Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Dec 29;356(1416):1845–1855. doi: 10.1098/rstb.2001.0998

The haemagglutinin gene, but not the neuraminidase gene, of 'Spanish flu' was a recombinant.

M J Gibbs 1, J S Armstrong 1, A J Gibbs 1
PMCID: PMC1088560  PMID: 11779383

Abstract

Published analyses of the sequences of three genes from the 1918 Spanish influenza virus have cast doubt on the theory that it came from birds immediately before the pandemic. They showed that the virus was of the H1N1 subtype lineage but more closely related to mammal-infecting strains than any known bird-infecting strain. They provided no evidence that the virus originated by gene reassortment nor that the virus was the direct ancestor of the two lineages of H1N1 viruses currently found in mammals; one that mostly infects human beings, the other pigs. The unusual virulence of the virus and why it produced a pandemic have remained unsolved. We have reanalysed the sequences of the three 1918 genes and found conflicting patterns of relatedness in all three. Various tests showed that the patterns in its haemagglutinin (HA) gene were produced by true recombination between two different parental HA H1 subtype genes, but that the conflicting patterns in its neuraminidase and non-structural-nuclear export proteins genes resulted from selection. The recombination event that produced the 1918 HA gene probably coincided with the start of the pandemic, and may have triggered it.

Full Text

The Full Text of this article is available as a PDF (631.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Air G. M., Webster R. G., Colman P. M., Laver W. G. Distribution of sequence differences in influenza N9 neuraminidase of tern and whale viruses and crystallization of the whale neuraminidase complexed with antibodies. Virology. 1987 Oct;160(2):346–354. doi: 10.1016/0042-6822(87)90005-5. [DOI] [PubMed] [Google Scholar]
  2. Basler C. F., Reid A. H., Dybing J. K., Janczewski T. A., Fanning T. G., Zheng H., Salvatore M., Perdue M. L., Swayne D. E., García-Sastre A. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2746–2751. doi: 10.1073/pnas.031575198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beklemishev A. B., Nazarova L. M., Filimonov N. G., Blinov V. M., Grinev A. A., Chuvakova Z. K., Kim E. V., Mukazhanova G. N. Sintez, klonirovanie i opredelenie pervichnoi struktury polnorazmernoi DNK-kopii gena gemaggliutinina virusa grippa A/Alma-Ata/1417/84 (N1N1-serovariant HSW1N1). Mol Gen Mikrobiol Virusol. 1993 Jan-Feb;(1):24–27. [PubMed] [Google Scholar]
  4. Bergmann M., García-Sastre A., Palese P. Transfection-mediated recombination of influenza A virus. J Virol. 1992 Dec;66(12):7576–7580. doi: 10.1128/jvi.66.12.7576-7580.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bikour M. H., Frost E. H., Deslandes S., Talbot B., Elazhary Y. Persistence of a 1930 swine influenza A (H1N1) virus in Quebec. J Gen Virol. 1995 Oct;76(Pt 10):2539–2547. doi: 10.1099/0022-1317-76-10-2539. [DOI] [PubMed] [Google Scholar]
  6. Colman P. M., Varghese J. N., Laver W. G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature. 1983 May 5;303(5912):41–44. doi: 10.1038/303041a0. [DOI] [PubMed] [Google Scholar]
  7. Duhaut S. D., Dimmock N. J. Heterologous protection of mice from a lethal human H1N1 influenza A virus infection by H3N8 equine defective interfering virus: comparison of defective RNA sequences isolated from the DI inoculum and mouse lung. Virology. 1998 Sep 1;248(2):241–253. doi: 10.1006/viro.1998.9267. [DOI] [PubMed] [Google Scholar]
  8. Fanning T. G., Reid A. H., Taubenberger J. K. Influenza A virus neuraminidase: regions of the protein potentially involved in virus-host interactions. Virology. 2000 Oct 25;276(2):417–423. doi: 10.1006/viro.2000.0578. [DOI] [PubMed] [Google Scholar]
  9. Fields S., Winter G. Nucleotide sequences of influenza virus segments 1 and 3 reveal mosaic structure of a small viral RNA segment. Cell. 1982 Feb;28(2):303–313. doi: 10.1016/0092-8674(82)90348-8. [DOI] [PubMed] [Google Scholar]
  10. Gambaryan A. S., Tuzikov A. B., Piskarev V. E., Yamnikova S. S., Lvov D. K., Robertson J. S., Bovin N. V., Matrosovich M. N. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine). Virology. 1997 Jun 9;232(2):345–350. doi: 10.1006/viro.1997.8572. [DOI] [PubMed] [Google Scholar]
  11. Gibbs M. J., Armstrong J. S., Gibbs A. J. Recombination in the hemagglutinin gene of the 1918 "Spanish flu". Science. 2001 Sep 7;293(5536):1842–1845. doi: 10.1126/science.1061662. [DOI] [PubMed] [Google Scholar]
  12. Gibbs M. J., Armstrong J. S., Gibbs A. J. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 2000 Jul;16(7):573–582. doi: 10.1093/bioinformatics/16.7.573. [DOI] [PubMed] [Google Scholar]
  13. Gorman O. T., Bean W. J., Kawaoka Y., Donatelli I., Guo Y. J., Webster R. G. Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses. J Virol. 1991 Jul;65(7):3704–3714. doi: 10.1128/jvi.65.7.3704-3714.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holmes E. C., Worobey M., Rambaut A. Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol. 1999 Mar;16(3):405–409. doi: 10.1093/oxfordjournals.molbev.a026121. [DOI] [PubMed] [Google Scholar]
  15. Huang Y. F., Shi X. W., Zhang Y. P. Mitochondrial genetic variation in Chinese pigs and wild boars. Biochem Genet. 1999 Dec;37(11-12):335–343. doi: 10.1023/a:1018763311574. [DOI] [PubMed] [Google Scholar]
  16. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 1998 Oct;23(10):403–405. doi: 10.1016/s0968-0004(98)01285-7. [DOI] [PubMed] [Google Scholar]
  17. Khatchikian D., Orlich M., Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature. 1989 Jul 13;340(6229):156–157. doi: 10.1038/340156a0. [DOI] [PubMed] [Google Scholar]
  18. Kilbourne E. D. Influenza pandemics in perspective. JAMA. 1977 Mar 21;237(12):1225–1228. [PubMed] [Google Scholar]
  19. Klenk H. D., Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 1994 Feb;2(2):39–43. doi: 10.1016/0966-842x(94)90123-6. [DOI] [PubMed] [Google Scholar]
  20. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lederberg J. H1N1-influenza as Lazarus: genomic resurrection from the tomb of an unknown. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2115–2116. doi: 10.1073/pnas.051000798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maynard Smith J., Smith N. H. Detecting recombination from gene trees. Mol Biol Evol. 1998 May;15(5):590–599. doi: 10.1093/oxfordjournals.molbev.a025960. [DOI] [PubMed] [Google Scholar]
  23. McGuire G., Wright F., Prentice M. J. A graphical method for detecting recombination in phylogenetic data sets. Mol Biol Evol. 1997 Nov;14(11):1125–1131. doi: 10.1093/oxfordjournals.molbev.a025722. [DOI] [PubMed] [Google Scholar]
  24. Morgan D. J., Dimmock N. J. Defective interfering influenza virus inhibits immunopathological effects of infectious virus in the mouse. J Virol. 1992 Feb;66(2):1188–1192. doi: 10.1128/jvi.66.2.1188-1192.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Olsen C. W., Carey S., Hinshaw L., Karasin A. I. Virologic and serologic surveillance for human, swine and avian influenza virus infections among pigs in the north-central United States. Arch Virol. 2000;145(7):1399–1419. doi: 10.1007/s007050070098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Orlich M., Gottwald H., Rott R. Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology. 1994 Oct;204(1):462–465. doi: 10.1006/viro.1994.1555. [DOI] [PubMed] [Google Scholar]
  27. Pickrell J. The 1918 pandemic. Killer flu with a human-pig pedigree? Science. 2001 May 11;292(5519):1041–1041. doi: 10.1126/science.292.5519.1041a. [DOI] [PubMed] [Google Scholar]
  28. Reid A. H., Fanning T. G., Hultin J. V., Taubenberger J. K. Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1651–1656. doi: 10.1073/pnas.96.4.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reid A. H., Fanning T. G., Janczewski T. A., Taubenberger J. K. Characterization of the 1918 "Spanish" influenza virus neuraminidase gene. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6785–6790. doi: 10.1073/pnas.100140097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. Recombination in HIV-1. Nature. 1995 Mar 9;374(6518):124–126. doi: 10.1038/374124b0. [DOI] [PubMed] [Google Scholar]
  31. Röhm C., Zhou N., Süss J., Mackenzie J., Webster R. G. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology. 1996 Mar 15;217(2):508–516. doi: 10.1006/viro.1996.0145. [DOI] [PubMed] [Google Scholar]
  32. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  33. Sawyer S. Statistical tests for detecting gene conversion. Mol Biol Evol. 1989 Sep;6(5):526–538. doi: 10.1093/oxfordjournals.molbev.a040567. [DOI] [PubMed] [Google Scholar]
  34. Signer E. N., Dubrova Y. E., Jeffreys A. J. Are DNA profiles breed-specific? A pilot study in pigs. Anim Genet. 2000 Aug;31(4):273–276. doi: 10.1046/j.1365-2052.2000.00638.x. [DOI] [PubMed] [Google Scholar]
  35. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C., Huang J. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998 Jan 16;279(5349):393–396. doi: 10.1126/science.279.5349.393. [DOI] [PubMed] [Google Scholar]
  36. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]
  37. Taubenberger J. K., Reid A. H., Fanning T. G. The 1918 influenza virus: A killer comes into view. Virology. 2000 Sep 1;274(2):241–245. doi: 10.1006/viro.2000.0495. [DOI] [PubMed] [Google Scholar]
  38. Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. Initial genetic characterization of the 1918 "Spanish" influenza virus. Science. 1997 Mar 21;275(5307):1793–1796. doi: 10.1126/science.275.5307.1793. [DOI] [PubMed] [Google Scholar]
  39. Varghese J. N., Laver W. G., Colman P. M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature. 1983 May 5;303(5912):35–40. doi: 10.1038/303035a0. [DOI] [PubMed] [Google Scholar]
  40. Webster R. G. 1918 Spanish influenza: the secrets remain elusive. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1164–1166. doi: 10.1073/pnas.96.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992 Mar;56(1):152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Webster R. G., Hinshaw V. S., Laver W. G. Selection and analysis of antigenic variants of the neuraminidase of N2 influenza viruses with monoclonal antibodies. Virology. 1982 Feb;117(1):93–104. doi: 10.1016/0042-6822(82)90510-4. [DOI] [PubMed] [Google Scholar]
  43. Weiller G. F., Gibbs A. DIPLOMO: the tool for a new type of evolutionary analysis. Comput Appl Biosci. 1995 Oct;11(5):535–540. doi: 10.1093/bioinformatics/11.5.535. [DOI] [PubMed] [Google Scholar]
  44. Weiller G. F. Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol. 1998 Mar;15(3):326–335. doi: 10.1093/oxfordjournals.molbev.a025929. [DOI] [PubMed] [Google Scholar]
  45. Wiley D. C., Skehel J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
  46. Worobey M., Holmes E. C. Homologous recombination in GB virus C/hepatitis G virus. Mol Biol Evol. 2001 Feb;18(2):254–261. doi: 10.1093/oxfordjournals.molbev.a003799. [DOI] [PubMed] [Google Scholar]
  47. Worobey M., Rambaut A., Holmes E. C. Widespread intra-serotype recombination in natural populations of dengue virus. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7352–7357. doi: 10.1073/pnas.96.13.7352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang K., Hawken M., Rana F., Welte F. J., Gartner S., Goldsmith M. A., Power C. Human immunodeficiency virus type 1 clade A and D neurotropism: molecular evolution, recombination, and coreceptor use. Virology. 2001 Apr 25;283(1):19–30. doi: 10.1006/viro.2001.0876. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES