Abstract
The Spanish influenza pandemic of 1918-1919 caused acute illness in 25-30% of the world's population and resulted in the death of 40 million people. The complete genomic sequence of the 1918 influenza virus will be deduced using fixed and frozen tissues of 1918 influenza victims. Sequence and phylogenetic analyses of the complete 1918 haemagglutinin (HA) and neuraminidase (NA) genes show them to be the most avian-like of mammalian sequences and support the hypothesis that the pandemic virus contained surface protein-encoding genes derived from an avian influenza strain and that the 1918 virus is very similar to the common ancestor of human and classical swine H1N1 influenza strains. Neither the 1918 HA genes nor the NA genes possessed mutations that are known to increase tissue tropicity, which accounts for the virulence of other influenza strains such as A/WSN/33 or fowl plague viruses. The complete sequence of the nonstructural (NS) gene segment of the 1918 virus was deduced and tested for the hypothesis that the enhanced virulence in 1918 could have been due to type I interferon inhibition by the NS1 protein. The results from these experiments were inconclusive. Sequence analysis of the 1918 pandemic influenza virus is allowing us to test hypotheses as to the origin and virulence of this strain. This information should help to elucidate how pandemic influenza strains emerge and what genetic features contribute to their virulence.
Full Text
The Full Text of this article is available as a PDF (196.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basler C. F., Reid A. H., Dybing J. K., Janczewski T. A., Fanning T. G., Zheng H., Salvatore M., Perdue M. L., Swayne D. E., García-Sastre A. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2746–2751. doi: 10.1073/pnas.031575198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown I. H., Harris P. A., Alexander D. J. Serological studies of influenza viruses in pigs in Great Britain 1991-2. Epidemiol Infect. 1995 Jun;114(3):511–520. doi: 10.1017/s0950268800052225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown I. H., Harris P. A., McCauley J. W., Alexander D. J. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol. 1998 Dec;79(Pt 12):2947–2955. doi: 10.1099/0022-1317-79-12-2947. [DOI] [PubMed] [Google Scholar]
- Buonagurio D. A., Nakada S., Parvin J. D., Krystal M., Palese P., Fitch W. M. Evolution of human influenza A viruses over 50 years: rapid, uniform rate of change in NS gene. Science. 1986 May 23;232(4753):980–982. doi: 10.1126/science.2939560. [DOI] [PubMed] [Google Scholar]
- Castrucci M. R., Donatelli I., Sidoli L., Barigazzi G., Kawaoka Y., Webster R. G. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology. 1993 Mar;193(1):503–506. doi: 10.1006/viro.1993.1155. [DOI] [PubMed] [Google Scholar]
- Claas E. C., Osterhaus A. D., van Beek R., De Jong J. C., Rimmelzwaan G. F., Senne D. A., Krauss S., Shortridge K. F., Webster R. G. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998 Feb 14;351(9101):472–477. doi: 10.1016/S0140-6736(97)11212-0. [DOI] [PubMed] [Google Scholar]
- Colman P. M., Varghese J. N., Laver W. G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature. 1983 May 5;303(5912):41–44. doi: 10.1038/303041a0. [DOI] [PubMed] [Google Scholar]
- Cox N. J., Subbarao K. Global epidemiology of influenza: past and present. Annu Rev Med. 2000;51:407–421. doi: 10.1146/annurev.med.51.1.407. [DOI] [PubMed] [Google Scholar]
- DAVENPORT F. M., HENNESSY A. V., FRANCIS T., Jr Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J Exp Med. 1953 Dec;98(6):641–656. doi: 10.1084/jem.98.6.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dowdle W. R. Influenza A virus recycling revisited. Bull World Health Organ. 1999;77(10):820–828. [PMC free article] [PubMed] [Google Scholar]
- Fanning T. G., Reid A. H., Taubenberger J. K. Influenza A virus neuraminidase: regions of the protein potentially involved in virus-host interactions. Virology. 2000 Oct 25;276(2):417–423. doi: 10.1006/viro.2000.0578. [DOI] [PubMed] [Google Scholar]
- Fanning T. G., Taubenberger J. K. Phylogenetically important regions of the influenza A H1 hemagglutinin protein. Virus Res. 1999 Dec 1;65(1):33–42. doi: 10.1016/s0168-1702(99)00098-2. [DOI] [PubMed] [Google Scholar]
- Fitch W. M., Leiter J. M., Li X. Q., Palese P. Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4270–4274. doi: 10.1073/pnas.88.10.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gambaryan A. S., Tuzikov A. B., Piskarev V. E., Yamnikova S. S., Lvov D. K., Robertson J. S., Bovin N. V., Matrosovich M. N. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine). Virology. 1997 Jun 9;232(2):345–350. doi: 10.1006/viro.1997.8572. [DOI] [PubMed] [Google Scholar]
- Gammelin M., Altmüller A., Reinhardt U., Mandler J., Harley V. R., Hudson P. J., Fitch W. M., Scholtissek C. Phylogenetic analysis of nucleoproteins suggests that human influenza A viruses emerged from a 19th-century avian ancestor. Mol Biol Evol. 1990 Mar;7(2):194–200. doi: 10.1093/oxfordjournals.molbev.a040594. [DOI] [PubMed] [Google Scholar]
- García-Sastre A., Egorov A., Matassov D., Brandt S., Levy D. E., Durbin J. E., Palese P., Muster T. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology. 1998 Dec 20;252(2):324–330. doi: 10.1006/viro.1998.9508. [DOI] [PubMed] [Google Scholar]
- Gaydos J. C., Hodder R. A., Top F. H., Jr, Soden V. J., Allen R. G., Bartley J. D., Zabkar J. H., Nowosiwsky T., Russell P. K. Swine influenza A at Fort Dix, New Jersey (January-February 1976). I. Case finding and clinical study of cases. J Infect Dis. 1977 Dec;136 (Suppl):S356–S362. doi: 10.1093/infdis/136.supplement_3.s356. [DOI] [PubMed] [Google Scholar]
- Gensheimer K. F., Fukuda K., Brammer L., Cox N., Patriarca P. A., Strikas R. A. Preparing for pandemic influenza: the need for enhanced surveillance. Emerg Infect Dis. 1999 Mar-Apr;5(2):297–299. doi: 10.3201/eid0502.990219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito T., Suzuki Y., Takada A., Kawamoto A., Otsuki K., Masuda H., Yamada M., Suzuki T., Kida H., Kawaoka Y. Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol. 1997 Apr;71(4):3357–3362. doi: 10.1128/jvi.71.4.3357-3362.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanegae Y., Sugita S., Shortridge K. F., Yoshioka Y., Nerome K. Origin and evolutionary pathways of the H1 hemagglutinin gene of avian, swine and human influenza viruses: cocirculation of two distinct lineages of swine virus. Arch Virol. 1994;134(1-2):17–28. doi: 10.1007/BF01379103. [DOI] [PubMed] [Google Scholar]
- Katz J. M., Lim W., Bridges C. B., Rowe T., Hu-Primmer J., Lu X., Abernathy R. A., Clarke M., Conn L., Kwong H. Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts. J Infect Dis. 1999 Dec;180(6):1763–1770. doi: 10.1086/315137. [DOI] [PubMed] [Google Scholar]
- Kawaoka Y., Krauss S., Webster R. G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol. 1989 Nov;63(11):4603–4608. doi: 10.1128/jvi.63.11.4603-4608.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawaoka Y., Webster R. G. Molecular mechanism of acquisition of virulence in influenza virus in nature. Microb Pathog. 1988 Nov;5(5):311–318. doi: 10.1016/0882-4010(88)90032-0. [DOI] [PubMed] [Google Scholar]
- Kilbourne E. D. Influenza pandemics in perspective. JAMA. 1977 Mar 21;237(12):1225–1228. [PubMed] [Google Scholar]
- Kupradinun S., Peanpijit P., Bhodhikosoom C., Yoshioka Y., Endo A., Nerome K. The first isolation of swine H1N1 influenza viruses from pigs in Thailand. Arch Virol. 1991;118(3-4):289–297. doi: 10.1007/BF01314040. [DOI] [PubMed] [Google Scholar]
- Lamb R. A., Lai C. J. Sequence of interrupted and uninterrupted mRNAs and cloned DNA coding for the two overlapping nonstructural proteins of influenza virus. Cell. 1980 Sep;21(2):475–485. doi: 10.1016/0092-8674(80)90484-5. [DOI] [PubMed] [Google Scholar]
- Li S., Schulman J., Itamura S., Palese P. Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol. 1993 Nov;67(11):6667–6673. doi: 10.1128/jvi.67.11.6667-6673.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y., Yamakita Y., Krug R. M. Regulation of a nuclear export signal by an adjacent inhibitory sequence: the effector domain of the influenza virus NS1 protein. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4864–4869. doi: 10.1073/pnas.95.9.4864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig S., Stitz L., Planz O., Van H., Fitch W. M., Scholtissek C. European swine virus as a possible source for the next influenza pandemic? Virology. 1995 Oct 1;212(2):555–561. doi: 10.1006/viro.1995.1513. [DOI] [PubMed] [Google Scholar]
- Masurel N. Swine influenza virus and the recycling of influenza-A viruses in man. Lancet. 1976 Jul 31;2(7979):244–247. doi: 10.1016/s0140-6736(76)91038-2. [DOI] [PubMed] [Google Scholar]
- Matrosovich M. N., Gambaryan A. S., Teneberg S., Piskarev V. E., Yamnikova S. S., Lvov D. K., Robertson J. S., Karlsson K. A. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology. 1997 Jun 23;233(1):224–234. doi: 10.1006/viro.1997.8580. [DOI] [PubMed] [Google Scholar]
- Nerome K., Ishida M., Oya A., Oda K. The possible origin H1N1 (Hsw1N1) virus in the swine population of Japan and antigenic analysis of the isolates. J Gen Virol. 1982 Sep;62(Pt 1):171–175. doi: 10.1099/0022-1317-62-1-171. [DOI] [PubMed] [Google Scholar]
- O'Neill R. E., Talon J., Palese P. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J. 1998 Jan 2;17(1):288–296. doi: 10.1093/emboj/17.1.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PHILIP R. N., LACKMAN D. B. Observations on the present distribution of influenza A/swine antibodies among Alaskan natives relative to the occurrence of influenza in 1918-1919. Am J Hyg. 1962 May;75:322–334. doi: 10.1093/oxfordjournals.aje.a120253. [DOI] [PubMed] [Google Scholar]
- Palese P., Compans R. W. Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol. 1976 Oct;33(1):159–163. doi: 10.1099/0022-1317-33-1-159. [DOI] [PubMed] [Google Scholar]
- Pandemic Influenza: Confronting a Re-emergent Threat. Proceedings of a meeting. Bethesda, Maryland, 11-13 December 1995. J Infect Dis. 1997 Aug;176 (Suppl 1):S1–90. [PubMed] [Google Scholar]
- Patterson K. D., Pyle G. F. The geography and mortality of the 1918 influenza pandemic. Bull Hist Med. 1991 Spring;65(1):4–21. [PubMed] [Google Scholar]
- Reid A. H., Fanning T. G., Hultin J. V., Taubenberger J. K. Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1651–1656. doi: 10.1073/pnas.96.4.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid A. H., Fanning T. G., Janczewski T. A., Taubenberger J. K. Characterization of the 1918 "Spanish" influenza virus neuraminidase gene. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6785–6790. doi: 10.1073/pnas.100140097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid A. H., Taubenberger J. K., Fanning T. G. The 1918 Spanish influenza: integrating history and biology. Microbes Infect. 2001 Jan;3(1):81–87. doi: 10.1016/s1286-4579(00)01351-4. [DOI] [PubMed] [Google Scholar]
- Reid A. H., Taubenberger J. K. The 1918 flu and other influenza pandemics: "over there" and back again. Lab Invest. 1999 Feb;79(2):95–101. [PubMed] [Google Scholar]
- Rott R., Klenk H. D., Nagai Y., Tashiro M. Influenza viruses, cell enzymes, and pathogenicity. Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 2):S16–S19. doi: 10.1164/ajrccm/152.4_Pt_2.S16. [DOI] [PubMed] [Google Scholar]
- SHOPE R. E. Influenza: history, epidemiology, and speculation. Public Health Rep. 1958 Feb;73(2):165–178. [PMC free article] [PubMed] [Google Scholar]
- Scholtissek C., Ludwig S., Fitch W. M. Analysis of influenza A virus nucleoproteins for the assessment of molecular genetic mechanisms leading to new phylogenetic virus lineages. Arch Virol. 1993;131(3-4):237–250. doi: 10.1007/BF01378629. [DOI] [PubMed] [Google Scholar]
- Scholtissek C., Rohde W., Von Hoyningen V., Rott R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology. 1978 Jun 1;87(1):13–20. doi: 10.1016/0042-6822(78)90153-8. [DOI] [PubMed] [Google Scholar]
- Schulze I. T. Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis. 1997 Aug;176 (Suppl 1):S24–S28. doi: 10.1086/514170. [DOI] [PubMed] [Google Scholar]
- Schäfer J. R., Kawaoka Y., Bean W. J., Süss J., Senne D., Webster R. G. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology. 1993 Jun;194(2):781–788. doi: 10.1006/viro.1993.1319. [DOI] [PubMed] [Google Scholar]
- Simonsen L., Clarke M. J., Schonberger L. B., Arden N. H., Cox N. J., Fukuda K. Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J Infect Dis. 1998 Jul;178(1):53–60. doi: 10.1086/515616. [DOI] [PubMed] [Google Scholar]
- Simonsen L., Fukuda K., Schonberger L. B., Cox N. J. The impact of influenza epidemics on hospitalizations. J Infect Dis. 2000 Mar;181(3):831–837. doi: 10.1086/315320. [DOI] [PubMed] [Google Scholar]
- Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C., Huang J. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998 Jan 16;279(5349):393–396. doi: 10.1126/science.279.5349.393. [DOI] [PubMed] [Google Scholar]
- Talon J., Horvath C. M., Polley R., Basler C. F., Muster T., Palese P., García-Sastre A. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol. 2000 Sep;74(17):7989–7996. doi: 10.1128/jvi.74.17.7989-7996.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taubenberger J. K. Influenza virus hemagglutinin cleavage into HA1, HA2: no laughing matter. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9713–9715. doi: 10.1073/pnas.95.17.9713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taubenberger J. K., Reid A. H., Fanning T. G. The 1918 influenza virus: A killer comes into view. Virology. 2000 Sep 1;274(2):241–245. doi: 10.1006/viro.2000.0495. [DOI] [PubMed] [Google Scholar]
- Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. Initial genetic characterization of the 1918 "Spanish" influenza virus. Science. 1997 Mar 21;275(5307):1793–1796. doi: 10.1126/science.275.5307.1793. [DOI] [PubMed] [Google Scholar]
- Wang X., Li M., Zheng H., Muster T., Palese P., Beg A. A., García-Sastre A. Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol. 2000 Dec;74(24):11566–11573. doi: 10.1128/jvi.74.24.11566-11573.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992 Mar;56(1):152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webster R. G., Rott R. Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell. 1987 Aug 28;50(5):665–666. doi: 10.1016/0092-8674(87)90321-7. [DOI] [PubMed] [Google Scholar]
- Webster R. G., Sharp G. B., Claas E. C. Interspecies transmission of influenza viruses. Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 2):S25–S30. doi: 10.1164/ajrccm/152.4_Pt_2.S25. [DOI] [PubMed] [Google Scholar]
- Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988 Jun 2;333(6172):426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
- Woods G. T., Schnurrenberger P. R., Martin R. J., Tompkins W. A. Swine influenza virus in swine and man in Illinois. J Occup Med. 1981 Apr;23(4):263–267. [PubMed] [Google Scholar]
- Zhou N. N., Senne D. A., Landgraf J. S., Swenson S. L., Erickson G., Rossow K., Liu L., Yoon K. J., Krauss S., Webster R. G. Emergence of H3N2 reassortant influenza A viruses in North American pigs. Vet Microbiol. 2000 May 22;74(1-2):47–58. doi: 10.1016/s0378-1135(00)00165-6. [DOI] [PubMed] [Google Scholar]