Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Mar 7;268(1466):459–469. doi: 10.1098/rspb.2000.1368

Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event.

J Cracraft 1
PMCID: PMC1088628  PMID: 11296857

Abstract

The fossil record has been used to support the origin and radiation of modern birds (Neornithes) in Laurasia after the Cretaceous-Tertiary mass extinction event, whereas molecular clocks have suggested a Cretaceous origin for most avian orders. These alternative views of neornithine evolution are examined using an independent set of evidence, namely phylogenetic relationships and historical biogeography. Pylogenetic relationships of basal lineages of neornithines, including ratite birds and their allies (Palaleocognathae), galliforms and anseriforms (Galloanserae), as well as lineages of the more advanced Neoves (Gruiformes, (Capimulgiformes, Passeriformes and others) demonstrate pervasive trans-Antarctic distribution patterns. The temporal history of the neornithines can be inferred from fossil taxa and the ages of vicariance events, and along with their biogeographical patterns, leads to the conclusion that neornithines arose in Gondwana prior to the Cretaceous Tertiary extinction event.

Full Text

The Full Text of this article is available as a PDF (237.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buckley G. A., Brochu C. A., Krause D. W., Pol D. A pug-nosed crocodyliform from the Late Cretaceous of Madagascar. Nature. 2000 Jun 22;405(6789):941–944. doi: 10.1038/35016061. [DOI] [PubMed] [Google Scholar]
  2. Calam J., Unwin R., Peart W. S. Neurotensin stimulates defaecation. Lancet. 1983 Apr 2;1(8327):737–738. doi: 10.1016/s0140-6736(83)92028-7. [DOI] [PubMed] [Google Scholar]
  3. Caspers G. J., Uit de Weerd D., Wattel J., de Jong W. W. alpha-Crystallin sequences support a galliform/anseriform clade. Mol Phylogenet Evol. 1997 Apr;7(2):185–188. doi: 10.1006/mpev.1996.0384. [DOI] [PubMed] [Google Scholar]
  4. Caspers G. J., Wattel J., de Jong W. W. Alpha A-crystallin sequences group tinamou with ratites. Mol Biol Evol. 1994 Jul;11(4):711–713. doi: 10.1093/oxfordjournals.molbev.a040150. [DOI] [PubMed] [Google Scholar]
  5. Cooper A., Mourer-Chauviré C., Chambers G. K., von Haeseler A., Wilson A. C., Päbo S. Independent origins of New Zealand moas and kiwis. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8741–8744. doi: 10.1073/pnas.89.18.8741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper A., Penny D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science. 1997 Feb 21;275(5303):1109–1113. doi: 10.1126/science.275.5303.1109. [DOI] [PubMed] [Google Scholar]
  7. Dalziel I. W., Elliot D. H. Evolution of the Scotia Arc. Nature. 1971 Sep 24;233(5317):246–252. doi: 10.1038/233246a0. [DOI] [PubMed] [Google Scholar]
  8. Dimcheff D. E., Drovetski S. V., Krishnan M., Mindell D. P. Cospeciation and horizontal transmission of avian sarcoma and leukosis virus gag genes in galliform birds. J Virol. 2000 May;74(9):3984–3995. doi: 10.1128/jvi.74.9.3984-3995.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farias I. P., Ortí G., Sampaio I., Schneider H., Meyer A. Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the neotropical assemblage. J Mol Evol. 1999 Jun;48(6):703–711. doi: 10.1007/pl00006514. [DOI] [PubMed] [Google Scholar]
  10. Feduccia A. Explosive evolution in tertiary birds and mammals. Science. 1995 Feb 3;267(5198):637–638. doi: 10.1126/science.267.5198.637. [DOI] [PubMed] [Google Scholar]
  11. Fontanier-Razzaq N. C., Hay S. M., Rees W. D. Upregulation of CHOP-10 (gadd153) expression in the mouse blastocyst as a response to stress. Mol Reprod Dev. 1999 Dec;54(4):326–332. doi: 10.1002/(SICI)1098-2795(199912)54:4<326::AID-MRD2>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  12. Groth J. G., Barrowclough G. F. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol. 1999 Jul;12(2):115–123. doi: 10.1006/mpev.1998.0603. [DOI] [PubMed] [Google Scholar]
  13. Hedges S. B., Parker P. H., Sibley C. G., Kumar S. Continental breakup and the ordinal diversification of birds and mammals. Nature. 1996 May 16;381(6579):226–229. doi: 10.1038/381226a0. [DOI] [PubMed] [Google Scholar]
  14. Ho C. Y., Prager E. M., Wilson A. C., Osuga D. T., Feeney R. E. Penguin evolution: protein comparisons demonstrate phylogenetic relationship to flying aquatic birds. J Mol Evol. 1976 Oct 27;8(3):271–282. doi: 10.1007/BF01731000. [DOI] [PubMed] [Google Scholar]
  15. Mariaux J., Braun M. J. A molecular phylogenetic survey of the nightjars and allies (Caprimulgiformes) with special emphasis on the potoos (Nyctibiidae). Mol Phylogenet Evol. 1996 Oct;6(2):228–244. doi: 10.1006/mpev.1996.0073. [DOI] [PubMed] [Google Scholar]
  16. McGowran B., Fooden J. Rifting and drift of australia and the migration of mammals. Science. 1973 May 18;180(4087):759–761. doi: 10.1126/science.180.4087.759. [DOI] [PubMed] [Google Scholar]
  17. Mindell D. P., Sorenson M. D., Dimcheff D. E., Hasegawa M., Ast J. C., Yuri T. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst Biol. 1999 Mar;48(1):138–152. doi: 10.1080/106351599260490. [DOI] [PubMed] [Google Scholar]
  18. doi: 10.1098/rstb.1998.0353. [DOI] [PMC free article] [Google Scholar]
  19. Prager E. M., Wilson A. C., Osuga D. T., Feeney R. E. Evolution of flightless land birds on southern continents: transferrin comparison shows monophyletic origin of ratites. J Mol Evol. 1976 Oct 27;8(3):283–294. doi: 10.1007/BF01731001. [DOI] [PubMed] [Google Scholar]
  20. Rabinowitz P. D., Coffin M. F., Falvey D. The separation of madagascar and Africa. Science. 1983 Apr 1;220(4592):67–69. doi: 10.1126/science.220.4592.67. [DOI] [PubMed] [Google Scholar]
  21. Rambaut A., Bromham L. Estimating divergence dates from molecular sequences. Mol Biol Evol. 1998 Apr;15(4):442–448. doi: 10.1093/oxfordjournals.molbev.a025940. [DOI] [PubMed] [Google Scholar]
  22. Renne P. R., Ernesto M., Pacca I. G., Coe R. S., Glen J. M., Prévot M., Perrin M. The age of parana flood volcanism, rifting of gondwanaland, and the jurassic-cretaceous boundary. Science. 1992 Nov 6;258(5084):975–979. doi: 10.1126/science.258.5084.975. [DOI] [PubMed] [Google Scholar]
  23. Rogers RR, Hartman JH, Krause DW. Stratigraphic Analysis of Upper Cretaceous Rocks in the Mahajanga Basin, Northwestern Madagascar: Implications for Ancient and Modern Faunas. J Geol. 2000 May;108(3):275–301. doi: 10.1086/314403. [DOI] [PubMed] [Google Scholar]
  24. Sampson SD, Witmer LM, Forster CA, Krause DW, O'Connor PM, Dodson P, Ravoavy F. Predatory dinosaur remains from madagascar: implications for the cretaceous biogeography of gondwana . Science. 1998 May 15;280(5366):1048–1051. doi: 10.1126/science.280.5366.1048. [DOI] [PubMed] [Google Scholar]
  25. Stapel S. O., Leunissen J. A., Versteeg M., Wattel J., de Jong W. W. Ratites as oldest offshoot of avian stem--evidence from alpha-crystallin A sequences. Nature. 1984 Sep 20;311(5983):257–259. doi: 10.1038/311257a0. [DOI] [PubMed] [Google Scholar]
  26. van Tuinen M., Sibley C. G., Hedges S. B. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Mol Biol Evol. 2000 Mar;17(3):451–457. doi: 10.1093/oxfordjournals.molbev.a026324. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES