Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Oct 29;356(1414):1633–1653. doi: 10.1098/rstb.2001.0917

The genetic basis of modularity in the development and evolution of the vertebrate dentition.

D W Stock 1
PMCID: PMC1088541  PMID: 11604128

Abstract

The construction of organisms from units that develop under semi-autonomous genetic control (modules) has been proposed to be an important component of their ability to undergo adaptive phenotypic evolution. The organization of the vertebrate dentition as a system of repeated parts provides an opportunity to study the extent to which phenotypic modules, identified by their evolutionary independence from other such units, are related to modularity in the genetic control of development. The evolutionary history of vertebrates provides numerous examples of both correlated and independent evolution of groups of teeth. The dentition itself appears to be a module of the dermal exoskeleton, from which it has long been under independent genetic control. Region-specific tooth loss has been a common trend in vertebrate evolution. Novel deployment of teeth and reacquisition of lost teeth have also occurred, although less frequently. Tooth shape differences within the dentition may be discontinuous (referred to as heterodonty) or graded. The occurrence of homeotic changes in tooth shape provides evidence for the decoupling of tooth shape and location in the course of evolution. Potential mechanisms for region-specific evolutionary tooth loss are suggested by a number of mouse gene knockouts and human genetic dental anomalies, as well as a comparison between fully-developed and rudimentary teeth in the dentition of rodents. These mechanisms include loss of a tooth-type-specific initiation signal, alterations of the relative strength of inductive and inhibitory signals acting at the time of tooth initiation and the overall reduction in levels of proteins required for the development of all teeth. Ectopic expression of tooth initiation signals provides a potential mechanism for the novel deployment or reacquisition of teeth; a single instance is known of a gene whose ectopic expression in transgenic mice can lead to ectopic teeth. Differences in shape between incisor and molar teeth in the mouse have been proposed to be controlled by the region-specific expression of signalling molecules in the oral epithelium. These molecules induce the expression of transcription factors in the underlying jaw mesenchyme that may act as selectors of tooth type. It is speculated that shifts in the expression domains of the epithelial signalling molecules might be responsible for homeotic changes in tooth shape. The observation that these molecules are regionally restricted in the chicken, whose ancestors were not heterodont, suggests that mammalian heterodonty may have evolved through the use of patterning mechanisms already acting on skeletal elements of the jaws. In general, genetic and morphological approaches identify similar types of modules in the dentition, but the data are not yet sufficient to identify exact correspondences. It is speculated that modularity may be achieved by gene expression differences between teeth or by differences in the time of their development, causing mutations to have cumulative effects on later-developing teeth. The mammalian dentition, for which virtually all of the available developmental genetic data have been collected, represents a small subset of the dental diversity present in vertebrates as a whole. In particular, teleost fishes may have a much more extensive dentition. Extension of research on the genetic control of tooth development to this and other vertebrate groups has great potential to further the understanding of modularity in the dentition.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberg T., Wozney J., Thesleff I. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn. 1997 Dec;210(4):383–396. doi: 10.1002/(SICI)1097-0177(199712)210:4<383::AID-AJA3>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  2. Ahn D. G., Gibson G. Expression patterns of threespine stickleback hox genes and insights into the evolution of the vertebrate body axis. Dev Genes Evol. 1999 Aug;209(8):482–494. doi: 10.1007/s004270050281. [DOI] [PubMed] [Google Scholar]
  3. Averof M., Patel N. H. Crustacean appendage evolution associated with changes in Hox gene expression. Nature. 1997 Aug 14;388(6643):682–686. doi: 10.1038/41786. [DOI] [PubMed] [Google Scholar]
  4. Bamshad M., Lin R. C., Law D. J., Watkins W. C., Krakowiak P. A., Moore M. E., Franceschini P., Lala R., Holmes L. B., Gebuhr T. C. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet. 1997 Jul;16(3):311–315. doi: 10.1038/ng0797-311. [DOI] [PubMed] [Google Scholar]
  5. Barlow A. J., Bogardi J. P., Ladher R., Francis-West P. H. Expression of chick Barx-1 and its differential regulation by FGF-8 and BMP signaling in the maxillary primordia. Dev Dyn. 1999 Apr;214(4):291–302. doi: 10.1002/(SICI)1097-0177(199904)214:4<291::AID-AJA2>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  6. Bei M., Maas R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development. 1998 Nov;125(21):4325–4333. doi: 10.1242/dev.125.21.4325. [DOI] [PubMed] [Google Scholar]
  7. Butler P. M. Dental merism and tooth development. J Dent Res. 1967 Sep-Oct;46(5):845–850. doi: 10.1177/00220345670460053801. [DOI] [PubMed] [Google Scholar]
  8. Butler P. M. Ontogenetic aspects of dental evolution. Int J Dev Biol. 1995 Feb;39(1):25–34. [PubMed] [Google Scholar]
  9. Butler P. M. The ontogeny of mammalian heterodonty. J Biol Buccale. 1978 Sep;6(3):217–228. [PubMed] [Google Scholar]
  10. Carroll S. B., Weatherbee S. D., Langeland J. A. Homeotic genes and the regulation and evolution of insect wing number. Nature. 1995 May 4;375(6526):58–61. doi: 10.1038/375058a0. [DOI] [PubMed] [Google Scholar]
  11. Chai Y., Jiang X., Ito Y., Bringas P., Jr, Han J., Rowitch D. H., Soriano P., McMahon A. P., Sucov H. M. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000 Apr;127(8):1671–1679. doi: 10.1242/dev.127.8.1671. [DOI] [PubMed] [Google Scholar]
  12. Chen Y., Bei M., Woo I., Satokata I., Maas R. Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development. 1996 Oct;122(10):3035–3044. doi: 10.1242/dev.122.10.3035. [DOI] [PubMed] [Google Scholar]
  13. Chiang C., Litingtung Y., Lee E., Young K. E., Corden J. L., Westphal H., Beachy P. A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996 Oct 3;383(6599):407–413. doi: 10.1038/383407a0. [DOI] [PubMed] [Google Scholar]
  14. Couly G., Le Douarin N. M. Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres. Development. 1990 Apr;108(4):543–558. doi: 10.1242/dev.108.4.543. [DOI] [PubMed] [Google Scholar]
  15. Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet. 1998 Jan;18(1):19–24. doi: 10.1038/ng0198-19. [DOI] [PubMed] [Google Scholar]
  16. Dassule H. R., Lewis P., Bei M., Maas R., McMahon A. P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000 Nov;127(22):4775–4785. doi: 10.1242/dev.127.22.4775. [DOI] [PubMed] [Google Scholar]
  17. Dassule H. R., McMahon A. P. Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol. 1998 Oct 15;202(2):215–227. doi: 10.1006/dbio.1998.8992. [DOI] [PubMed] [Google Scholar]
  18. Dooley K., Zon L. I. Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev. 2000 Jun;10(3):252–256. doi: 10.1016/s0959-437x(00)00074-5. [DOI] [PubMed] [Google Scholar]
  19. Ferguson C. A., Tucker A. S., Christensen L., Lau A. L., Matzuk M. M., Sharpe P. T. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev. 1998 Aug 15;12(16):2636–2649. doi: 10.1101/gad.12.16.2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Francis-West P., Ladher R., Barlow A., Graveson A. Signalling interactions during facial development. Mech Dev. 1998 Jul;75(1-2):3–28. doi: 10.1016/s0925-4773(98)00082-3. [DOI] [PubMed] [Google Scholar]
  21. Gellon G., McGinnis W. Shaping animal body plans in development and evolution by modulation of Hox expression patterns. Bioessays. 1998 Feb;20(2):116–125. doi: 10.1002/(SICI)1521-1878(199802)20:2<116::AID-BIES4>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  22. Grapin-Botton A., Melton D. A. Endoderm development: from patterning to organogenesis. Trends Genet. 2000 Mar;16(3):124–130. doi: 10.1016/s0168-9525(99)01957-5. [DOI] [PubMed] [Google Scholar]
  23. Graveson A. C., Smith M. M., Hall B. K. Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance. Dev Biol. 1997 Aug 1;188(1):34–42. doi: 10.1006/dbio.1997.8563. [DOI] [PubMed] [Google Scholar]
  24. Hardcastle Z., Mo R., Hui C. C., Sharpe P. T. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development. 1998 Aug;125(15):2803–2811. doi: 10.1242/dev.125.15.2803. [DOI] [PubMed] [Google Scholar]
  25. Helms J. A., Kim C. H., Hu D., Minkoff R., Thaller C., Eichele G. Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol. 1997 Jul 1;187(1):25–35. doi: 10.1006/dbio.1997.8589. [DOI] [PubMed] [Google Scholar]
  26. Henrich T., Wittbrodt J. An in situ hybridization screen for the rapid isolation of differentially expressed genes. Dev Genes Evol. 2000 Jan;210(1):28–33. doi: 10.1007/pl00008185. [DOI] [PubMed] [Google Scholar]
  27. Hunt P., Clarke J. D., Buxton P., Ferretti P., Thorogood P. Stability and plasticity of neural crest patterning and branchial arch Hox code after extensive cephalic crest rotation. Dev Biol. 1998 Jun 1;198(1):82–104. doi: 10.1006/dbio.1998.8886. [DOI] [PubMed] [Google Scholar]
  28. Hunt P., Krumlauf R. Hox codes and positional specification in vertebrate embryonic axes. Annu Rev Cell Biol. 1992;8:227–256. doi: 10.1146/annurev.cb.08.110192.001303. [DOI] [PubMed] [Google Scholar]
  29. Huysseune A., Sire J. Y. Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. Eur J Oral Sci. 1998 Jan;106 (Suppl 1):437–481. doi: 10.1111/j.1600-0722.1998.tb02211.x. [DOI] [PubMed] [Google Scholar]
  30. Huysseune A., Van der heyden C., Sire J. Y. Early development of the zebrafish (Danio rerio) pharyngeal dentition (Teleostei, Cyprinidae). Anat Embryol (Berl) 1998 Oct;198(4):289–305. doi: 10.1007/s004290050185. [DOI] [PubMed] [Google Scholar]
  31. Imai H., Osumi-Yamashita N., Ninomiya Y., Eto K. Contribution of early-emigrating midbrain crest cells to the dental mesenchyme of mandibular molar teeth in rat embryos. Dev Biol. 1996 Jun 15;176(2):151–165. doi: 10.1006/dbio.1996.9985. [DOI] [PubMed] [Google Scholar]
  32. Imai H., Osumi N., Eto K. Contribution of foregut endoderm to tooth initiation of mandibular incisor in rat embryos. Eur J Oral Sci. 1998 Jan;106 (Suppl 1):19–23. doi: 10.1111/j.1600-0722.1998.tb02148.x. [DOI] [PubMed] [Google Scholar]
  33. Ishikawa Y. Medakafish as a model system for vertebrate developmental genetics. Bioessays. 2000 May;22(5):487–495. doi: 10.1002/(SICI)1521-1878(200005)22:5<487::AID-BIES11>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  34. Jernvall J., Aberg T., Kettunen P., Keränen S., Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998 Jan;125(2):161–169. doi: 10.1242/dev.125.2.161. [DOI] [PubMed] [Google Scholar]
  35. Jernvall J., Jung H. S. Genotype, phenotype, and developmental biology of molar tooth characters. Am J Phys Anthropol. 2000;Suppl 31:171–190. doi: 10.1002/1096-8644(2000)43:31+<171::aid-ajpa6>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  36. Jernvall J. Linking development with generation of novelty in mammalian teeth. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2641–2645. doi: 10.1073/pnas.050586297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Jernvall J., Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000 Mar 15;92(1):19–29. doi: 10.1016/s0925-4773(99)00322-6. [DOI] [PubMed] [Google Scholar]
  38. Kaufman M. H., Chang H. H., Shaw J. P. Craniofacial abnormalities in homozygous Small eye (Sey/Sey) embryos and newborn mice. J Anat. 1995 Jun;186(Pt 3):607–617. [PMC free article] [PubMed] [Google Scholar]
  39. Keränen S. V., Aberg T., Kettunen P., Thesleff I., Jernvall J. Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Dev Genes Evol. 1998 Nov;208(9):477–486. doi: 10.1007/s004270050206. [DOI] [PubMed] [Google Scholar]
  40. Keränen S. V., Kettunen P., Aberg T., Thesleff I., Jernvall J. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol. 1999 Aug;209(8):495–506. doi: 10.1007/s004270050282. [DOI] [PubMed] [Google Scholar]
  41. Kettunen P., Laurikkala J., Itäranta P., Vainio S., Itoh N., Thesleff I. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn. 2000 Nov;219(3):322–332. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1062>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  42. Kettunen P., Thesleff I. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn. 1998 Mar;211(3):256–268. doi: 10.1002/(SICI)1097-0177(199803)211:3<256::AID-AJA7>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  43. Kirschner M., Gerhart J. Evolvability. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8420–8427. doi: 10.1073/pnas.95.15.8420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kocher T. D., Lee W. J., Sobolewska H., Penman D., McAndrew B. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics. 1998 Mar;148(3):1225–1232. doi: 10.1093/genetics/148.3.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kollar E. J., Fisher C. Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science. 1980 Feb 29;207(4434):993–995. doi: 10.1126/science.7352302. [DOI] [PubMed] [Google Scholar]
  46. Kollar E. J., Mina M. Role of the early epithelium in the patterning of the teeth and Meckel's cartilage. J Craniofac Genet Dev Biol. 1991 Oct-Dec;11(4):223–228. [PubMed] [Google Scholar]
  47. Kratochwil K., Dull M., Farinas I., Galceran J., Grosschedl R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. 1996 Jun 1;10(11):1382–1394. doi: 10.1101/gad.10.11.1382. [DOI] [PubMed] [Google Scholar]
  48. Köntges G., Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development. 1996 Oct;122(10):3229–3242. doi: 10.1242/dev.122.10.3229. [DOI] [PubMed] [Google Scholar]
  49. Lu M. F., Cheng H. T., Kern M. J., Potter S. S., Tran B., Diekwisch T. G., Martin J. F. prx-1 functions cooperatively with another paired-related homeobox gene, prx-2, to maintain cell fates within the craniofacial mesenchyme. Development. 1999 Feb;126(3):495–504. doi: 10.1242/dev.126.3.495. [DOI] [PubMed] [Google Scholar]
  50. Lu M. F., Pressman C., Dyer R., Johnson R. L., Martin J. F. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature. 1999 Sep 16;401(6750):276–278. doi: 10.1038/45797. [DOI] [PubMed] [Google Scholar]
  51. Lumsden A. G. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988;103 (Suppl):155–169. doi: 10.1242/dev.103.Supplement.155. [DOI] [PubMed] [Google Scholar]
  52. MacKenzie A., Ferguson M. W., Sharpe P. T. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development. 1992 Jun;115(2):403–420. doi: 10.1242/dev.115.2.403. [DOI] [PubMed] [Google Scholar]
  53. Mina M., Gluhak J., Upholt W. B., Kollar E. J., Rogers B. Experimental analysis of Msx-1 and Msx-2 gene expression during chick mandibular morphogenesis. Dev Dyn. 1995 Feb;202(2):195–214. doi: 10.1002/aja.1002020211. [DOI] [PubMed] [Google Scholar]
  54. Miyake T., Vaglia J. L., Taylor L. H., Hall B. K. Development of dermal denticles in skates (Chondrichthyes, Batoidea): patterning and cellular differentiation. J Morphol. 1999 Jul;241(1):61–81. doi: 10.1002/(SICI)1097-4687(199907)241:1<61::AID-JMOR4>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  55. Mucchielli M. L., Mitsiadis T. A., Raffo S., Brunet J. F., Proust J. P., Goridis C. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol. 1997 Sep 15;189(2):275–284. doi: 10.1006/dbio.1997.8672. [DOI] [PubMed] [Google Scholar]
  56. Naruse K., Fukamachi S., Mitani H., Kondo M., Matsuoka T., Kondo S., Hanamura N., Morita Y., Hasegawa K., Nishigaki R. A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics. 2000 Apr;154(4):1773–1784. doi: 10.1093/genetics/154.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Neubüser A., Peters H., Balling R., Martin G. R. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997 Jul 25;90(2):247–255. doi: 10.1016/s0092-8674(00)80333-5. [DOI] [PubMed] [Google Scholar]
  58. Noden D. M. Vertebrate craniofacial development: the relation between ontogenetic process and morphological outcome. Brain Behav Evol. 1991;38(4-5):190–225. doi: 10.1159/000114388. [DOI] [PubMed] [Google Scholar]
  59. Peters H., Balling R. Teeth. Where and how to make them. Trends Genet. 1999 Feb;15(2):59–65. doi: 10.1016/s0168-9525(98)01662-x. [DOI] [PubMed] [Google Scholar]
  60. Peters H., Neubüser A., Kratochwil K., Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998 Sep 1;12(17):2735–2747. doi: 10.1101/gad.12.17.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Prince V. E., Joly L., Ekker M., Ho R. K. Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development. 1998 Feb;125(3):407–420. doi: 10.1242/dev.125.3.407. [DOI] [PubMed] [Google Scholar]
  62. Prince V. E., Moens C. B., Kimmel C. B., Ho R. K. Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development. 1998 Feb;125(3):393–406. doi: 10.1242/dev.125.3.393. [DOI] [PubMed] [Google Scholar]
  63. Qiu M., Bulfone A., Ghattas I., Meneses J. J., Christensen L., Sharpe P. T., Presley R., Pedersen R. A., Rubenstein J. L. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol. 1997 May 15;185(2):165–184. doi: 10.1006/dbio.1997.8556. [DOI] [PubMed] [Google Scholar]
  64. Quinn J. C., West J. D., Kaufman M. H. Genetic background effects on dental and other craniofacial abnormalities in homozygous small eye (Pax6Sey/Pax6Sey) mice. Anat Embryol (Berl) 1997 Oct;196(4):311–321. doi: 10.1007/s004290050100. [DOI] [PubMed] [Google Scholar]
  65. Reif W. E. Development of dentition and dermal skeleton in embryonic Scyliorhinus canicula. J Morphol. 1980 Dec;166(3):275–288. doi: 10.1002/jmor.1051660303. [DOI] [PubMed] [Google Scholar]
  66. Ruch J. V., Lesot H., Bègue-Kirn C. Odontoblast differentiation. Int J Dev Biol. 1995 Feb;39(1):51–68. [PubMed] [Google Scholar]
  67. Ruch J. V., Lesot H., Peterkova R., Peterka M. Evolving rodent dentition. Bioessays. 1997 Nov;19(11):1041–1041. doi: 10.1002/bies.950191115. [DOI] [PubMed] [Google Scholar]
  68. Ruch J. V. Tooth crown morphogenesis and cytodifferentiations: candid questions and critical comments. Connect Tissue Res. 1995;32(1-4):1–8. doi: 10.3109/03008209509013699. [DOI] [PubMed] [Google Scholar]
  69. Ruvinsky I., Gibson-Brown J. J. Genetic and developmental bases of serial homology in vertebrate limb evolution. Development. 2000 Dec;127(24):5233–5244. doi: 10.1242/dev.127.24.5233. [DOI] [PubMed] [Google Scholar]
  70. Sakamoto T., Danzmann R. G., Gharbi K., Howard P., Ozaki A., Khoo S. K., Woram R. A., Okamoto N., Ferguson M. M., Holm L. E. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics. 2000 Jul;155(3):1331–1345. doi: 10.1093/genetics/155.3.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Semina E. V., Reiter R., Leysens N. J., Alward W. L., Small K. W., Datson N. A., Siegel-Bartelt J., Bierke-Nelson D., Bitoun P., Zabel B. U. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet. 1996 Dec;14(4):392–399. doi: 10.1038/ng1296-392. [DOI] [PubMed] [Google Scholar]
  72. Sharpe P. T. Homeobox genes and orofacial development. Connect Tissue Res. 1995;32(1-4):17–25. doi: 10.3109/03008209509013701. [DOI] [PubMed] [Google Scholar]
  73. Shigetani Y., Nobusada Y., Kuratani S. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev Biol. 2000 Dec 1;228(1):73–85. doi: 10.1006/dbio.2000.9932. [DOI] [PubMed] [Google Scholar]
  74. Smith M. M., Coates M. I. Evolutionary origins of the vertebrate dentition: phylogenetic patterns and developmental evolution. Eur J Oral Sci. 1998 Jan;106 (Suppl 1):482–500. doi: 10.1111/j.1600-0722.1998.tb02212.x. [DOI] [PubMed] [Google Scholar]
  75. St Amand T. R., Zhang Y., Semina E. V., Zhao X., Hu Y., Nguyen L., Murray J. C., Chen Y. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol. 2000 Jan 15;217(2):323–332. doi: 10.1006/dbio.1999.9547. [DOI] [PubMed] [Google Scholar]
  76. Stock D. W., Weiss K. M., Zhao Z. Patterning of the mammalian dentition in development and evolution. Bioessays. 1997 Jun;19(6):481–490. doi: 10.1002/bies.950190607. [DOI] [PubMed] [Google Scholar]
  77. Stockton D. W., Das P., Goldenberg M., D'Souza R. N., Patel P. I. Mutation of PAX9 is associated with oligodontia. Nat Genet. 2000 Jan;24(1):18–19. doi: 10.1038/71634. [DOI] [PubMed] [Google Scholar]
  78. Thesleff I., Hurmerinta K. Tissue interactions in tooth development. Differentiation. 1981;18(2):75–88. doi: 10.1111/j.1432-0436.1981.tb01107.x. [DOI] [PubMed] [Google Scholar]
  79. Thesleff I. Two genes for missing teeth. Nat Genet. 1996 Aug;13(4):379–380. doi: 10.1038/ng0896-379. [DOI] [PubMed] [Google Scholar]
  80. Thomas B. L., Liu J. K., Rubenstein J. L., Sharpe P. T. Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch. Development. 2000 Jan;127(2):217–224. doi: 10.1242/dev.127.2.217. [DOI] [PubMed] [Google Scholar]
  81. Thomas B. L., Tucker A. S., Qui M., Ferguson C. A., Hardcastle Z., Rubenstein J. L., Sharpe P. T. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development. 1997 Dec;124(23):4811–4818. doi: 10.1242/dev.124.23.4811. [DOI] [PubMed] [Google Scholar]
  82. Trainor P., Krumlauf R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nat Cell Biol. 2000 Feb;2(2):96–102. doi: 10.1038/35000051. [DOI] [PubMed] [Google Scholar]
  83. Trumpp A., Depew M. J., Rubenstein J. L., Bishop J. M., Martin G. R. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 1999 Dec 1;13(23):3136–3148. doi: 10.1101/gad.13.23.3136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Tucker A. S., Al Khamis A., Ferguson C. A., Bach I., Rosenfeld M. G., Sharpe P. T. Conserved regulation of mesenchymal gene expression by Fgf-8 in face and limb development. Development. 1999 Jan;126(2):221–228. doi: 10.1242/dev.126.2.221. [DOI] [PubMed] [Google Scholar]
  85. Tucker A. S., Al Khamis A., Sharpe P. T. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme. Dev Dyn. 1998 Aug;212(4):533–539. doi: 10.1002/(SICI)1097-0177(199808)212:4<533::AID-AJA6>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  86. Tucker A. S., Matthews K. L., Sharpe P. T. Transformation of tooth type induced by inhibition of BMP signaling. Science. 1998 Nov 6;282(5391):1136–1138. doi: 10.1126/science.282.5391.1136. [DOI] [PubMed] [Google Scholar]
  87. Tucker A. S., Sharpe P. T. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999 Apr;78(4):826–834. doi: 10.1177/00220345990780040201. [DOI] [PubMed] [Google Scholar]
  88. Vainio S., Karavanova I., Jowett A., Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell. 1993 Oct 8;75(1):45–58. [PubMed] [Google Scholar]
  89. Vastardis H., Karimbux N., Guthua S. W., Seidman J. G., Seidman C. E. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet. 1996 Aug;13(4):417–421. doi: 10.1038/ng0896-417. [DOI] [PubMed] [Google Scholar]
  90. Wang Y. H., Rutherford B., Upholt W. B., Mina M. Effects of BMP-7 on mouse tooth mesenchyme and chick mandibular mesenchyme. Dev Dyn. 1999 Dec;216(4-5):320–335. doi: 10.1002/(SICI)1097-0177(199912)216:4/5<320::AID-DVDY2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  91. Wang Y. H., Upholt W. B., Sharpe P. T., Kollar E. J., Mina M. Odontogenic epithelium induces similar molecular responses in chick and mouse mandibular mesenchyme. Dev Dyn. 1998 Dec;213(4):386–397. doi: 10.1002/(SICI)1097-0177(199812)213:4<386::AID-AJA4>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  92. Warga R. M., Nüsslein-Volhard C. Origin and development of the zebrafish endoderm. Development. 1999 Feb;126(4):827–838. doi: 10.1242/dev.126.4.827. [DOI] [PubMed] [Google Scholar]
  93. Warren R. W., Nagy L., Selegue J., Gates J., Carroll S. Evolution of homeotic gene regulation and function in flies and butterflies. Nature. 1994 Dec 1;372(6505):458–461. doi: 10.1038/372458a0. [DOI] [PubMed] [Google Scholar]
  94. Weiss K. M., Stock D. W., Zhao Z. Dynamic interactions and the evolutionary genetics of dental patterning. Crit Rev Oral Biol Med. 1998;9(4):369–398. doi: 10.1177/10454411980090040101. [DOI] [PubMed] [Google Scholar]
  95. Weiss K., Stock D., Zhao Z., Buchanan A., Ruddle F., Shashikant C. Perspectives on genetic aspects of dental patterning. Eur J Oral Sci. 1998 Jan;106 (Suppl 1):55–63. doi: 10.1111/j.1600-0722.1998.tb02154.x. [DOI] [PubMed] [Google Scholar]
  96. Whitt G. S., Childers W. F., Wheat T. E. The inheritance of tissue-specific lactate dehydrogenase isozymes in interspecific bass (Micropterus) hybrids. Biochem Genet. 1971 Jun;5(3):257–273. doi: 10.1007/BF00485797. [DOI] [PubMed] [Google Scholar]
  97. Young W. P., Wheeler P. A., Coryell V. H., Keim P., Thorgaard G. H. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics. 1998 Feb;148(2):839–850. doi: 10.1093/genetics/148.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Zeichner-David M., Diekwisch T., Fincham A., Lau E., MacDougall M., Moradian-Oldak J., Simmer J., Snead M., Slavkin H. C. Control of ameloblast differentiation. Int J Dev Biol. 1995 Feb;39(1):69–92. [PubMed] [Google Scholar]
  99. Zhang Y., Zhang Z., Zhao X., Yu X., Hu Y., Geronimo B., Fromm S. H., Chen Y. P. A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Development. 2000 Apr;127(7):1431–1443. doi: 10.1242/dev.127.7.1431. [DOI] [PubMed] [Google Scholar]
  100. Zhang Y., Zhao X., Hu Y., St Amand T., Zhang M., Ramamurthy R., Qiu M., Chen Y. Msx1 is required for the induction of Patched by Sonic hedgehog in the mammalian tooth germ. Dev Dyn. 1999 May;215(1):45–53. doi: 10.1002/(SICI)1097-0177(199905)215:1<45::AID-DVDY5>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  101. Zhao Z., Stock D., Buchanan A., Weiss K. Expression of Dlx genes during the development of the murine dentition. Dev Genes Evol. 2000 May;210(5):270–275. doi: 10.1007/s004270050314. [DOI] [PubMed] [Google Scholar]
  102. ten Berge D., Brouwer A., Korving J., Martin J. F., Meijlink F. Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development. 1998 Oct;125(19):3831–3842. doi: 10.1242/dev.125.19.3831. [DOI] [PubMed] [Google Scholar]
  103. ten Cate A. R. The experimental investigation of odontogenesis. Int J Dev Biol. 1995 Feb;39(1):5–11. [PubMed] [Google Scholar]
  104. van Genderen C., Okamura R. M., Fariñas I., Quo R. G., Parslow T. G., Bruhn L., Grosschedl R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 1994 Nov 15;8(22):2691–2703. doi: 10.1101/gad.8.22.2691. [DOI] [PubMed] [Google Scholar]
  105. van den Boogaard M. J., Dorland M., Beemer F. A., van Amstel H. K. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet. 2000 Apr;24(4):342–343. doi: 10.1038/74155. [DOI] [PubMed] [Google Scholar]
  106. von Dassow G., Munro E. Modularity in animal development and evolution: elements of a conceptual framework for EvoDevo. J Exp Zool. 1999 Dec 15;285(4):307–325. [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES