Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Nov 29;356(1415):1801–1810. doi: 10.1098/rstb.2001.0959

Complex bird clocks.

E Gwinner 1, R Brandstätter 1
PMCID: PMC1088556  PMID: 11710987

Abstract

The circadian pacemaking system of birds comprises three major components: (i) the pineal gland, which rhythmically synthesizes and secretes melatonin; (ii) a hypothalamic region, possibly equivalent to the mammalian suprachiasmatic nuclei; and (iii) the retinae of the eyes. These components jointly interact, stabilize and amplify each other to produce a highly self-sustained circadian output. Their relative contribution to overt rhythmicity appears to differ between species and the system may change its properties even within an individual depending, for example, on its state in the annual cycle or its photic environment. Changes in pacemaker properties are partly mediated by changes in certain features of the pineal melatonin rhythm. It is proposed that this variability is functionally important, for instance, for enabling high-Arctic birds to retain synchronized circadian rhythms during the low-amplitude zeitgeber conditions in midsummer or for allowing birds to adjust quickly their circadian system to changing environmental conditions during migratory seasons. The pineal melatonin rhythm, apart from being involved in generating the avian pacemaking oscillation, is also capable of retaining day length information after isolation from the animal. Hence, it appears to participate in photoperiodic after-effects. Our results suggest that complex circadian clocks have evolved to help birds cope with complex environments.

Full Text

The Full Text of this article is available as a PDF (570.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binkley S., Kluth E., Menaker M. Pineal function in sparrows: circadian rhythms and body temperature. Science. 1971 Oct 15;174(4006):311–314. doi: 10.1126/science.174.4006.311. [DOI] [PubMed] [Google Scholar]
  2. Brandstätter R., Abraham U., Albrecht U. Initial demonstration of rhythmic Per gene expression in the hypothalamus of a non-mammalian vertebrate, the house sparrow. Neuroreport. 2001 May 8;12(6):1167–1170. doi: 10.1097/00001756-200105080-00023. [DOI] [PubMed] [Google Scholar]
  3. Brandstätter R., Kumar V., Abraham U., Gwinner E. Photoperiodic information acquired and stored in vivo is retained in vitro by a circadian oscillator, the avian pineal gland. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12324–12328. doi: 10.1073/pnas.200354997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brandstätter R., Kumar V., Van't Hof T. J., Gwinner E. Seasonal variations of in vivo and in vitro melatonin production in a passeriform bird, the house sparrow (Passer domesticus). J Pineal Res. 2001 Sep;31(2):120–126. doi: 10.1034/j.1600-079x.2001.310205.x. [DOI] [PubMed] [Google Scholar]
  5. Cassone V. M., Brooks D. S., Kelm T. A. Comparative distribution of 2[125I]iodomelatonin binding in the brains of diurnal birds: outgroup analysis with turtles. Brain Behav Evol. 1995;45(5):241–256. doi: 10.1159/000113553. [DOI] [PubMed] [Google Scholar]
  6. Cassone V. M. Melatonin: time in a bottle. Oxf Rev Reprod Biol. 1990;12:319–367. [PubMed] [Google Scholar]
  7. Cassone V. M., Menaker M. Is the avian circadian system a neuroendocrine loop? J Exp Zool. 1984 Dec;232(3):539–549. doi: 10.1002/jez.1402320321. [DOI] [PubMed] [Google Scholar]
  8. Cassone V. M., Menaker M. Sympathetic regulation of chicken pineal rhythms. Brain Res. 1983 Aug 8;272(2):311–317. doi: 10.1016/0006-8993(83)90578-4. [DOI] [PubMed] [Google Scholar]
  9. Chabot C. C., Menaker M. Effects of physiological cycles of infused melatonin on circadian rhythmicity in pigeons. J Comp Physiol A. 1992 Jun;170(5):615–622. doi: 10.1007/BF00199337. [DOI] [PubMed] [Google Scholar]
  10. Cockrem J. F. Plasma melatonin in the Adelie penguin (Pygoscelis adeliae) under conditions daylight in Antarctica. J Pineal Res. 1991 Jan;10(1):2–8. doi: 10.1111/j.1600-079x.1991.tb00002.x. [DOI] [PubMed] [Google Scholar]
  11. Dunlap J. C. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271–290. doi: 10.1016/s0092-8674(00)80566-8. [DOI] [PubMed] [Google Scholar]
  12. Foster R. G., Soni B. G. Extraretinal photoreceptors and their regulation of temporal physiology. Rev Reprod. 1998 Sep;3(3):145–150. doi: 10.1530/ror.0.0030145. [DOI] [PubMed] [Google Scholar]
  13. Gaston S., Menaker M. Pineal function: the biological clock in the sparrow? Science. 1968 Jun 7;160(3832):1125–1127. doi: 10.1126/science.160.3832.1125. [DOI] [PubMed] [Google Scholar]
  14. Gwinner E., Hau M., Heigl S. Melatonin: generation and modulation of avian circadian rhythms. Brain Res Bull. 1997;44(4):439–444. doi: 10.1016/s0361-9230(97)00224-4. [DOI] [PubMed] [Google Scholar]
  15. Gwinner E., Schwabl-Benzinger I., Schwabl H., Dittami J. Twenty-four hour melatonin profiles in a nocturnally migrating bird during and between migratory seasons. Gen Comp Endocrinol. 1993 Apr;90(1):119–124. doi: 10.1006/gcen.1993.1066. [DOI] [PubMed] [Google Scholar]
  16. Gwinner E. Circadian and circannual programmes in avian migration. J Exp Biol. 1996;199(Pt 1):39–48. doi: 10.1242/jeb.199.1.39. [DOI] [PubMed] [Google Scholar]
  17. Hastings M., Maywood E. S. Circadian clocks in the mammalian brain. Bioessays. 2000 Jan;22(1):23–31. doi: 10.1002/(SICI)1521-1878(200001)22:1<23::AID-BIES6>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  18. Hau M., Gwinner E. Continuous melatonin administration accelerates resynchronization following phase shifts of a light-dark cycle. Physiol Behav. 1995 Jul;58(1):89–95. doi: 10.1016/0031-9384(95)00002-z. [DOI] [PubMed] [Google Scholar]
  19. Heigl S., Gwinner E. Synchronization of circadian rhythms of house sparrows by oral melatonin: effects of changing period. J Biol Rhythms. 1995 Sep;10(3):225–233. doi: 10.1177/074873049501000305. [DOI] [PubMed] [Google Scholar]
  20. Janik D., Dittami J., Gwinner E. The effect of pinealectomy on circadian plasma melatonin levels in house sparrows and European starlings. J Biol Rhythms. 1992 Winter;7(4):277–286. doi: 10.1177/074873049200700402. [DOI] [PubMed] [Google Scholar]
  21. Kojima D., Fukada Y. Non-visual photoreception by a variety of vertebrate opsins. Novartis Found Symp. 1999;224:265–282. doi: 10.1002/9780470515693.ch15. [DOI] [PubMed] [Google Scholar]
  22. Menaker M., Moreira L. F., Tosini G. Evolution of circadian organization in vertebrates. Braz J Med Biol Res. 1997 Mar;30(3):305–313. doi: 10.1590/s0100-879x1997000300003. [DOI] [PubMed] [Google Scholar]
  23. Miché F., Vivien-Roels B., Pévet P., Spehner C., Robin J. P., Le Maho Y. Daily pattern of melatonin secretion in an antarctic bird, the emperor penguin, Aptenodytes forsteri: seasonal variations, effect of constant illumination and of administration of isoproterenol or propranolol. Gen Comp Endocrinol. 1991 Nov;84(2):249–263. doi: 10.1016/0016-6480(91)90048-b. [DOI] [PubMed] [Google Scholar]
  24. Moore R. Y., Silver R. Suprachiasmatic nucleus organization. Chronobiol Int. 1998 Sep;15(5):475–487. doi: 10.3109/07420529808998703. [DOI] [PubMed] [Google Scholar]
  25. Murakami N., Nakamura H., Nishi R., Marumoto N., Nasu T. Comparison of circadian oscillation of melatonin release in pineal cells of house sparrow, pigeon and Japanese quail, using cell perfusion systems. Brain Res. 1994 Jul 18;651(1-2):209–214. doi: 10.1016/0006-8993(94)90699-8. [DOI] [PubMed] [Google Scholar]
  26. Nakahara K., Murakami N., Nasu T., Kuroda H., Murakami T. Individual pineal cells in chick possess photoreceptive, circadian clock and melatonin-synthesizing capacities in vitro. Brain Res. 1997 Nov 7;774(1-2):242–245. doi: 10.1016/s0006-8993(97)81713-1. [DOI] [PubMed] [Google Scholar]
  27. Pittendrigh C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 1993;55:16–54. doi: 10.1146/annurev.ph.55.030193.000313. [DOI] [PubMed] [Google Scholar]
  28. Pohl H. Circadian control of migratory restlessness and the effects of exogenous melatonin in the brambling, Fringilla montifringilla. Chronobiol Int. 2000 Jul;17(4):471–488. doi: 10.1081/cbi-100101058. [DOI] [PubMed] [Google Scholar]
  29. Pohl H. Entrainment properties of the circadian system changing with reproductive state and molt in the canary. Physiol Behav. 1994 May;55(5):803–810. doi: 10.1016/0031-9384(94)90063-9. [DOI] [PubMed] [Google Scholar]
  30. Reierth E., Van't Hof T. J., Stokkan K. A. Seasonal and daily variations in plasma melatonin in the high-arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). J Biol Rhythms. 1999 Aug;14(4):314–319. doi: 10.1177/074873099129000731. [DOI] [PubMed] [Google Scholar]
  31. Robertson L. M., Takahashi J. S. Circadian clock in cell culture: I. Oscillation of melatonin release from dissociated chick pineal cells in flow-through microcarrier culture. J Neurosci. 1988 Jan;8(1):12–21. doi: 10.1523/JNEUROSCI.08-01-00012.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Silver R., LeSauter J., Tresco P. A., Lehman M. N. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996 Aug 29;382(6594):810–813. doi: 10.1038/382810a0. [DOI] [PubMed] [Google Scholar]
  33. Takahashi J. S., Hamm H., Menaker M. Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2319–2322. doi: 10.1073/pnas.77.4.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takahashi J. S., Menaker M. Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. J Neurosci. 1982 Jun;2(6):815–828. doi: 10.1523/JNEUROSCI.02-06-00815.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Taniguchi M., Murakami N., Nakamura H., Nasu T., Shinohara S., Etoh T. Melatonin release from pineal cells of diurnal and nocturnal birds. Brain Res. 1993 Aug 27;620(2):297–300. doi: 10.1016/0006-8993(93)90169-n. [DOI] [PubMed] [Google Scholar]
  36. Turek F. W., McMillan J. P., Menaker M. Melatonin: effects on the circadian locomotor rhythm of sparrows. Science. 1976 Dec 24;194(4272):1441–1443. doi: 10.1126/science.1006311. [DOI] [PubMed] [Google Scholar]
  37. Underwood H., Barrett R. K., Siopes T. Melatonin does not link the eyes to the rest of the circadian system in quail: a neural pathway is involved. J Biol Rhythms. 1990 Winter;5(4):349–361. doi: 10.1177/074873049000500406. [DOI] [PubMed] [Google Scholar]
  38. Underwood H. The circadian rhythm of thermoregulation in Japanese quail. I. Role of the eyes and pineal. J Comp Physiol A. 1994 Nov;175(5):639–653. doi: 10.1007/BF00199485. [DOI] [PubMed] [Google Scholar]
  39. WEVER R. [On the mechanism of biological 24-hour periodicity]. Kybernetik. 1962 Apr;1:139–154. doi: 10.1007/BF00289033. [DOI] [PubMed] [Google Scholar]
  40. Wolfson A. Environmental and neuroendocrine regulation of annual gonadal cycles and migratory behavior in birds. Recent Prog Horm Res. 1966;22:177–244. doi: 10.1016/b978-1-4831-9825-5.50008-7. [DOI] [PubMed] [Google Scholar]
  41. Zimmerman N. H., Menaker M. Neural connections of sparrow pineal: role in circadian control of activity. Science. 1975 Oct 31;190(4213):477–479. doi: 10.1126/science.1166318. [DOI] [PubMed] [Google Scholar]
  42. Zimmerman N. H., Menaker M. The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci U S A. 1979 Feb;76(2):999–1003. doi: 10.1073/pnas.76.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES