Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Feb 22;268(1465):437–443. doi: 10.1098/rspb.2000.1380

Slow and fast visual motion channels have independent binocular-rivalry stages.

W A van de Grind 1, P van Hof 1, M J van der Smagt 1, F A Verstraten 1
PMCID: PMC1088625  PMID: 11270442

Abstract

We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness.

Full Text

The Full Text of this article is available as a PDF (191.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S. J., Burr D. C. Spatial and temporal selectivity of the human motion detection system. Vision Res. 1985;25(8):1147–1154. doi: 10.1016/0042-6989(85)90104-x. [DOI] [PubMed] [Google Scholar]
  2. Badcock D. R., Derrington A. M. Detecting the displacements of spatial beats: a monocular capability. Vision Res. 1987;27(5):793–797. doi: 10.1016/0042-6989(87)90076-9. [DOI] [PubMed] [Google Scholar]
  3. Badcock D. R., Wong T. L., Coutant B. E. The impact of jitter on separation discrimination: combination of monocular inputs. Vision Res. 1991;31(2):247–252. doi: 10.1016/0042-6989(91)90115-l. [DOI] [PubMed] [Google Scholar]
  4. Baitch L. W., Levi D. M. Binocular beats: psychophysical studies of binocular interaction in normal and stereoblind humans. Vision Res. 1989;29(1):27–35. doi: 10.1016/0042-6989(89)90171-5. [DOI] [PubMed] [Google Scholar]
  5. Blake R., Zimba L., Williams D. Visual motion, binocular correspondence and binocular rivalry. Biol Cybern. 1985;52(6):391–397. doi: 10.1007/BF00449596. [DOI] [PubMed] [Google Scholar]
  6. Breitmeyer B. G., Ganz L. Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychol Rev. 1976 Jan;83(1):1–36. [PubMed] [Google Scholar]
  7. Burbeck C. A. Criterion-free pattern and flicker thresholds. J Opt Soc Am. 1981 Nov;71(11):1343–1350. doi: 10.1364/josa.71.001343. [DOI] [PubMed] [Google Scholar]
  8. Crick F., Koch C. Consciousness and neuroscience. Cereb Cortex. 1998 Mar;8(2):97–107. doi: 10.1093/cercor/8.2.97. [DOI] [PubMed] [Google Scholar]
  9. Edwards M., Badcock D. R., Smith A. T. Independent speed-tuned global-motion systems. Vision Res. 1998 Jun;38(11):1573–1580. doi: 10.1016/s0042-6989(97)00353-2. [DOI] [PubMed] [Google Scholar]
  10. Gegenfurtner K. R., Hawken M. J. Interaction of motion and color in the visual pathways. Trends Neurosci. 1996 Sep;19(9):394–401. doi: 10.1016/S0166-2236(96)10036-9. [DOI] [PubMed] [Google Scholar]
  11. Grunewald A., Lankheet M. J. Orthogonal motion after-effect illusion predicted by a model of cortical motion processing. Nature. 1996 Nov 28;384(6607):358–360. doi: 10.1038/384358a0. [DOI] [PubMed] [Google Scholar]
  12. Hiris E., Blake R. Another perspective on the visual motion aftereffect. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9025–9028. doi: 10.1073/pnas.89.19.9025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kulikowski J. J. Effect of eye movements on the contrast sensitivity of spatio-temporal patterns. Vision Res. 1971 Mar;11(3):261–273. doi: 10.1016/0042-6989(71)90190-8. [DOI] [PubMed] [Google Scholar]
  14. Kulikowski J. J., Tolhurst D. J. Psychophysical evidence for sustained and transient detectors in human vision. J Physiol. 1973 Jul;232(1):149–162. doi: 10.1113/jphysiol.1973.sp010261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Logothetis N. K. Single units and conscious vision. Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1801–1818. doi: 10.1098/rstb.1998.0333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Snowden RJ, Verstraten FA. Motion transparency: making models of motion perception transparent. Trends Cogn Sci. 1999 Oct;3(10):369–377. doi: 10.1016/s1364-6613(99)01381-9. [DOI] [PubMed] [Google Scholar]
  17. Todd J. T., Gelder P. V. Implications of a transient-sustained dichotomy for the measurement of human performance. J Exp Psychol Hum Percept Perform. 1979 Nov;5(4):625–638. doi: 10.1037//0096-1523.5.4.625. [DOI] [PubMed] [Google Scholar]
  18. Treue S., Hol K., Rauber H. J. Seeing multiple directions of motion-physiology and psychophysics. Nat Neurosci. 2000 Mar;3(3):270–276. doi: 10.1038/72985. [DOI] [PubMed] [Google Scholar]
  19. Verstraten F. A., Fredericksen R. E., van de Grind W. A. Movement aftereffect of bi-vectorial transparent motion. Vision Res. 1994 Feb;34(3):349–358. doi: 10.1016/0042-6989(94)90093-0. [DOI] [PubMed] [Google Scholar]
  20. Verstraten F. A., van der Smagt M. J., van de Grind W. A. Aftereffect of high-speed motion. Perception. 1998;27(9):1055–1066. doi: 10.1068/p271055. [DOI] [PubMed] [Google Scholar]
  21. Wade N. J. A selective history of the study of visual motion aftereffects. Perception. 1994;23(10):1111–1134. doi: 10.1068/p231111. [DOI] [PubMed] [Google Scholar]
  22. Wade N. J., de Weert C. M., Swanston M. T. Binocular rivalry with moving patterns. Percept Psychophys. 1984 Feb;35(2):111–122. doi: 10.3758/bf03203891. [DOI] [PubMed] [Google Scholar]
  23. Wolf J. E., Lusty N. G. Rotating stripes provide a simultaneous display of sustained and transient channels. Spat Vis. 1994;8(3):369–379. doi: 10.1163/156856894x00044. [DOI] [PubMed] [Google Scholar]
  24. Wolfe J. M. Influence of spatial frequency, luminance, and duration on binocular rivalry and abnormal fusion of briefly presented dichoptic stimuli. Perception. 1983;12(4):447–456. doi: 10.1068/p120447. [DOI] [PubMed] [Google Scholar]
  25. Yang Y., Rose D., Blake R. On the variety of percepts associated with dichoptic viewing of dissimilar monocular stimuli. Perception. 1992;21(1):47–62. doi: 10.1068/p210047. [DOI] [PubMed] [Google Scholar]
  26. Zeki S., Bartels A. The autonomy of the visual systems and the modularity of conscious vision. Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1911–1914. doi: 10.1098/rstb.1998.0343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van der Smagt M. J., Verstraten F. A., van de Grind W. A. A new transparent motion aftereffect. Nat Neurosci. 1999 Jul;2(7):595–596. doi: 10.1038/10150. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES