 Jul 15;223(2):399–410. doi: 10.1006/dbio.2000.9756. [DOI] [PubMed] [Google Scholar]
  34. Ogasawara M., Wada H., Peters H., Satoh N. Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development. 1999 Jun;126(11):2539–2550. doi: 10.1242/dev.126.11.2539. [DOI] [PubMed] [Google Scholar]
  35. Osumi-Yamashita N., Kuratani S., Ninomiya Y., Aoki K., Iseki S., Chareonvit S., Doi H., Fujiwara M., Watanabe T., Eto K. Cranial anomaly of homozygous rSey rat is associated with a defect in the migration pathway of midbrain crest cells. Dev Growth Differ. 1997 Feb;39(1):53–67. doi: 10.1046/j.1440-169x.1997.00007.x. [DOI] [PubMed] [Google Scholar]
  36. Osumi-Yamashita N., Ninomiya Y., Doi H., Eto K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol. 1994 Aug;164(2):409–419. doi: 10.1006/dbio.1994.1211. [DOI] [PubMed] [Google Scholar]
  37. Pendleton J. W., Nagai B. K., Murtha M. T., Ruddle F. H. Expansion of the Hox gene family and the evolution of chordates. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6300–6304. doi: 10.1073/pnas.90.13.6300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Qiu M., Bulfone A., Ghattas I., Meneses J. J., Christensen L., Sharpe P. T., Presley R., Pedersen R. A., Rubenstein J. L. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol. 1997 May 15;185(2):165–184. doi: 10.1006/dbio.1997.8556. [DOI] [PubMed] [Google Scholar]
  39. Rijli F. M., Mark M., Lakkaraju S., Dierich A., Dollé P., Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993 Dec 31;75(7):1333–1349. doi: 10.1016/0092-8674(93)90620-6. [DOI] [PubMed] [Google Scholar]
  40. Schwanzel-Fukuda M., Pfaff D. W. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989 Mar 9;338(6211):161–164. doi: 10.1038/338161a0. [DOI] [PubMed] [Google Scholar]
  41. Sechrist J., Serbedzija G. N., Scherson T., Fraser S. E., Bronner-Fraser M. Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development. 1993 Jul;118(3):691–703. doi: 10.1242/dev.118.3.691. [DOI] [PubMed] [Google Scholar]
  42. Shigetani Y., Nobusada Y., Kuratani S. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev Biol. 2000 Dec 1;228(1):73–85. doi: 10.1006/dbio.2000.9932. [DOI] [PubMed] [Google Scholar]
  43. Smith M. M., Hall B. K. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol Rev Camb Philos Soc. 1990 Aug;65(3):277–373. doi: 10.1111/j.1469-185x.1990.tb01427.x. [DOI] [PubMed] [Google Scholar]
  44. Song J., Boord R. L. Motor components of the trigeminal nerve and organization of the mandibular arch muscles in vertebrates. Phylogenetically conservative patterns and their ontogenetic basis. Acta Anat (Basel) 1993;148(2-3):139–149. doi: 10.1159/000147533. [DOI] [PubMed] [Google Scholar]
  45. Tomsa J. M., Langeland J. A. Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. Dev Biol. 1999 Mar 1;207(1):26–37. doi: 10.1006/dbio.1998.9163. [DOI] [PubMed] [Google Scholar]
  46. Trumpp A., Depew M. J., Rubenstein J. L., Bishop J. M., Martin G. R. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 1999 Dec 1;13(23):3136–3148. doi: 10.1101/gad.13.23.3136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ueki T., Kuratani S., Hirano S., Aizawa S. Otx cognates in a lamprey, Lampetra japonica. Dev Genes Evol. 1998 Jun;208(4):223–228. doi: 10.1007/s004270050176. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES