Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Nov 29;356(1415):1791–1799. doi: 10.1098/rstb.2001.0960

Peripheral clocks and their role in circadian timing: insights from insects.

J M Giebultowicz 1
PMCID: PMC1088555  PMID: 11710986

Abstract

Impressive advances have been made recently in our understanding of the molecular basis of the cell-autonomous circadian feedback loop; however, much less is known about the overall organization of the circadian systems. How many clocks tick in a multicellular animal, such as an insect, and what are their roles and the relationships between them? Most attempts to locate clock-containing tissues were based on the analysis of behavioural rhythms and identified brain-located timing centres in a variety of animals. Characterization of several essential clock genes and analysis of their expression patterns revealed that molecular components of the clock are active not only in the brain, but also in many peripheral organs of Drosophila and other insects as well as in vertebrates. Subsequent experiments have shown that isolated peripheral organs can maintain self-sustained and light sensitive cycling of clock genes in vitro. This, together with earlier demonstrations that physiological output rhythms persist in isolated organs and tissues, provide strong evidence for the existence of functionally autonomous local circadian clocks in insects and other animals. Circadian systems in complex animals may include many peripheral clocks with tissue-specific functions and a varying degree of autonomy, which seems to be correlated with their sensitivity to external entraining signals.

Full Text

The Full Text of this article is available as a PDF (259.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allada R., White N. E., So W. V., Hall J. C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998 May 29;93(5):791–804. doi: 10.1016/s0092-8674(00)81440-3. [DOI] [PubMed] [Google Scholar]
  2. Balsalobre A., Brown S. A., Marcacci L., Tronche F., Kellendonk C., Reichardt H. M., Schütz G., Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000 Sep 29;289(5488):2344–2347. doi: 10.1126/science.289.5488.2344. [DOI] [PubMed] [Google Scholar]
  3. Balsalobre A., Damiola F., Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998 Jun 12;93(6):929–937. doi: 10.1016/s0092-8674(00)81199-x. [DOI] [PubMed] [Google Scholar]
  4. Brandes C., Plautz J. D., Stanewsky R., Jamison C. F., Straume M., Wood K. V., Kay S. A., Hall J. C. Novel features of drosophila period Transcription revealed by real-time luciferase reporting. Neuron. 1996 Apr;16(4):687–692. doi: 10.1016/s0896-6273(00)80088-4. [DOI] [PubMed] [Google Scholar]
  5. Brown S. A., Schibler U. The ins and outs of circadian timekeeping. Curr Opin Genet Dev. 1999 Oct;9(5):588–594. doi: 10.1016/s0959-437x(99)00009-x. [DOI] [PubMed] [Google Scholar]
  6. Darlington T. K., Wager-Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D., Weitz C. J., Takahashi J. S., Kay S. A. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. 1998 Jun 5;280(5369):1599–1603. doi: 10.1126/science.280.5369.1599. [DOI] [PubMed] [Google Scholar]
  7. Dunlap J. C. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271–290. doi: 10.1016/s0092-8674(00)80566-8. [DOI] [PubMed] [Google Scholar]
  8. Emery I. F., Noveral J. M., Jamison C. F., Siwicki K. K. Rhythms of Drosophila period gene expression in culture. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4092–4096. doi: 10.1073/pnas.94.8.4092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster R. G., Helfrich-Förster C. The regulation of circadian clocks by light in fruitflies and mice. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1779–1789. doi: 10.1098/rstb.2001.0962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giebultowicz J. M., Hege D. M. Circadian clock in Malpighian tubules. Nature. 1997 Apr 17;386(6626):664–664. doi: 10.1038/386664a0. [DOI] [PubMed] [Google Scholar]
  11. Giebultowicz J. M. Insect circadian clocks: is it all in their heads? J Insect Physiol. 1999 Sep;45(9):791–800. doi: 10.1016/s0022-1910(99)00055-4. [DOI] [PubMed] [Google Scholar]
  12. Giebultowicz J. M., Riemann J. G., Raina A. K., Ridgway R. L. Circadian system controlling release of sperm in the insect testes. Science. 1989 Sep 8;245(4922):1098–1100. doi: 10.1126/science.245.4922.1098. [DOI] [PubMed] [Google Scholar]
  13. Giebultowicz J. M., Stanewsky R., Hall J. C., Hege D. M. Transplanted Drosophila excretory tubules maintain circadian clock cycling out of phase with the host. Curr Biol. 2000 Jan 27;10(2):107–110. doi: 10.1016/s0960-9822(00)00299-2. [DOI] [PubMed] [Google Scholar]
  14. Glossop N. R., Lyons L. C., Hardin P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science. 1999 Oct 22;286(5440):766–768. doi: 10.1126/science.286.5440.766. [DOI] [PubMed] [Google Scholar]
  15. Hall J. C. Cryptochromes: sensory reception, transduction, and clock functions subserving circadian systems. Curr Opin Neurobiol. 2000 Aug;10(4):456–466. doi: 10.1016/s0959-4388(00)00117-3. [DOI] [PubMed] [Google Scholar]
  16. Hall J. C. Tripping along the trail to the molecular mechanisms of biological clocks. Trends Neurosci. 1995 May;18(5):230–240. doi: 10.1016/0166-2236(95)93908-g. [DOI] [PubMed] [Google Scholar]
  17. Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
  18. Hege D. M., Stanewsky R., Hall J. C., Giebultowicz J. M. Rhythmic expression of a PER-reporter in the Malpighian tubules of decapitated Drosophila: evidence for a brain-independent circadian clock. J Biol Rhythms. 1997 Aug;12(4):300–308. doi: 10.1177/074873049701200402. [DOI] [PubMed] [Google Scholar]
  19. Helfrich-Förster C., Stengl M., Homberg U. Organization of the circadian system in insects. Chronobiol Int. 1998 Nov;15(6):567–594. doi: 10.3109/07420529808993195. [DOI] [PubMed] [Google Scholar]
  20. Hunter-Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996 Mar 8;84(5):677–685. doi: 10.1016/s0092-8674(00)81046-6. [DOI] [PubMed] [Google Scholar]
  21. Kaneko M., Hall J. C. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol. 2000 Jun 19;422(1):66–94. doi: 10.1002/(sici)1096-9861(20000619)422:1<66::aid-cne5>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  22. Kaneko M., Helfrich-Förster C., Hall J. C. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J Neurosci. 1997 Sep 1;17(17):6745–6760. doi: 10.1523/JNEUROSCI.17-17-06745.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Konopka R. J., Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2112–2116. doi: 10.1073/pnas.68.9.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krishnan B., Dryer S. E., Hardin P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature. 1999 Jul 22;400(6742):375–378. doi: 10.1038/22566. [DOI] [PubMed] [Google Scholar]
  25. Liu X., Lorenz L., Yu Q. N., Hall J. C., Rosbash M. Spatial and temporal expression of the period gene in Drosophila melanogaster. Genes Dev. 1988 Feb;2(2):228–238. doi: 10.1101/gad.2.2.228. [DOI] [PubMed] [Google Scholar]
  26. Michel S., Geusz M. E., Zaritsky J. J., Block G. D. Circadian rhythm in membrane conductance expressed in isolated neurons. Science. 1993 Jan 8;259(5092):239–241. doi: 10.1126/science.8421785. [DOI] [PubMed] [Google Scholar]
  27. Oishi K., Sakamoto K., Okada T., Nagase T., Ishida N. Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun. 1998 Dec 18;253(2):199–203. doi: 10.1006/bbrc.1998.9779. [DOI] [PubMed] [Google Scholar]
  28. PITTENDRIGH C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol. 1960;25:159–184. doi: 10.1101/sqb.1960.025.01.015. [DOI] [PubMed] [Google Scholar]
  29. Pelc D., Steel C. G. Rhythmic steroidogenesis by the prothoracic glands of the insect Rhodnius prolixus in the absence of rhythmic neuropeptide input: implications for the role of prothoracicotropic hormone. Gen Comp Endocrinol. 1997 Dec;108(3):358–365. doi: 10.1006/gcen.1997.6977. [DOI] [PubMed] [Google Scholar]
  30. Plautz J. D., Kaneko M., Hall J. C., Kay S. A. Independent photoreceptive circadian clocks throughout Drosophila. Science. 1997 Nov 28;278(5343):1632–1635. doi: 10.1126/science.278.5343.1632. [DOI] [PubMed] [Google Scholar]
  31. Reppert S. M., Tsai T., Roca A. L., Sauman I. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi. Neuron. 1994 Nov;13(5):1167–1176. doi: 10.1016/0896-6273(94)90054-x. [DOI] [PubMed] [Google Scholar]
  32. Reppert S. M., Weaver D. R. Comparing clockworks: mouse versus fly. J Biol Rhythms. 2000 Oct;15(5):357–364. doi: 10.1177/074873000129001459. [DOI] [PubMed] [Google Scholar]
  33. Ripperger J. A., Shearman L. P., Reppert S. M., Schibler U. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 2000 Mar 15;14(6):679–689. [PMC free article] [PubMed] [Google Scholar]
  34. Rosato E., Kyriacou C. P. Flies, clocks and evolution. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1769–1778. doi: 10.1098/rstb.2001.0961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rutila J. E., Suri V., Le M., So W. V., Rosbash M., Hall J. C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998 May 29;93(5):805–814. doi: 10.1016/s0092-8674(00)81441-5. [DOI] [PubMed] [Google Scholar]
  36. Saez L., Young M. W. In situ localization of the per clock protein during development of Drosophila melanogaster. Mol Cell Biol. 1988 Dec;8(12):5378–5385. doi: 10.1128/mcb.8.12.5378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saez L., Young M. W. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron. 1996 Nov;17(5):911–920. doi: 10.1016/s0896-6273(00)80222-6. [DOI] [PubMed] [Google Scholar]
  38. Sarov-Blat L., So W. V., Liu L., Rosbash M. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell. 2000 Jun 9;101(6):647–656. doi: 10.1016/s0092-8674(00)80876-4. [DOI] [PubMed] [Google Scholar]
  39. Sauman I., Reppert S. M. Brain control of embryonic circadian rhythms in the silkmoth Antheraea pernyi. Neuron. 1998 Apr;20(4):741–748. doi: 10.1016/s0896-6273(00)81012-0. [DOI] [PubMed] [Google Scholar]
  40. Sauman I., Reppert S. M. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of Period protein regulation. Neuron. 1996 Nov;17(5):889–900. doi: 10.1016/s0896-6273(00)80220-2. [DOI] [PubMed] [Google Scholar]
  41. Saunders D. S. Many circadian oscillators regulate developmental and behavioural events in the flesh-fly, Sarcophaga argyrostoma. Chronobiol Int. 1986;3(1):71–83. doi: 10.3109/07420528609083162. [DOI] [PubMed] [Google Scholar]
  42. Scully A. L., Kay S. A. Time flies for Drosophila. Cell. 2000 Feb 4;100(3):297–300. doi: 10.1016/s0092-8674(00)80665-0. [DOI] [PubMed] [Google Scholar]
  43. Sehgal A., Rothenfluh-Hilfiker A., Hunter-Ensor M., Chen Y., Myers M. P., Young M. W. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science. 1995 Nov 3;270(5237):808–810. doi: 10.1126/science.270.5237.808. [DOI] [PubMed] [Google Scholar]
  44. Shearman L. P., Sriram S., Weaver D. R., Maywood E. S., Chaves I., Zheng B., Kume K., Lee C. C., van der Horst G. T., Hastings M. H. Interacting molecular loops in the mammalian circadian clock. Science. 2000 May 12;288(5468):1013–1019. doi: 10.1126/science.288.5468.1013. [DOI] [PubMed] [Google Scholar]
  45. Siwicki K. K., Eastman C., Petersen G., Rosbash M., Hall J. C. Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron. 1988 Apr;1(2):141–150. doi: 10.1016/0896-6273(88)90198-5. [DOI] [PubMed] [Google Scholar]
  46. So W. V., Sarov-Blat L., Kotarski C. K., McDonald M. J., Allada R., Rosbash M. takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol Cell Biol. 2000 Sep;20(18):6935–6944. doi: 10.1128/mcb.20.18.6935-6944.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., Rosbash M., Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998 Nov 25;95(5):681–692. doi: 10.1016/s0092-8674(00)81638-4. [DOI] [PubMed] [Google Scholar]
  48. Tei H., Okamura H., Shigeyoshi Y., Fukuhara C., Ozawa R., Hirose M., Sakaki Y. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature. 1997 Oct 2;389(6650):512–516. doi: 10.1038/39086. [DOI] [PubMed] [Google Scholar]
  49. Vafopoulou X, Steel CG. Daily rhythm of responsiveness to prothoracicotropic hormone in prothoracic glands of rhodnius prolixus . Arch Insect Biochem Physiol. 1999;41(3):117–123. doi: 10.1002/(SICI)1520-6327(1999)41:3<117::AID-ARCH2>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  50. Van der Goes van Naters W. M., Den Otter C. J., Maes F. W. Olfactory sensitivity in tsetse flies: a daily rhythm. Chem Senses. 1998 Jun;23(3):351–357. doi: 10.1093/chemse/23.3.351. [DOI] [PubMed] [Google Scholar]
  51. Welsh D. K., Logothetis D. E., Meister M., Reppert S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995 Apr;14(4):697–706. doi: 10.1016/0896-6273(95)90214-7. [DOI] [PubMed] [Google Scholar]
  52. Wergin W. P., Erbe E. F., Weyda F., Giebultowicz J. M. Circadian rhythm of sperm release in the gypsy moth, Lymantria dispar: ultrastructural study of transepithelial penetration of sperm bundles. J Insect Physiol. 1997 Nov;43(12):1133–1147. doi: 10.1016/s0022-1910(97)00061-9. [DOI] [PubMed] [Google Scholar]
  53. Whitmore D., Foulkes N. S., Sassone-Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature. 2000 Mar 2;404(6773):87–91. doi: 10.1038/35003589. [DOI] [PubMed] [Google Scholar]
  54. Whitmore D., Foulkes N. S., Strähle U., Sassone-Corsi P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci. 1998 Dec;1(8):701–707. doi: 10.1038/3703. [DOI] [PubMed] [Google Scholar]
  55. Yamazaki S., Numano R., Abe M., Hida A., Takahashi R., Ueda M., Block G. D., Sakaki Y., Menaker M., Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000 Apr 28;288(5466):682–685. doi: 10.1126/science.288.5466.682. [DOI] [PubMed] [Google Scholar]
  56. Zerr D. M., Hall J. C., Rosbash M., Siwicki K. K. Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci. 1990 Aug;10(8):2749–2762. doi: 10.1523/JNEUROSCI.10-08-02749.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zylka M. J., Shearman L. P., Weaver D. R., Reppert S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998 Jun;20(6):1103–1110. doi: 10.1016/s0896-6273(00)80492-4. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES