Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Nov 29;356(1415):1769–1778. doi: 10.1098/rstb.2001.0961

Flies, clocks and evolution.

E Rosato 1, C P Kyriacou 1
PMCID: PMC1088553  PMID: 11710984

Abstract

The negative feedback model for gene regulation of the circadian mechanism is described for the fruitfly, Drosophila melanogaster. The conservation of function of clock molecules is illustrated by comparison with the mammalian circadian system, and the apparent swapping of roles between various canonical clock gene components is highlighted. The role of clock gene duplications and divergence of function is introduced via the timeless gene. The impressive similarities in clock gene regulation between flies and mammals could suggest that variation between more closely related species within insects might be minimal. However, this is not borne out because the expression of clock molecules in the brain of the giant silk moth, Antheraea pernyi, is not easy to reconcile with the negative feedback roles of the period and timeless genes. Variation in clock gene sequences between and within fly species is examined and the role of co-evolution between and within clock molecules is described, particularly with reference to adaptive functions of the circadian phenotype.

Full Text

The Full Text of this article is available as a PDF (231.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allada R., White N. E., So W. V., Hall J. C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998 May 29;93(5):791–804. doi: 10.1016/s0092-8674(00)81440-3. [DOI] [PubMed] [Google Scholar]
  2. Alt S, Ringo J, Talyn B, Bray W, Dowse H. The period gene controls courtship song cycles in Drosophila melanogaster. Anim Behav. 1998 Jul;56(1):87–97. doi: 10.1006/anbe.1998.0743. [DOI] [PubMed] [Google Scholar]
  3. Andretic R., Chaney S., Hirsh J. Requirement of circadian genes for cocaine sensitization in Drosophila. Science. 1999 Aug 13;285(5430):1066–1068. doi: 10.1126/science.285.5430.1066. [DOI] [PubMed] [Google Scholar]
  4. Bae K., Lee C., Hardin P. E., Edery I. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex. J Neurosci. 2000 Mar 1;20(5):1746–1753. doi: 10.1523/JNEUROSCI.20-05-01746.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bae K., Lee C., Sidote D., Chuang K. Y., Edery I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol Cell Biol. 1998 Oct;18(10):6142–6151. doi: 10.1128/mcb.18.10.6142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bargiello T. A., Jackson F. R., Young M. W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature. 1984 Dec 20;312(5996):752–754. doi: 10.1038/312752a0. [DOI] [PubMed] [Google Scholar]
  7. Benna C., Scannapieco P., Piccin A., Sandrelli F., Zordan M., Rosato E., Kyriacou C. P., Valle G., Costa R. A second timeless gene in Drosophila shares greater sequence similarity with mammalian tim. Curr Biol. 2000 Jul 13;10(14):R512–R513. doi: 10.1016/s0960-9822(00)00594-7. [DOI] [PubMed] [Google Scholar]
  8. Blau J., Young M. W. Cycling vrille expression is required for a functional Drosophila clock. Cell. 1999 Dec 10;99(6):661–671. doi: 10.1016/s0092-8674(00)81554-8. [DOI] [PubMed] [Google Scholar]
  9. Castiglione-Morelli M. A., Guantieri V., Villani V., Kyriacou C. P., Costa R., Tamburro A. M. Conformational study of the Thr-Gly repeat in the Drosophila clock protein, PERIOD. Proc Biol Sci. 1995 May 22;260(1358):155–163. doi: 10.1098/rspb.1995.0073. [DOI] [PubMed] [Google Scholar]
  10. Ceriani M. F., Darlington T. K., Staknis D., Más P., Petti A. A., Weitz C. J., Kay S. A. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999 Jul 23;285(5427):553–556. doi: 10.1126/science.285.5427.553. [DOI] [PubMed] [Google Scholar]
  11. Clayton J. D., Kyriacou C. P., Reppert S. M. Keeping time with the human genome. Nature. 2001 Feb 15;409(6822):829–831. doi: 10.1038/35057006. [DOI] [PubMed] [Google Scholar]
  12. Costa R., Kyriacou C. P. Functional and evolutionary implications of natural variation in clock genes. Curr Opin Neurobiol. 1998 Oct;8(5):659–664. doi: 10.1016/s0959-4388(98)80096-2. [DOI] [PubMed] [Google Scholar]
  13. Costa R., Peixoto A. A., Barbujani G., Kyriacou C. P. A latitudinal cline in a Drosophila clock gene. Proc Biol Sci. 1992 Oct 22;250(1327):43–49. doi: 10.1098/rspb.1992.0128. [DOI] [PubMed] [Google Scholar]
  14. Costa R., Peixoto A. A., Thackeray J. R., Dalgleish R., Kyriacou C. P. Length polymorphism in the threonine-glycine-encoding repeat region of the period gene in Drosophila. J Mol Evol. 1991 Mar;32(3):238–246. doi: 10.1007/BF02342746. [DOI] [PubMed] [Google Scholar]
  15. Darlington T. K., Lyons L. C., Hardin P. E., Kay S. A. The period E-box is sufficient to drive circadian oscillation of transcription in vivo. J Biol Rhythms. 2000 Dec;15(6):462–471. doi: 10.1177/074873040001500603. [DOI] [PubMed] [Google Scholar]
  16. Darlington T. K., Wager-Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D., Weitz C. J., Takahashi J. S., Kay S. A. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. 1998 Jun 5;280(5369):1599–1603. doi: 10.1126/science.280.5369.1599. [DOI] [PubMed] [Google Scholar]
  17. Edery I., Zwiebel L. J., Dembinska M. E., Rosbash M. Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2260–2264. doi: 10.1073/pnas.91.6.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Emery P., So W. V., Kaneko M., Hall J. C., Rosbash M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998 Nov 25;95(5):669–679. doi: 10.1016/s0092-8674(00)81637-2. [DOI] [PubMed] [Google Scholar]
  19. Emery P., Stanewsky R., Hall J. C., Rosbash M. A unique circadian-rhythm photoreceptor. Nature. 2000 Mar 30;404(6777):456–457. doi: 10.1038/35006558. [DOI] [PubMed] [Google Scholar]
  20. Foster R. G., Helfrich-Förster C. The regulation of circadian clocks by light in fruitflies and mice. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1779–1789. doi: 10.1098/rstb.2001.0962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Garceau N. Y., Liu Y., Loros J. J., Dunlap J. C. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell. 1997 May 2;89(3):469–476. doi: 10.1016/s0092-8674(00)80227-5. [DOI] [PubMed] [Google Scholar]
  22. Gekakis N., Saez L., Delahaye-Brown A. M., Myers M. P., Sehgal A., Young M. W., Weitz C. J. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science. 1995 Nov 3;270(5237):811–815. doi: 10.1126/science.270.5237.811. [DOI] [PubMed] [Google Scholar]
  23. George H., Terracol R. The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors. Genetics. 1997 Aug;146(4):1345–1363. doi: 10.1093/genetics/146.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Glossop N. R., Lyons L. C., Hardin P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science. 1999 Oct 22;286(5440):766–768. doi: 10.1126/science.286.5440.766. [DOI] [PubMed] [Google Scholar]
  25. Gotter A. L., Levine J. D., Reppert S. M. Sex-linked period genes in the silkmoth, Antheraea pernyi: implications for circadian clock regulation and the evolution of sex chromosomes. Neuron. 1999 Dec;24(4):953–965. doi: 10.1016/s0896-6273(00)81042-9. [DOI] [PubMed] [Google Scholar]
  26. Gotter A. L., Manganaro T., Weaver D. R., Kolakowski L. F., Jr, Possidente B., Sriram S., MacLaughlin D. T., Reppert S. M. A time-less function for mouse timeless. Nat Neurosci. 2000 Aug;3(8):755–756. doi: 10.1038/77653. [DOI] [PubMed] [Google Scholar]
  27. Guantieri V., Pepe A., Zordan M., Kyriacou C. P., Costa R., Tamburro A. M. Different period gene repeats take 'turns' at fine-tuning the circadian clock. Proc Biol Sci. 1999 Nov 22;266(1435):2283–2288. doi: 10.1098/rspb.1999.0920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
  29. Huang Z. J., Edery I., Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature. 1993 Jul 15;364(6434):259–262. doi: 10.1038/364259a0. [DOI] [PubMed] [Google Scholar]
  30. Hunter-Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996 Mar 8;84(5):677–685. doi: 10.1016/s0092-8674(00)81046-6. [DOI] [PubMed] [Google Scholar]
  31. Ishikawa T., Matsumoto A., Kato T., Jr, Togashi S., Ryo H., Ikenaga M., Todo T., Ueda R., Tanimura T. DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes Cells. 1999 Jan;4(1):57–65. doi: 10.1046/j.1365-2443.1999.00237.x. [DOI] [PubMed] [Google Scholar]
  32. Kloss B., Price J. L., Saez L., Blau J., Rothenfluh A., Wesley C. S., Young M. W. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell. 1998 Jul 10;94(1):97–107. doi: 10.1016/s0092-8674(00)81225-8. [DOI] [PubMed] [Google Scholar]
  33. Konopka R. J., Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2112–2116. doi: 10.1073/pnas.68.9.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kyriacou C. P., Oldroyd M., Wood J., Sharp M., Hill M. Clock mutations alter developmental timing in Drosophila. Heredity (Edinb) 1990 Jun;64(Pt 3):395–401. doi: 10.1038/hdy.1990.50. [DOI] [PubMed] [Google Scholar]
  35. Kyriacou C. P., Rosato E. Squaring up the E-box. J Biol Rhythms. 2000 Dec;15(6):483–490. doi: 10.1177/074873040001500605. [DOI] [PubMed] [Google Scholar]
  36. Lee C., Bae K., Edery I. PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. Mol Cell Biol. 1999 Aug;19(8):5316–5325. doi: 10.1128/mcb.19.8.5316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lee C., Bae K., Edery I. The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-TIM complex. Neuron. 1998 Oct;21(4):857–867. doi: 10.1016/s0896-6273(00)80601-7. [DOI] [PubMed] [Google Scholar]
  38. Lee C., Parikh V., Itsukaichi T., Bae K., Edery I. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science. 1996 Mar 22;271(5256):1740–1744. doi: 10.1126/science.271.5256.1740. [DOI] [PubMed] [Google Scholar]
  39. Liu Y., Garceau N. Y., Loros J. J., Dunlap J. C. Thermally regulated translational control of FRQ mediates aspects of temperature responses in the neurospora circadian clock. Cell. 1997 May 2;89(3):477–486. doi: 10.1016/s0092-8674(00)80228-7. [DOI] [PubMed] [Google Scholar]
  40. Lorenz L. J., Hall J. C., Rosbash M. Expression of a Drosophila mRNA is under circadian clock control during pupation. Development. 1989 Dec;107(4):869–880. doi: 10.1242/dev.107.4.869. [DOI] [PubMed] [Google Scholar]
  41. Lowrey P. L., Shimomura K., Antoch M. P., Yamazaki S., Zemenides P. D., Ralph M. R., Menaker M., Takahashi J. S. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science. 2000 Apr 21;288(5465):483–492. doi: 10.1126/science.288.5465.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lyons L. C., Darlington T. K., Hao H., Houl J., Kay S. A., Hardin P. E. Specific sequences outside the E-box are required for proper per expression and behavioral rescue. J Biol Rhythms. 2000 Dec;15(6):472–482. doi: 10.1177/074873040001500604. [DOI] [PubMed] [Google Scholar]
  43. Majercak J., Sidote D., Hardin P. E., Edery I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron. 1999 Sep;24(1):219–230. doi: 10.1016/s0896-6273(00)80834-x. [DOI] [PubMed] [Google Scholar]
  44. McNeil G. P., Zhang X., Genova G., Jackson F. R. A molecular rhythm mediating circadian clock output in Drosophila. Neuron. 1998 Feb;20(2):297–303. doi: 10.1016/s0896-6273(00)80457-2. [DOI] [PubMed] [Google Scholar]
  45. Myers M. P., Wager-Smith K., Wesley C. S., Young M. W., Sehgal A. Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science. 1995 Nov 3;270(5237):805–808. doi: 10.1126/science.270.5237.805. [DOI] [PubMed] [Google Scholar]
  46. Naidoo N., Song W., Hunter-Ensor M., Sehgal A. A role for the proteasome in the light response of the timeless clock protein. Science. 1999 Sep 10;285(5434):1737–1741. doi: 10.1126/science.285.5434.1737. [DOI] [PubMed] [Google Scholar]
  47. Newby L. M., Jackson F. R. A new biological rhythm mutant of Drosophila melanogaster that identifies a gene with an essential embryonic function. Genetics. 1993 Dec;135(4):1077–1090. doi: 10.1093/genetics/135.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Nielsen J., Peixoto A. A., Piccin A., Costa R., Kyriacou C. P., Chalmers D. Big flies, small repeats: the "Thr-Gly" region of the period gene in Diptera. Mol Biol Evol. 1994 Nov;11(6):839–853. doi: 10.1093/oxfordjournals.molbev.a040167. [DOI] [PubMed] [Google Scholar]
  49. Ousley A., Zafarullah K., Chen Y., Emerson M., Hickman L., Sehgal A. Conserved regions of the timeless (tim) clock gene in Drosophila analyzed through phylogenetic and functional studies. Genetics. 1998 Feb;148(2):815–825. doi: 10.1093/genetics/148.2.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Park J. H., Helfrich-Förster C., Lee G., Liu L., Rosbash M., Hall J. C. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3608–3613. doi: 10.1073/pnas.070036197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Peixoto A. A., Campesan S., Costa R., Kyriacou C. P. Molecular evolution of a repetitive region within the per gene of Drosophila. Mol Biol Evol. 1993 Jan;10(1):127–139. doi: 10.1093/oxfordjournals.molbev.a039993. [DOI] [PubMed] [Google Scholar]
  52. Peixoto A. A., Hennessy J. M., Townson I., Hasan G., Rosbash M., Costa R., Kyriacou C. P. Molecular coevolution within a Drosophila clock gene. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4475–4480. doi: 10.1073/pnas.95.8.4475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Petersen G., Hall J. C., Rosbash M. The period gene of Drosophila carries species-specific behavioral instructions. EMBO J. 1988 Dec 1;7(12):3939–3947. doi: 10.1002/j.1460-2075.1988.tb03280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Piccin A., Couchman M., Clayton J. D., Chalmers D., Costa R., Kyriacou C. P. The clock gene period of the housefly, Musca domestica, rescues behavioral rhythmicity in Drosophila melanogaster. Evidence for intermolecular coevolution? Genetics. 2000 Feb;154(2):747–758. doi: 10.1093/genetics/154.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998 Jul 10;94(1):83–95. doi: 10.1016/s0092-8674(00)81224-6. [DOI] [PubMed] [Google Scholar]
  56. Reddy P., Zehring W. A., Wheeler D. A., Pirrotta V., Hadfield C., Hall J. C., Rosbash M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell. 1984 Oct;38(3):701–710. doi: 10.1016/0092-8674(84)90265-4. [DOI] [PubMed] [Google Scholar]
  57. Regier J. C., Fang Q. Q., Mitter C., Peigler R. S., Friedlander T. P., Solis M. A. Evolution and phylogenetic utility of the period gene in Lepidoptera. Mol Biol Evol. 1998 Sep;15(9):1172–1182. doi: 10.1093/oxfordjournals.molbev.a026024. [DOI] [PubMed] [Google Scholar]
  58. Renn S. C., Park J. H., Rosbash M., Hall J. C., Taghert P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell. 1999 Dec 23;99(7):791–802. doi: 10.1016/s0092-8674(00)81676-1. [DOI] [PubMed] [Google Scholar]
  59. Reppert S. M., Tsai T., Roca A. L., Sauman I. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi. Neuron. 1994 Nov;13(5):1167–1176. doi: 10.1016/0896-6273(94)90054-x. [DOI] [PubMed] [Google Scholar]
  60. Reppert S. M., Weaver D. R. Comparing clockworks: mouse versus fly. J Biol Rhythms. 2000 Oct;15(5):357–364. doi: 10.1177/074873000129001459. [DOI] [PubMed] [Google Scholar]
  61. Roenneberg T., Merrow M. Circadian systems: different levels of complexity. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1687–1696. doi: 10.1098/rstb.2001.0969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Rosato E., Peixoto A. A., Costa R., Kyriacou C. P. Linkage disequilibrium, mutational analysis and natural selection in the repetitive region of the clock gene, period, in Drosophila melanogaster. Genet Res. 1997 Apr;69(2):89–99. doi: 10.1017/s001667239700267x. [DOI] [PubMed] [Google Scholar]
  63. Rosato E., Peixoto A. A., Gallippi A., Kyriacou C. P., Costa R. Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of Drosophila melanogaster. J Mol Evol. 1996 Apr;42(4):392–408. doi: 10.1007/BF02498633. [DOI] [PubMed] [Google Scholar]
  64. Rosato E., Trevisan A., Sandrelli F., Zordan M., Kyriacou C. P., Costa R. Conceptual translation of timeless reveals alternative initiating methionines in Drosophila. Nucleic Acids Res. 1997 Feb 1;25(3):455–458. doi: 10.1093/nar/25.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rothenfluh A., Young M. W., Saez L. A TIMELESS-independent function for PERIOD proteins in the Drosophila clock. Neuron. 2000 May;26(2):505–514. doi: 10.1016/s0896-6273(00)81182-4. [DOI] [PubMed] [Google Scholar]
  66. Rutila J. E., Suri V., Le M., So W. V., Rosbash M., Hall J. C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998 May 29;93(5):805–814. doi: 10.1016/s0092-8674(00)81441-5. [DOI] [PubMed] [Google Scholar]
  67. Saez L., Young M. W. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron. 1996 Nov;17(5):911–920. doi: 10.1016/s0896-6273(00)80222-6. [DOI] [PubMed] [Google Scholar]
  68. Sarov-Blat L., So W. V., Liu L., Rosbash M. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell. 2000 Jun 9;101(6):647–656. doi: 10.1016/s0092-8674(00)80876-4. [DOI] [PubMed] [Google Scholar]
  69. Sauman I., Reppert S. M. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of Period protein regulation. Neuron. 1996 Nov;17(5):889–900. doi: 10.1016/s0896-6273(00)80220-2. [DOI] [PubMed] [Google Scholar]
  70. Sauman I., Tsai T., Roca A. L., Reppert S. M. Period protein is necessary for circadian control of egg hatching behavior in the silkmoth Antheraea pernyi. Neuron. 1996 Nov;17(5):901–909. doi: 10.1016/s0896-6273(00)80221-4. [DOI] [PubMed] [Google Scholar]
  71. Sawyer L. A., Hennessy J. M., Peixoto A. A., Rosato E., Parkinson H., Costa R., Kyriacou C. P. Natural variation in a Drosophila clock gene and temperature compensation. Science. 1997 Dec 19;278(5346):2117–2120. doi: 10.1126/science.278.5346.2117. [DOI] [PubMed] [Google Scholar]
  72. Sehgal A., Price J. L., Man B., Young M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 1994 Mar 18;263(5153):1603–1606. doi: 10.1126/science.8128246. [DOI] [PubMed] [Google Scholar]
  73. Sehgal A., Rothenfluh-Hilfiker A., Hunter-Ensor M., Chen Y., Myers M. P., Young M. W. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science. 1995 Nov 3;270(5237):808–810. doi: 10.1126/science.270.5237.808. [DOI] [PubMed] [Google Scholar]
  74. Shearman L. P., Jin X., Lee C., Reppert S. M., Weaver D. R. Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol Cell Biol. 2000 Sep;20(17):6269–6275. doi: 10.1128/mcb.20.17.6269-6275.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Shearman L. P., Sriram S., Weaver D. R., Maywood E. S., Chaves I., Zheng B., Kume K., Lee C. C., van der Horst G. T., Hastings M. H. Interacting molecular loops in the mammalian circadian clock. Science. 2000 May 12;288(5468):1013–1019. doi: 10.1126/science.288.5468.1013. [DOI] [PubMed] [Google Scholar]
  76. Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., Rosbash M., Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998 Nov 25;95(5):681–692. doi: 10.1016/s0092-8674(00)81638-4. [DOI] [PubMed] [Google Scholar]
  77. Toma D. P., Bloch G., Moore D., Robinson G. E. Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6914–6919. doi: 10.1073/pnas.97.12.6914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Vielhaber E., Eide E., Rivers A., Gao Z. H., Virshup D. M. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol. 2000 Jul;20(13):4888–4899. doi: 10.1128/mcb.20.13.4888-4899.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Warman G. R., Newcomb R. D., Lewis R. D., Evans C. W. Analysis of the circadian clock gene period in the sheep blow fly Lucilia cuprina. Genet Res. 2000 Jun;75(3):257–267. doi: 10.1017/s0016672399004425. [DOI] [PubMed] [Google Scholar]
  80. Yagita K., Yamaguchi S., Tamanini F., van Der Horst G. T., Hoeijmakers J. H., Yasui A., Loros J. J., Dunlap J. C., Okamura H. Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev. 2000 Jun 1;14(11):1353–1363. [PMC free article] [PubMed] [Google Scholar]
  81. Zeng H., Qian Z., Myers M. P., Rosbash M. A light-entrainment mechanism for the Drosophila circadian clock. Nature. 1996 Mar 14;380(6570):129–135. doi: 10.1038/380129a0. [DOI] [PubMed] [Google Scholar]
  82. Zheng B., Larkin D. W., Albrecht U., Sun Z. S., Sage M., Eichele G., Lee C. C., Bradley A. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature. 1999 Jul 8;400(6740):169–173. doi: 10.1038/22118. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES