Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Feb 7;268(1464):229–233. doi: 10.1098/rspb.2000.1361

In vivo behaviour of human muscle tendon during walking.

T Fukunaga 1, K Kubo 1, Y Kawakami 1, S Fukashiro 1, H Kanehisa 1, C N Maganaris 1
PMCID: PMC1088596  PMID: 11217891

Abstract

In the present study we investigated in vivo length changes in the fascicles and tendon of the human gastrocnemius medialis (GM) muscle during walking. The experimental protocol involved real-time ultrasound scanning of the GM muscle, recording of the electrical activity of the muscle, measurement of knee- and ankle-joint rotations, and measurement of ground reaction forces in six men during walking at 3 km h(-1) on a treadmill. Fascicular lengths were measured from the sonographs recorded. Musculotendon complex length changes were estimated from anatomical and joint kinematic data. Tendon length changes were obtained combining the musculotendon complex and fascicular length-change data. The fascicles followed a different length-change pattern from those of the musculotendon complex and tendon throughout the step cycle. Two important features emerged: (i) the muscle contracted near-isometrically in the stance phase, with the fascicles operating at ca. 50 mm; and (ii) the tendon stretched by ca. 7 mm during single support, and recoiled in push-off. The behaviour of the muscle in our experiment indicates consumption of minimal metabolic energy for eliciting the contractile forces required to support and displace the body. On the other hand, the spring-like behaviour of the tendon indicates storage and release of elastic-strain energy. Either of the two mechanisms would favour locomotor economy

Full Text

The Full Text of this article is available as a PDF (460.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAVAGNA G. A., SAIBENE F. P., MARGARIA R. External work in walking. J Appl Physiol. 1963 Jan;18:1–9. doi: 10.1152/jappl.1963.18.1.1. [DOI] [PubMed] [Google Scholar]
  2. CAVAGNA G. A., SAIBENE F. P., MARGARIA R. MECHANICAL WORK IN RUNNING. J Appl Physiol. 1964 Mar;19:249–256. doi: 10.1152/jappl.1964.19.2.249. [DOI] [PubMed] [Google Scholar]
  3. Caputi A. A., Hoffer J. A., Pose I. E. Velocity of ultrasound in active and passive cat medial gastrocnemius muscle. J Biomech. 1992 Sep;25(9):1067–1074. doi: 10.1016/0021-9290(92)90042-y. [DOI] [PubMed] [Google Scholar]
  4. Carrier D. R., Gregersen C. S., Silverton N. A. Dynamic gearing in running dogs. J Exp Biol. 1998 Dec;201(Pt 23):3185–3195. doi: 10.1242/jeb.201.23.3185. [DOI] [PubMed] [Google Scholar]
  5. Cavagna G. A., Heglund N. C., Taylor C. R. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol. 1977 Nov;233(5):R243–R261. doi: 10.1152/ajpregu.1977.233.5.R243. [DOI] [PubMed] [Google Scholar]
  6. Cavagna G. A., Margaria R. Mechanics of walking. J Appl Physiol. 1966 Jan;21(1):271–278. doi: 10.1152/jappl.1966.21.1.271. [DOI] [PubMed] [Google Scholar]
  7. Elek J., Prochazka A., Hulliger M., Vincent S. In-series compliance of gastrocnemius muscle in cat step cycle: do spindles signal origin-to-insertion length? J Physiol. 1990 Oct;429:237–258. doi: 10.1113/jphysiol.1990.sp018254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffiths R. I. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol. 1991 May;436:219–236. doi: 10.1113/jphysiol.1991.sp018547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HENNEMAN E., SOMJEN G., CARPENTER D. O. FUNCTIONAL SIGNIFICANCE OF CELL SIZE IN SPINAL MOTONEURONS. J Neurophysiol. 1965 May;28:560–580. doi: 10.1152/jn.1965.28.3.560. [DOI] [PubMed] [Google Scholar]
  10. Herzog W., Abrahamse S. K., ter Keurs H. E. Theoretical determination of force-length relations of intact human skeletal muscles using the cross-bridge model. Pflugers Arch. 1990 Apr;416(1-2):113–119. doi: 10.1007/BF00370231. [DOI] [PubMed] [Google Scholar]
  11. Hof A. L., Geelen B. A., Van den Berg J. Calf muscle moment, work and efficiency in level walking; role of series elasticity. J Biomech. 1983;16(7):523–537. doi: 10.1016/0021-9290(83)90067-2. [DOI] [PubMed] [Google Scholar]
  12. Hoffer J. A., Caputi A. A., Pose I. E., Griffiths R. I. Roles of muscle activity and load on the relationship between muscle spindle length and whole muscle length in the freely walking cat. Prog Brain Res. 1989;80:75–60. doi: 10.1016/s0079-6123(08)62201-3. [DOI] [PubMed] [Google Scholar]
  13. Huijing P. A. Architecture of the human gastrocnemius muscle and some functional consequences. Acta Anat (Basel) 1985;123(2):101–107. doi: 10.1159/000146047. [DOI] [PubMed] [Google Scholar]
  14. Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939 Jun 14;96(1):45–64. doi: 10.1113/jphysiol.1939.sp003756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawakami Y., Abe T., Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol (1985) 1993 Jun;74(6):2740–2744. doi: 10.1152/jappl.1993.74.6.2740. [DOI] [PubMed] [Google Scholar]
  16. Kawakami Y., Ichinose Y., Fukunaga T. Architectural and functional features of human triceps surae muscles during contraction. J Appl Physiol (1985) 1998 Aug;85(2):398–404. doi: 10.1152/jappl.1998.85.2.398. [DOI] [PubMed] [Google Scholar]
  17. Komi P. V. Relevance of in vivo force measurements to human biomechanics. J Biomech. 1990;23 (Suppl 1):23–34. doi: 10.1016/0021-9290(90)90038-5. [DOI] [PubMed] [Google Scholar]
  18. Maganaris C. N., Baltzopoulos V., Sargeant A. J. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol. 1998 Oct 15;512(Pt 2):603–614. doi: 10.1111/j.1469-7793.1998.603be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Minetti A. E. The biomechanics of skipping gaits: a third locomotion paradigm? Proc Biol Sci. 1998 Jul 7;265(1402):1227–1235. doi: 10.1098/rspb.1998.0424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Narici M. V., Binzoni T., Hiltbrand E., Fasel J., Terrier F., Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol. 1996 Oct 1;496(Pt 1):287–297. doi: 10.1113/jphysiol.1996.sp021685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Prilutsky B. I., Herzog W., Leonard T. R., Allinger T. L. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion. J Biomech. 1996 Apr;29(4):417–434. doi: 10.1016/0021-9290(95)00085-2. [DOI] [PubMed] [Google Scholar]
  22. Roberts T. J., Marsh R. L., Weyand P. G., Taylor C. R. Muscular force in running turkeys: the economy of minimizing work. Science. 1997 Feb 21;275(5303):1113–1115. doi: 10.1126/science.275.5303.1113. [DOI] [PubMed] [Google Scholar]
  23. Taylor C. R., Heglund N. C. Energetics and mechanics of terrestrial locomotion. Annu Rev Physiol. 1982;44:97–107. doi: 10.1146/annurev.ph.44.030182.000525. [DOI] [PubMed] [Google Scholar]
  24. Walker S. M., Schrodt G. R. I segment lengths and thin filament periods in skeletal muscle fibers of the Rhesus monkey and the human. Anat Rec. 1974 Jan;178(1):63–81. doi: 10.1002/ar.1091780107. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

In vivo behaviour of human muscle-tendon during walking
Download video file (521.8KB, avi)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES