Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Oct 29;356(1414):1655–1660. doi: 10.1098/rstb.2001.0920

The ectodermal placodes: a dysfunctional family.

J Begbie 1, A Graham 1
PMCID: PMC1088542  PMID: 11604129

Abstract

The ectodermal placodes are focal thickenings of the cranial embryonic ectoderm that contribute extensively to the cranial sensory systems of the vertebrates. The ectodermal placodes have long been thought of as representing a coherent group, which share a developmental and evolutionary history. However, it is now becoming clear that there are substantial differences between the placodes with respect to their early development, their induction and their evolution. Indeed, it is now hard to consider the ectodermal placodes as a single entity. Rather, they fall into a number of distinct classes and it is within each of these that the members share a common development and evolution.

Full Text

The Full Text of this article is available as a PDF (392.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker C. V., Bronner-Fraser M. Establishing neuronal identity in vertebrate neurogenic placodes. Development. 2000 Jul;127(14):3045–3056. doi: 10.1242/dev.127.14.3045. [DOI] [PubMed] [Google Scholar]
  2. Baker C. V., Stark M. R., Marcelle C., Bronner-Fraser M. Competence, specification and induction of Pax-3 in the trigeminal placode. Development. 1999 Jan;126(1):147–156. doi: 10.1242/dev.126.1.147. [DOI] [PubMed] [Google Scholar]
  3. Begbie J., Brunet J. F., Rubenstein J. L., Graham A. Induction of the epibranchial placodes. Development. 1999 Feb;126(5):895–902. doi: 10.1242/dev.126.5.895. [DOI] [PubMed] [Google Scholar]
  4. Couly G. F., Le Douarin N. M. Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol. 1985 Aug;110(2):422–439. doi: 10.1016/0012-1606(85)90101-0. [DOI] [PubMed] [Google Scholar]
  5. Couly G., Le Douarin N. M. Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres. Development. 1990 Apr;108(4):543–558. doi: 10.1242/dev.108.4.543. [DOI] [PubMed] [Google Scholar]
  6. Crossley P. H., Martinez S., Martin G. R. Midbrain development induced by FGF8 in the chick embryo. Nature. 1996 Mar 7;380(6569):66–68. doi: 10.1038/380066a0. [DOI] [PubMed] [Google Scholar]
  7. D'Amico-Martel A., Noden D. M. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat. 1983 Apr;166(4):445–468. doi: 10.1002/aja.1001660406. [DOI] [PubMed] [Google Scholar]
  8. Esteve P., Bovolenta P. cSix4, a member of the six gene family of transcription factors, is expressed during placode and somite development. Mech Dev. 1999 Jul;85(1-2):161–165. doi: 10.1016/s0925-4773(99)00079-9. [DOI] [PubMed] [Google Scholar]
  9. Gallagher B. C., Henry J. J., Grainger R. M. Inductive processes leading to inner ear formation during Xenopus development. Dev Biol. 1996 Apr 10;175(1):95–107. doi: 10.1006/dbio.1996.0098. [DOI] [PubMed] [Google Scholar]
  10. Gans C., Northcutt R. G. Neural crest and the origin of vertebrates: a new head. Science. 1983 Apr 15;220(4594):268–273. doi: 10.1126/science.220.4594.268. [DOI] [PubMed] [Google Scholar]
  11. Giraldez F. Regionalized organizing activity of the neural tube revealed by the regulation of lmx1 in the otic vesicle. Dev Biol. 1998 Nov 1;203(1):189–200. doi: 10.1006/dbio.1998.9023. [DOI] [PubMed] [Google Scholar]
  12. Gleiberman A. S., Fedtsova N. G., Rosenfeld M. G. Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Dev Biol. 1999 Sep 15;213(2):340–353. doi: 10.1006/dbio.1999.9386. [DOI] [PubMed] [Google Scholar]
  13. Groves A. K., Bronner-Fraser M. Competence, specification and commitment in otic placode induction. Development. 2000 Aug;127(16):3489–3499. doi: 10.1242/dev.127.16.3489. [DOI] [PubMed] [Google Scholar]
  14. Henry J. J., Grainger R. M. Early tissue interactions leading to embryonic lens formation in Xenopus laevis. Dev Biol. 1990 Sep;141(1):149–163. doi: 10.1016/0012-1606(90)90110-5. [DOI] [PubMed] [Google Scholar]
  15. Irving C., Mason I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development. 2000 Jan;127(1):177–186. doi: 10.1242/dev.127.1.177. [DOI] [PubMed] [Google Scholar]
  16. Jacobson A. G. Inductive processes in embryonic development. Science. 1966 Apr 1;152(3718):25–34. doi: 10.1126/science.152.3718.25. [DOI] [PubMed] [Google Scholar]
  17. Krauss S., Johansen T., Korzh V., Fjose A. Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development. 1991 Dec;113(4):1193–1206. doi: 10.1242/dev.113.4.1193. [DOI] [PubMed] [Google Scholar]
  18. Lumsden A., Keynes R. Segmental patterns of neuronal development in the chick hindbrain. Nature. 1989 Feb 2;337(6206):424–428. doi: 10.1038/337424a0. [DOI] [PubMed] [Google Scholar]
  19. Manni L., Lane N. J., Sorrentino M., Zaniolo G., Burighel P. Mechanism of neurogenesis during the embryonic development of a tunicate. J Comp Neurol. 1999 Sep 27;412(3):527–541. doi: 10.1002/(sici)1096-9861(19990927)412:3<527::aid-cne11>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  20. Marín F., Puelles L. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci. 1995 Aug 1;7(8):1714–1738. doi: 10.1111/j.1460-9568.1995.tb00693.x. [DOI] [PubMed] [Google Scholar]
  21. Narayanan C. H., Narayanan Y. Determination of the embryonic origin of the mesencephalic nucleus of the trigeminal nerve in birds. J Embryol Exp Morphol. 1978 Feb;43:85–105. [PubMed] [Google Scholar]
  22. Nornes H. O., Dressler G. R., Knapik E. W., Deutsch U., Gruss P. Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development. 1990 Aug;109(4):797–809. doi: 10.1242/dev.109.4.797. [DOI] [PubMed] [Google Scholar]
  23. Northcutt R. G., Barlow L. A. Amphibians provide new insights into taste-bud development. Trends Neurosci. 1998 Jan;21(1):38–43. doi: 10.1016/s0166-2236(97)01146-6. [DOI] [PubMed] [Google Scholar]
  24. Northcutt R. G., Brändle K. Development of branchiomeric and lateral line nerves in the axolotl. J Comp Neurol. 1995 May 8;355(3):427–454. doi: 10.1002/cne.903550309. [DOI] [PubMed] [Google Scholar]
  25. Northcutt R. G., Catania K. C., Criley B. B. Development of lateral line organs in the axolotl. J Comp Neurol. 1994 Feb 22;340(4):480–514. doi: 10.1002/cne.903400404. [DOI] [PubMed] [Google Scholar]
  26. Northcutt R. G. Evolution of gnathostome lateral line ontogenies. Brain Behav Evol. 1997 Jul;50(1):25–37. doi: 10.1159/000113319. [DOI] [PubMed] [Google Scholar]
  27. Schlosser G., Kintner C., Northcutt R. G. Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui. Dev Biol. 1999 Sep 15;213(2):354–369. doi: 10.1006/dbio.1999.9404. [DOI] [PubMed] [Google Scholar]
  28. Shamim H., Mahmood R., Logan C., Doherty P., Lumsden A., Mason I. Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development. 1999 Feb;126(5):945–959. doi: 10.1242/dev.126.5.945. [DOI] [PubMed] [Google Scholar]
  29. Sharman A. C., Shimeld S. M., Holland P. W. An amphioxus Msx gene expressed predominantly in the dorsal neural tube. Dev Genes Evol. 1999 Apr;209(4):260–263. doi: 10.1007/s004270050251. [DOI] [PubMed] [Google Scholar]
  30. Stark M. R., Sechrist J., Bronner-Fraser M., Marcelle C. Neural tube-ectoderm interactions are required for trigeminal placode formation. Development. 1997 Nov;124(21):4287–4295. doi: 10.1242/dev.124.21.4287. [DOI] [PubMed] [Google Scholar]
  31. Torres M., Giráldez F. The development of the vertebrate inner ear. Mech Dev. 1998 Feb;71(1-2):5–21. doi: 10.1016/s0925-4773(97)00155-x. [DOI] [PubMed] [Google Scholar]
  32. Verwoerd C. D., van Oostrom C. G. Cephalic neural crest and placodes. Adv Anat Embryol Cell Biol. 1979;58:1–75. [PubMed] [Google Scholar]
  33. Wada H., Saiga H., Satoh N., Holland P. W. Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development. 1998 Mar;125(6):1113–1122. doi: 10.1242/dev.125.6.1113. [DOI] [PubMed] [Google Scholar]
  34. Wassef M., Joyner A. L. Early mesencephalon/metencephalon patterning and development of the cerebellum. Perspect Dev Neurobiol. 1997;5(1):3–16. [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES