Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Feb 7;268(1464):221–227. doi: 10.1098/rspb.2000.1356

Resistance training enhances the stability of sensorimotor coordination.

T J Carroll 1, B Barry 1, S Riek 1, R G Carson 1
PMCID: PMC1088595  PMID: 11217890

Abstract

Strategies for the control of human movement are constrained by the neuroanatomical characteristics of the motor system. In particular, there is evidence that the capacity of muscles for producing force has a strong influence on the stability of coordination in certain movement tasks. In the present experiment, our aim was to determine whether physiological adaptations that cause relatively long-lasting changes in the ability of muscles to produce force can influence the stability of coordination in a systematic manner. We assessed the effects of resistance training on the performance of a difficult coordination task that required participants to synchronize or syncopate movements of their index finger with an auditory metronome. Our results revealed that training that increased isometric finger strength also enhanced the stability of movement coordination. These changes were accompanied by alterations in muscle recruitment patterns. In particular, the trained muscles were recruited in a more consistent fashion following the programme of resistance training. These results indicate that resistance training produces functional adaptations of the neuroanatomical constraints that underlie the control of voluntary movement.

Full Text

The Full Text of this article is available as a PDF (204.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carp J. S., Wolpaw J. R. Motoneuron plasticity underlying operantly conditioned decrease in primate H-reflex. J Neurophysiol. 1994 Jul;72(1):431–442. doi: 10.1152/jn.1994.72.1.431. [DOI] [PubMed] [Google Scholar]
  2. Carson R. G. Neuromuscular-skeletal constraints upon the dynamics of perception-action coupling. Exp Brain Res. 1996 Jun;110(1):99–110. doi: 10.1007/BF00241379. [DOI] [PubMed] [Google Scholar]
  3. Carson R. G., Riek S. The influence of joint position on the dynamics of perception-action coupling. Exp Brain Res. 1998 Jul;121(1):103–114. doi: 10.1007/s002210050442. [DOI] [PubMed] [Google Scholar]
  4. Challis R. E., Kitney R. I. Biomedical signal processing (in four parts). Part 1. Time-domain methods. Med Biol Eng Comput. 1990 Nov;28(6):509–524. doi: 10.1007/BF02442601. [DOI] [PubMed] [Google Scholar]
  5. Cheney P. D., Fetz E. E., Mewes K. Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res. 1991;87:213–252. doi: 10.1016/s0079-6123(08)63054-x. [DOI] [PubMed] [Google Scholar]
  6. Classen J., Liepert J., Wise S. P., Hallett M., Cohen L. G. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998 Feb;79(2):1117–1123. doi: 10.1152/jn.1998.79.2.1117. [DOI] [PubMed] [Google Scholar]
  7. Cohen L. G., Ziemann U., Chen R., Classen J., Hallett M., Gerloff C., Butefisch C. Studies of neuroplasticity with transcranial magnetic stimulation. J Clin Neurophysiol. 1998 Jul;15(4):305–324. doi: 10.1097/00004691-199807000-00003. [DOI] [PubMed] [Google Scholar]
  8. Enoka R. M. Neural adaptations with chronic physical activity. J Biomech. 1997 May;30(5):447–455. doi: 10.1016/s0021-9290(96)00170-4. [DOI] [PubMed] [Google Scholar]
  9. Friston K. J., Frith C. D., Passingham R. E., Liddle P. F., Frackowiak R. S. Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study. Proc Biol Sci. 1992 Jun 22;248(1323):223–228. doi: 10.1098/rspb.1992.0065. [DOI] [PubMed] [Google Scholar]
  10. Gandevia S. C., Allen G. M., Butler J. E., Taylor J. L. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol. 1996 Jan 15;490(Pt 2):529–536. doi: 10.1113/jphysiol.1996.sp021164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Golubitsky M., Stewart I., Buono P. L., Collins J. J. Symmetry in locomotor central pattern generators and animal gaits. Nature. 1999 Oct 14;401(6754):693–695. doi: 10.1038/44416. [DOI] [PubMed] [Google Scholar]
  12. Jenkins I. H., Brooks D. J., Nixon P. D., Frackowiak R. S., Passingham R. E. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994 Jun;14(6):3775–3790. doi: 10.1523/JNEUROSCI.14-06-03775.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kelso J. A., Fuchs A., Lancaster R., Holroyd T., Cheyne D., Weinberg H. Dynamic cortical activity in the human brain reveals motor equivalence. Nature. 1998 Apr 23;392(6678):814–818. doi: 10.1038/33922. [DOI] [PubMed] [Google Scholar]
  14. Kelso J. A. Phase transitions and critical behavior in human bimanual coordination. Am J Physiol. 1984 Jun;246(6 Pt 2):R1000–R1004. doi: 10.1152/ajpregu.1984.246.6.R1000. [DOI] [PubMed] [Google Scholar]
  15. Moritani T. Neuromuscular adaptations during the acquisition of muscle strength, power and motor tasks. J Biomech. 1993;26 (Suppl 1):95–107. doi: 10.1016/0021-9290(93)90082-p. [DOI] [PubMed] [Google Scholar]
  16. Sale D. G. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988 Oct;20(5 Suppl):S135–S145. doi: 10.1249/00005768-198810001-00009. [DOI] [PubMed] [Google Scholar]
  17. Schlaug G., Knorr U., Seitz R. Inter-subject variability of cerebral activations in acquiring a motor skill: a study with positron emission tomography. Exp Brain Res. 1994;98(3):523–534. doi: 10.1007/BF00233989. [DOI] [PubMed] [Google Scholar]
  18. Vallbo A. B., Wessberg J. Organization of motor output in slow finger movements in man. J Physiol. 1993 Sep;469:673–691. doi: 10.1113/jphysiol.1993.sp019837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wolf S. L., Segal R. L., Heter N. D., Catlin P. A. Contralateral and long latency effects of human biceps brachii stretch reflex conditioning. Exp Brain Res. 1995;107(1):96–102. doi: 10.1007/BF00228021. [DOI] [PubMed] [Google Scholar]
  20. Wolpaw J. R. The complex structure of a simple memory. Trends Neurosci. 1997 Dec;20(12):588–594. doi: 10.1016/s0166-2236(97)01133-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES