Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Nov 29;356(1415):1717–1724. doi: 10.1098/rstb.2001.0967

Genetic interactions between clock mutations in Neurospora crassa: can they help us to understand complexity?

L W Morgan 1, J F Feldman 1, D Bell-Pedersen 1
PMCID: PMC1088547  PMID: 11710978

Abstract

Recent work on circadian clocks in Neurospora has primarily focused on the frequency (frq) and white-collar (wc) loci. However, a number of other genes are known that affect either the period or temperature compensation of the rhythm. These include the period (no relationship to the period gene of Drosophila) genes and a number of genes that affect cellular metabolism. How these other loci fit into the circadian system is not known, and metabolic effects on the clock are typically not considered in single-oscillator models. Recent evidence has pointed to multiple oscillators in Neurospora, at least one of which is predicted to incorporate metabolic processes. Here, the Neurospora clock-affecting mutations will be reviewed and their genetic interactions discussed in the context of a more complex clock model involving two coupled oscillators: a FRQ/WC-based oscillator and a 'frq-less' oscillator that may involve metabolic components.

Full Text

The Full Text of this article is available as a PDF (144.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson B. D., Johnson K. A., Dunlap J. C. Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7683–7687. doi: 10.1073/pnas.91.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson B. D., Johnson K. A., Loros J. J., Dunlap J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science. 1994 Mar 18;263(5153):1578–1584. doi: 10.1126/science.8128244. [DOI] [PubMed] [Google Scholar]
  3. Bell-Pedersen D., Crosthwaite S. K., Lakin-Thomas P. L., Merrow M., Økland M. The Neurospora circadian clock: simple or complex? Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1697–1709. doi: 10.1098/rstb.2001.0968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell-Pedersen D. Understanding circadian rhythmicity in Neurospora crassa: from behavior to genes and back again. Fungal Genet Biol. 2000 Feb;29(1):1–18. doi: 10.1006/fgbi.2000.1185. [DOI] [PubMed] [Google Scholar]
  5. Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science. 1997 May 2;276(5313):763–769. doi: 10.1126/science.276.5313.763. [DOI] [PubMed] [Google Scholar]
  6. Degli-Innocenti F., Russo V. E. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol. 1984 Aug;159(2):757–761. doi: 10.1128/jb.159.2.757-761.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diekmann C., Brody S. Circadian rhythms in Neurospora crassa: oligomycin-resistant mutations affect periodicity. Science. 1980 Feb 22;207(4433):896–898. doi: 10.1126/science.6444467. [DOI] [PubMed] [Google Scholar]
  8. Dunlap J. C. Genetic analysis of circadian clocks. Annu Rev Physiol. 1993;55:683–728. doi: 10.1146/annurev.ph.55.030193.003343. [DOI] [PubMed] [Google Scholar]
  9. Dunlap J. C. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271–290. doi: 10.1016/s0092-8674(00)80566-8. [DOI] [PubMed] [Google Scholar]
  10. Dunlap J. Circadian rhythms. An end in the beginning. Science. 1998 Jun 5;280(5369):1548–1549. doi: 10.1126/science.280.5369.1548. [DOI] [PubMed] [Google Scholar]
  11. Feldman J. F., Atkinson C. A. Genetic and physiological characteristics of a slow-growing circadian clock mutant of Neurospora crassa. Genetics. 1978 Feb;88(2):255–265. doi: 10.1093/genetics/88.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feldman J. F., Hoyle M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics. 1973 Dec;75(4):605–613. doi: 10.1093/genetics/75.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garceau N. Y., Liu Y., Loros J. J., Dunlap J. C. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell. 1997 May 2;89(3):469–476. doi: 10.1016/s0092-8674(00)80227-5. [DOI] [PubMed] [Google Scholar]
  14. Gardner G. F., Feldman J. F. Temperature Compensation of Circadian Period Length in Clock Mutants of Neurospora crassa. Plant Physiol. 1981 Dec;68(6):1244–1248. doi: 10.1104/pp.68.6.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gardner G. F., Feldman J. F. The frq locus in Neurospora crassa: a key element in circadian clock organization. Genetics. 1980 Dec;96(4):877–886. doi: 10.1093/genetics/96.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gonze D., Leloup J. C., Goldbeter A. Theoretical models for circadian rhythms in Neurospora and Drosophila. C R Acad Sci III. 2000 Jan;323(1):57–67. doi: 10.1016/s0764-4469(00)00111-6. [DOI] [PubMed] [Google Scholar]
  17. Hastings J. W., Sweeney B. M. ON THE MECHANISM OF TEMPERATURE INDEPENDENCE IN A BIOLOGICAL CLOCK. Proc Natl Acad Sci U S A. 1957 Sep 15;43(9):804–811. doi: 10.1073/pnas.43.9.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iwasaki H., Dunlap J. C. Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. Curr Opin Microbiol. 2000 Apr;3(2):189–196. doi: 10.1016/s1369-5274(00)00074-6. [DOI] [PubMed] [Google Scholar]
  19. Johnson C. H., Hastings J. W. Circadian phototransduction: phase resetting and frequency of the circadian clock of Gonyaulax cells in red light. J Biol Rhythms. 1989 Winter;4(4):417–437. doi: 10.1177/074873048900400403. [DOI] [PubMed] [Google Scholar]
  20. Lakin-Thomas P. L., Brody S. Circadian rhythms in Neurospora crassa: interactions between clock mutations. Genetics. 1985 Jan;109(1):49–66. doi: 10.1093/genetics/109.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lakin-Thomas P. L., Brody S. Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):256–261. doi: 10.1073/pnas.97.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lakin-Thomas P. L., Brody S., Coté G. G. Temperature compensation and membrane composition in Neurospora crassa. Chronobiol Int. 1997 Sep;14(5):445–454. doi: 10.3109/07420529709001467. [DOI] [PubMed] [Google Scholar]
  23. Lakin-Thomas P. L. Choline depletion, frq mutations, and temperature compensation of the circadian rhythm in Neurospora crassa. J Biol Rhythms. 1998 Aug;13(4):268–277. doi: 10.1177/074873098129000101. [DOI] [PubMed] [Google Scholar]
  24. Lakin-Thomas P. L. Circadian rhythms: new functions for old clock genes. Trends Genet. 2000 Mar;16(3):135–142. doi: 10.1016/s0168-9525(99)01945-9. [DOI] [PubMed] [Google Scholar]
  25. Lakin-Thomas P. L., Coté G. G., Brody S. Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit Rev Microbiol. 1990;17(5):365–416. doi: 10.3109/10408419009114762. [DOI] [PubMed] [Google Scholar]
  26. Lee K., Loros J. J., Dunlap J. C. Interconnected feedback loops in the Neurospora circadian system. Science. 2000 Jul 7;289(5476):107–110. doi: 10.1126/science.289.5476.107. [DOI] [PubMed] [Google Scholar]
  27. Lewis M. T., Morgan L. W., Feldman J. F. Analysis of frequency (frq) clock gene homologs: evidence for a helix-turn-helix transcription factor. Mol Gen Genet. 1997 Jan 27;253(4):401–414. doi: 10.1007/s004380050338. [DOI] [PubMed] [Google Scholar]
  28. Liu Y., Loros J., Dunlap J. C. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):234–239. doi: 10.1073/pnas.97.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Loros J. J., Feldman J. F. Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms. 1986 Fall;1(3):187–198. doi: 10.1177/074873048600100302. [DOI] [PubMed] [Google Scholar]
  30. Loros J. J., Richman A., Feldman J. F. A recessive circadian clock mutation at the frq locus of Neurospora crassa. Genetics. 1986 Dec;114(4):1095–1110. doi: 10.1093/genetics/114.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Luo C., Loros J. J., Dunlap J. C. Nuclear localization is required for function of the essential clock protein FRQ. EMBO J. 1998 Aug 10;17(5):1228–1235. doi: 10.1093/emboj/17.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mattern D., Brody S. Circadian rhythms in Neurospora crassa: effects of saturated fatty acids. J Bacteriol. 1979 Sep;139(3):977–983. doi: 10.1128/jb.139.3.977-983.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Merrow M., Brunner M., Roenneberg T. Assignment of circadian function for the Neurospora clock gene frequency. Nature. 1999 Jun 10;399(6736):584–586. doi: 10.1038/21190. [DOI] [PubMed] [Google Scholar]
  34. Morgan L. W., Feldman J. F. Isolation and characterization of a temperature-sensitive circadian clock mutant of Neurospora crassa. Genetics. 1997 Jun;146(2):525–530. doi: 10.1093/genetics/146.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Onai K., Katagiri S., Akiyama M., Nakashima H. Mutation of the gene for the second-largest subunit of RNA polymerase I prolongs the period length of the circadian conidiation rhythm in Neurospora crassa. Mol Gen Genet. 1998 Aug;259(3):264–271. doi: 10.1007/s004380050812. [DOI] [PubMed] [Google Scholar]
  36. Onai K., Nakashima H. Mutation of the cys-9 gene, which encodes thioredoxin reductase, affects the circadian conidiation rhythm in Neurospora crassa. Genetics. 1997 May;146(1):101–110. doi: 10.1093/genetics/146.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. PITTENDRIGH C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol. 1960;25:159–184. doi: 10.1101/sqb.1960.025.01.015. [DOI] [PubMed] [Google Scholar]
  38. Pittendrigh C. S., Caldarola P. C., Cosbey E. S. A differential effect of heavy water on temperature-dependent and temperature-compensated aspects of circadian system of Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2037–2041. doi: 10.1073/pnas.70.7.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Roenneberg T., Merrow M. Circadian systems and metabolism. J Biol Rhythms. 1999 Dec;14(6):449–459. doi: 10.1177/074873099129001019. [DOI] [PubMed] [Google Scholar]
  40. Roenneberg T., Merrow M. Circadian systems: different levels of complexity. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1687–1696. doi: 10.1098/rstb.2001.0969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Roenneberg T., Merrow M. Molecular circadian oscillators: an alternative hypothesis. J Biol Rhythms. 1998 Apr;13(2):167–179. doi: 10.1177/074873098129000011. [DOI] [PubMed] [Google Scholar]
  42. Ruoff P., Vinsjevik M., Monnerjahn C., Rensing L. The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J Biol Rhythms. 1999 Dec;14(6):469–479. doi: 10.1177/074873099129001037. [DOI] [PubMed] [Google Scholar]
  43. Sargent M. L., Kaltenborn S. H. Effects of medium composition and carbon dioxide on circadian conidiation in neurospora. Plant Physiol. 1972 Jul;50(1):171–175. doi: 10.1104/pp.50.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES