Abstract
After approximately 50 years of circadian research, especially in selected circadian model systems (Drosophila, Neurospora, Gonyaulax and, more recently, cyanobacteria and mammals), we appreciate the enormous complexity of the circadian programme in organisms and cells, as well as in physiological and molecular circuits. Many of our insights into this complexity stem from experimental reductionism that goes as far as testing the interaction of molecular clock components in heterologous systems or in vitro. The results of this enormous endeavour show circadian systems that involve several oscillators, multiple input pathways and feedback loops that contribute to specific circadian qualities but not necessarily to the generation of circadian rhythmicity. For a full appreciation of the circadian programme, the results from different levels of the system eventually have to be put into the context of the organism as a whole and its specific temporal environment. This review summarizes some of the complexities found at the level of organisms, cells and molecules, and highlights similar strategies that apparently solve similar problems at the different levels of the circadian system.
Full Text
The Full Text of this article is available as a PDF (259.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht U., Sun Z. S., Eichele G., Lee C. C. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell. 1997 Dec 26;91(7):1055–1064. doi: 10.1016/s0092-8674(00)80495-x. [DOI] [PubMed] [Google Scholar]
- Allada R., White N. E., So W. V., Hall J. C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998 May 29;93(5):791–804. doi: 10.1016/s0092-8674(00)81440-3. [DOI] [PubMed] [Google Scholar]
- Aronson B. D., Johnson K. A., Dunlap J. C. Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7683–7687. doi: 10.1073/pnas.91.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronson B. D., Johnson K. A., Loros J. J., Dunlap J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science. 1994 Mar 18;263(5153):1578–1584. doi: 10.1126/science.8128244. [DOI] [PubMed] [Google Scholar]
- Balsalobre A., Brown S. A., Marcacci L., Tronche F., Kellendonk C., Reichardt H. M., Schütz G., Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000 Sep 29;289(5488):2344–2347. doi: 10.1126/science.289.5488.2344. [DOI] [PubMed] [Google Scholar]
- Balsalobre A., Damiola F., Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998 Jun 12;93(6):929–937. doi: 10.1016/s0092-8674(00)81199-x. [DOI] [PubMed] [Google Scholar]
- Bell-Pedersen D., Dunlap J. C., Loros J. J. Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol Cell Biol. 1996 Feb;16(2):513–521. doi: 10.1128/mcb.16.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boivin D. B., Duffy J. F., Kronauer R. E., Czeisler C. A. Sensitivity of the human circadian pacemaker to moderately bright light. J Biol Rhythms. 1994 Winter;9(3-4):315–331. doi: 10.1177/074873049400900311. [DOI] [PubMed] [Google Scholar]
- Buijs R. M., Wortel J., Van Heerikhuize J. J., Feenstra M. G., Ter Horst G. J., Romijn H. J., Kalsbeek A. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci. 1999 May;11(5):1535–1544. doi: 10.1046/j.1460-9568.1999.00575.x. [DOI] [PubMed] [Google Scholar]
- Cassone V. M. The pineal gland influences rat circadian activity rhythms in constant light. J Biol Rhythms. 1992 Spring;7(1):27–40. doi: 10.1177/074873049200700103. [DOI] [PubMed] [Google Scholar]
- Ceriani M. F., Darlington T. K., Staknis D., Más P., Petti A. A., Weitz C. J., Kay S. A. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999 Jul 23;285(5427):553–556. doi: 10.1126/science.285.5427.553. [DOI] [PubMed] [Google Scholar]
- Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science. 1997 May 2;276(5313):763–769. doi: 10.1126/science.276.5313.763. [DOI] [PubMed] [Google Scholar]
- Daan S., Albrecht U., van der Horst G. T., Illnerová H., Roenneberg T., Wehr T. A., Schwartz W. J. Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms. 2001 Apr;16(2):105–116. doi: 10.1177/074873001129001809. [DOI] [PubMed] [Google Scholar]
- Darlington T. K., Wager-Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D., Weitz C. J., Takahashi J. S., Kay S. A. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. 1998 Jun 5;280(5369):1599–1603. doi: 10.1126/science.280.5369.1599. [DOI] [PubMed] [Google Scholar]
- Denault D. L., Loros J. J., Dunlap J. C. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 2001 Jan 15;20(1-2):109–117. doi: 10.1093/emboj/20.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunlap J. C. Genetics and molecular analysis of circadian rhythms. Annu Rev Genet. 1996;30:579–601. doi: 10.1146/annurev.genet.30.1.579. [DOI] [PubMed] [Google Scholar]
- Dunlap J. C. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271–290. doi: 10.1016/s0092-8674(00)80566-8. [DOI] [PubMed] [Google Scholar]
- Emery P., So W. V., Kaneko M., Hall J. C., Rosbash M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998 Nov 25;95(5):669–679. doi: 10.1016/s0092-8674(00)81637-2. [DOI] [PubMed] [Google Scholar]
- Feldman J. F., Hoyle M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics. 1973 Dec;75(4):605–613. doi: 10.1093/genetics/75.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gekakis N., Staknis D., Nguyen H. B., Davis F. C., Wilsbacher L. D., King D. P., Takahashi J. S., Weitz C. J. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998 Jun 5;280(5369):1564–1569. doi: 10.1126/science.280.5369.1564. [DOI] [PubMed] [Google Scholar]
- Giebultowicz J. M. Peripheral clocks and their role in circadian timing: insights from insects. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1791–1799. doi: 10.1098/rstb.2001.0960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillette M. U., McArthur A. J. Circadian actions of melatonin at the suprachiasmatic nucleus. Behav Brain Res. 1996;73(1-2):135–139. doi: 10.1016/0166-4328(96)00085-x. [DOI] [PubMed] [Google Scholar]
- Glossop N. R., Lyons L. C., Hardin P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science. 1999 Oct 22;286(5440):766–768. doi: 10.1126/science.286.5440.766. [DOI] [PubMed] [Google Scholar]
- Gwinner E., Brandstätter R. Complex bird clocks. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1801–1810. doi: 10.1098/rstb.2001.0959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HASTINGS J. W. Biochemical aspects of rhythms: phase shifting by chemicals. Cold Spring Harb Symp Quant Biol. 1960;25:131–143. doi: 10.1101/sqb.1960.025.01.012. [DOI] [PubMed] [Google Scholar]
- Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
- Hege D. M., Stanewsky R., Hall J. C., Giebultowicz J. M. Rhythmic expression of a PER-reporter in the Malpighian tubules of decapitated Drosophila: evidence for a brain-independent circadian clock. J Biol Rhythms. 1997 Aug;12(4):300–308. doi: 10.1177/074873049701200402. [DOI] [PubMed] [Google Scholar]
- Heintzen C., Nater M., Apel K., Staiger D. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8515–8520. doi: 10.1073/pnas.94.16.8515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzog E. D., Block G. D. Keeping an eye on retinal clocks. Chronobiol Int. 1999 May;16(3):229–247. doi: 10.3109/07420529909116855. [DOI] [PubMed] [Google Scholar]
- Honma K., Honma S., Hiroshige T. Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine. Physiol Behav. 1987;40(6):767–774. doi: 10.1016/0031-9384(87)90281-2. [DOI] [PubMed] [Google Scholar]
- Hunter-Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996 Mar 8;84(5):677–685. doi: 10.1016/s0092-8674(00)81046-6. [DOI] [PubMed] [Google Scholar]
- Innocenti A, Bertolucci C, Minutini L, FoÀ A. Seasonal variations of pineal involvement in the circadian organization of the ruin lizard Podarcis sicula. J Exp Biol. 1996;199(Pt 5):1189–1194. doi: 10.1242/jeb.199.5.1189. [DOI] [PubMed] [Google Scholar]
- Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C. R., Tanabe A., Golden S. S., Johnson C. H., Kondo T. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science. 1998 Sep 4;281(5382):1519–1523. doi: 10.1126/science.281.5382.1519. [DOI] [PubMed] [Google Scholar]
- Iwasaki H., Kondo T. The current state and problems of circadian clock studies in cyanobacteria. Plant Cell Physiol. 2000 Sep;41(9):1013–1020. doi: 10.1093/pcp/pcd024. [DOI] [PubMed] [Google Scholar]
- Iwasaki H., Williams S. B., Kitayama Y., Ishiura M., Golden S. S., Kondo T. A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell. 2000 Apr 14;101(2):223–233. doi: 10.1016/S0092-8674(00)80832-6. [DOI] [PubMed] [Google Scholar]
- Jagota A., de la Iglesia H. O., Schwartz W. J. Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat Neurosci. 2000 Apr;3(4):372–376. doi: 10.1038/73943. [DOI] [PubMed] [Google Scholar]
- Jin X., Shearman L. P., Weaver D. R., Zylka M. J., de Vries G. J., Reppert S. M. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999 Jan 8;96(1):57–68. doi: 10.1016/s0092-8674(00)80959-9. [DOI] [PubMed] [Google Scholar]
- Kume K., Zylka M. J., Sriram S., Shearman L. P., Weaver D. R., Jin X., Maywood E. S., Hastings M. H., Reppert S. M. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999 Jul 23;98(2):193–205. doi: 10.1016/s0092-8674(00)81014-4. [DOI] [PubMed] [Google Scholar]
- Lakin-Thomas P. L., Brody S. Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):256–261. doi: 10.1073/pnas.97.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lakin-Thomas P. L., Brody S., Coté G. G. Amplitude model for the effects of mutations and temperature on period and phase resetting of the Neurospora circadian oscillator. J Biol Rhythms. 1991 Winter;6(4):281–297. doi: 10.1177/074873049100600401. [DOI] [PubMed] [Google Scholar]
- Lakin-Thomas P. L. Circadian rhythms: new functions for old clock genes. Trends Genet. 2000 Mar;16(3):135–142. doi: 10.1016/s0168-9525(99)01945-9. [DOI] [PubMed] [Google Scholar]
- Lee K., Loros J. J., Dunlap J. C. Interconnected feedback loops in the Neurospora circadian system. Science. 2000 Jul 7;289(5476):107–110. doi: 10.1126/science.289.5476.107. [DOI] [PubMed] [Google Scholar]
- Loros J. J., Feldman J. F. Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms. 1986 Fall;1(3):187–198. doi: 10.1177/074873048600100302. [DOI] [PubMed] [Google Scholar]
- Lowrey P. L., Shimomura K., Antoch M. P., Yamazaki S., Zemenides P. D., Ralph M. R., Menaker M., Takahashi J. S. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science. 2000 Apr 21;288(5465):483–492. doi: 10.1126/science.288.5465.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masana M. I., Benloucif S., Dubocovich M. L. Circadian rhythm of mt1 melatonin receptor expression in the suprachiasmatic nucleus of the C3H/HeN mouse. J Pineal Res. 2000 Apr;28(3):185–192. doi: 10.1034/j.1600-079x.2001.280309.x. [DOI] [PubMed] [Google Scholar]
- McNeil G. P., Zhang X., Genova G., Jackson F. R. A molecular rhythm mediating circadian clock output in Drosophila. Neuron. 1998 Feb;20(2):297–303. doi: 10.1016/s0896-6273(00)80457-2. [DOI] [PubMed] [Google Scholar]
- Merrow M., Brunner M., Roenneberg T. Assignment of circadian function for the Neurospora clock gene frequency. Nature. 1999 Jun 10;399(6736):584–586. doi: 10.1038/21190. [DOI] [PubMed] [Google Scholar]
- Merrow M., Franchi L., Dragovic Z., Görl M., Johnson J., Brunner M., Macino G., Roenneberg T. Circadian regulation of the light input pathway in Neurospora crassa. EMBO J. 2001 Feb 1;20(3):307–315. doi: 10.1093/emboj/20.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson D. C., Lasswell J., Rogg L. E., Cohen M. A., Bartel B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell. 2000 Apr 28;101(3):331–340. doi: 10.1016/s0092-8674(00)80842-9. [DOI] [PubMed] [Google Scholar]
- Ouyang Y., Andersson C. R., Kondo T., Golden S. S., Johnson C. H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8660–8664. doi: 10.1073/pnas.95.15.8660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PITTENDRIGH C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol. 1960;25:159–184. doi: 10.1101/sqb.1960.025.01.015. [DOI] [PubMed] [Google Scholar]
- Park D. H., Somers D. E., Kim Y. S., Choy Y. H., Lim H. K., Soh M. S., Kim H. J., Kay S. A., Nam H. G. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science. 1999 Sep 3;285(5433):1579–1582. doi: 10.1126/science.285.5433.1579. [DOI] [PubMed] [Google Scholar]
- Pittendrigh C. S., Caldarola P. C., Cosbey E. S. A differential effect of heavy water on temperature-dependent and temperature-compensated aspects of circadian system of Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2037–2041. doi: 10.1073/pnas.70.7.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plautz J. D., Kaneko M., Hall J. C., Kay S. A. Independent photoreceptive circadian clocks throughout Drosophila. Science. 1997 Nov 28;278(5343):1632–1635. doi: 10.1126/science.278.5343.1632. [DOI] [PubMed] [Google Scholar]
- Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998 Jul 10;94(1):83–95. doi: 10.1016/s0092-8674(00)81224-6. [DOI] [PubMed] [Google Scholar]
- Ralph M. R., Foster R. G., Davis F. C., Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990 Feb 23;247(4945):975–978. doi: 10.1126/science.2305266. [DOI] [PubMed] [Google Scholar]
- Ramalho C. B., Hastings J. W., Colepicolo P. Circadian oscillation of nitrate reductase activity in Gonyaulax polyedra is due to changes in cellular protein levels. Plant Physiol. 1995 Jan;107(1):225–231. doi: 10.1104/pp.107.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reebs S. G., Mrosovsky N. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythms. 1989 Spring;4(1):39–48. doi: 10.1177/074873048900400103. [DOI] [PubMed] [Google Scholar]
- Richter C. P. Sleep and activity: their relation to the 24-hour clock. Res Publ Assoc Res Nerv Ment Dis. 1967;45:8–29. [PubMed] [Google Scholar]
- Roenneberg T., Foster R. G. Twilight times: light and the circadian system. Photochem Photobiol. 1997 Nov;66(5):549–561. doi: 10.1111/j.1751-1097.1997.tb03188.x. [DOI] [PubMed] [Google Scholar]
- Roenneberg T., Hastings J. W. Two photoreceptors control the circadian clock of a unicellular alga. Naturwissenschaften. 1988 Apr;75(4):206–207. doi: 10.1007/BF00735584. [DOI] [PubMed] [Google Scholar]
- Roenneberg T., Merrow M. Circadian clocks: Omnes viae Romam ducunt. Curr Biol. 2000 Oct 19;10(20):R742–R745. doi: 10.1016/s0960-9822(00)00739-9. [DOI] [PubMed] [Google Scholar]
- Roenneberg T., Merrow M. Molecular circadian oscillators: an alternative hypothesis. J Biol Rhythms. 1998 Apr;13(2):167–179. doi: 10.1177/074873098129000011. [DOI] [PubMed] [Google Scholar]
- Roenneberg T., Rehman J. Nitrate, a nonphotic signal for the circadian system. FASEB J. 1996 Oct;10(12):1443–1447. doi: 10.1096/fasebj.10.12.8903515. [DOI] [PubMed] [Google Scholar]
- Roenneberg T., Taylor W. Light-induced phase responses in Gonyaulax are drastically altered by creatine. J Biol Rhythms. 1994 Spring;9(1):1–12. doi: 10.1177/074873049400900101. [DOI] [PubMed] [Google Scholar]
- Rutila J. E., Suri V., Le M., So W. V., Rosbash M., Hall J. C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998 May 29;93(5):805–814. doi: 10.1016/s0092-8674(00)81441-5. [DOI] [PubMed] [Google Scholar]
- Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I. A., Coupland G. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell. 1998 Jun 26;93(7):1219–1229. doi: 10.1016/s0092-8674(00)81465-8. [DOI] [PubMed] [Google Scholar]
- Schmitz O., Katayama M., Williams S. B., Kondo T., Golden S. S. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science. 2000 Aug 4;289(5480):765–768. doi: 10.1126/science.289.5480.765. [DOI] [PubMed] [Google Scholar]
- Sehgal A., Rothenfluh-Hilfiker A., Hunter-Ensor M., Chen Y., Myers M. P., Young M. W. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science. 1995 Nov 3;270(5237):808–810. doi: 10.1126/science.270.5237.808. [DOI] [PubMed] [Google Scholar]
- Shearman L. P., Sriram S., Weaver D. R., Maywood E. S., Chaves I., Zheng B., Kume K., Lee C. C., van der Horst G. T., Hastings M. H. Interacting molecular loops in the mammalian circadian clock. Science. 2000 May 12;288(5468):1013–1019. doi: 10.1126/science.288.5468.1013. [DOI] [PubMed] [Google Scholar]
- Shigeyoshi Y., Taguchi K., Yamamoto S., Takekida S., Yan L., Tei H., Moriya T., Shibata S., Loros J. J., Dunlap J. C. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell. 1997 Dec 26;91(7):1043–1053. doi: 10.1016/s0092-8674(00)80494-8. [DOI] [PubMed] [Google Scholar]
- Somers D. E., Devlin P. F., Kay S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science. 1998 Nov 20;282(5393):1488–1490. doi: 10.1126/science.282.5393.1488. [DOI] [PubMed] [Google Scholar]
- Somers D. E., Schultz T. F., Milnamow M., Kay S. A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell. 2000 Apr 28;101(3):319–329. doi: 10.1016/s0092-8674(00)80841-7. [DOI] [PubMed] [Google Scholar]
- Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., Rosbash M., Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998 Nov 25;95(5):681–692. doi: 10.1016/s0092-8674(00)81638-4. [DOI] [PubMed] [Google Scholar]
- Strayer C., Oyama T., Schultz T. F., Raman R., Somers D. E., Más P., Panda S., Kreps J. A., Kay S. A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science. 2000 Aug 4;289(5480):768–771. doi: 10.1126/science.289.5480.768. [DOI] [PubMed] [Google Scholar]
- Sugano S., Andronis C., Ong M. S., Green R. M., Tobin E. M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12362–12366. doi: 10.1073/pnas.96.22.12362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi J. S., Hamm H., Menaker M. Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2319–2322. doi: 10.1073/pnas.77.4.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi J. S., Menaker M. Physiology of avian circadian pacemakers. Fed Proc. 1979 Nov;38(12):2583–2588. [PubMed] [Google Scholar]
- Takumi T., Taguchi K., Miyake S., Sakakida Y., Takashima N., Matsubara C., Maebayashi Y., Okumura K., Takekida S., Yamamoto S. A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 1998 Aug 17;17(16):4753–4759. doi: 10.1093/emboj/17.16.4753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talora C., Franchi L., Linden H., Ballario P., Macino G. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 1999 Sep 15;18(18):4961–4968. doi: 10.1093/emboj/18.18.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thain S. C., Hall A., Millar A. J. Functional independence of circadian clocks that regulate plant gene expression. Curr Biol. 2000 Aug 24;10(16):951–956. doi: 10.1016/s0960-9822(00)00630-8. [DOI] [PubMed] [Google Scholar]
- Tosini G., Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996 Apr 19;272(5260):419–421. doi: 10.1126/science.272.5260.419. [DOI] [PubMed] [Google Scholar]
- Wang Z. Y., Tobin E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell. 1998 Jun 26;93(7):1207–1217. doi: 10.1016/s0092-8674(00)81464-6. [DOI] [PubMed] [Google Scholar]
- Weaver D. R., Reppert S. M. The Mel1a melatonin receptor gene is expressed in human suprachiasmatic nuclei. Neuroreport. 1996 Dec 20;8(1):109–112. doi: 10.1097/00001756-199612200-00022. [DOI] [PubMed] [Google Scholar]
- Welsh D. K., Logothetis D. E., Meister M., Reppert S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995 Apr;14(4):697–706. doi: 10.1016/0896-6273(95)90214-7. [DOI] [PubMed] [Google Scholar]
- Whitmore D., Foulkes N. S., Sassone-Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature. 2000 Mar 2;404(6773):87–91. doi: 10.1038/35003589. [DOI] [PubMed] [Google Scholar]
- Xu Y., Mori T., Johnson C. H. Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. EMBO J. 2000 Jul 3;19(13):3349–3357. doi: 10.1093/emboj/19.13.3349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamazaki S., Numano R., Abe M., Hida A., Takahashi R., Ueda M., Block G. D., Sakaki Y., Menaker M., Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000 Apr 28;288(5466):682–685. doi: 10.1126/science.288.5466.682. [DOI] [PubMed] [Google Scholar]