Abstract
We used a dual-masking paradigm to study how contrast discrimination can be influenced by the presence of adjacent stimuli. The task of the observer was to detect a target superimposed on a pedestal in the presence of flankers. The flankers (i) reduce the target threshold at zero pedestal contrast, (ii) shift the target threshold versus pedestal contrast (TvC) function horizontally to the left on a log-log plot at high pedestal contrasts, and (iii) reduce the size of pedestal facilitation at low pedestal contrasts. The horizontal shift at high pedestal contrasts suggests that the flanker effect is a multiplicative factor that cannot be explained by previous models of contrast discrimination. We extend the divisive inhibition model of contrast discrimination by implementing the flanker effect as a lateral multiplicative sensitivity modulation. This extended model provides a good account of the data.
Full Text
The Full Text of this article is available as a PDF (186.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brainard D. H. The Psychophysics Toolbox. Spat Vis. 1997;10(4):433–436. [PubMed] [Google Scholar]
- Chen C. C., Tyler C. W. Spatial pattern summation is phase-insensitive in the fovea but not in the periphery. Spat Vis. 1999;12(3):267–285. doi: 10.1163/156856899x00166. [DOI] [PubMed] [Google Scholar]
- Chen C., Foley J. M., Brainard D. H. Detection of chromoluminance patterns on chromoluminance pedestals II: model. Vision Res. 2000;40(7):789–803. doi: 10.1016/s0042-6989(99)00228-x. [DOI] [PubMed] [Google Scholar]
- Foley J. M., Chen C. C. Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model. Vision Res. 1999 Nov;39(23):3855–3872. doi: 10.1016/s0042-6989(99)00104-2. [DOI] [PubMed] [Google Scholar]
- Foley J. M. Human luminance pattern-vision mechanisms: masking experiments require a new model. J Opt Soc Am A Opt Image Sci Vis. 1994 Jun;11(6):1710–1719. doi: 10.1364/josaa.11.001710. [DOI] [PubMed] [Google Scholar]
- Kontsevich L. L., Tyler C. W. Nonlinearities of near-threshold contrast transduction. Vision Res. 1999 May;39(10):1869–1880. doi: 10.1016/s0042-6989(98)00286-7. [DOI] [PubMed] [Google Scholar]
- Legge G. E., Foley J. M. Contrast masking in human vision. J Opt Soc Am. 1980 Dec;70(12):1458–1471. doi: 10.1364/josa.70.001458. [DOI] [PubMed] [Google Scholar]
- Morgan M. J., Dresp B. Contrast detection facilitation by spatially separated targets and inducers. Vision Res. 1995 Apr;35(8):1019–1024. doi: 10.1016/0042-6989(94)00216-9. [DOI] [PubMed] [Google Scholar]
- Pelli D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 1997;10(4):437–442. [PubMed] [Google Scholar]
- Polat U., Mizobe K., Pettet M. W., Kasamatsu T., Norcia A. M. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature. 1998 Feb 5;391(6667):580–584. doi: 10.1038/35372. [DOI] [PubMed] [Google Scholar]
- Polat U., Sagi D. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Res. 1993 May;33(7):993–999. doi: 10.1016/0042-6989(93)90081-7. [DOI] [PubMed] [Google Scholar]
- Polat U., Sagi D. The architecture of perceptual spatial interactions. Vision Res. 1994 Jan;34(1):73–78. doi: 10.1016/0042-6989(94)90258-5. [DOI] [PubMed] [Google Scholar]
- Ross J., Speed H. D. Contrast adaptation and contrast masking in human vision. Proc Biol Sci. 1991 Oct 22;246(1315):61–69. doi: 10.1098/rspb.1991.0125. [DOI] [PubMed] [Google Scholar]
- Sengpiel F., Baddeley R. J., Freeman T. C., Harrad R., Blakemore C. Different mechanisms underlie three inhibitory phenomena in cat area 17. Vision Res. 1998 Jul;38(14):2067–2080. doi: 10.1016/s0042-6989(97)00413-6. [DOI] [PubMed] [Google Scholar]
- Snowden R. J., Hammett S. T. The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Res. 1998 Jun;38(13):1935–1945. doi: 10.1016/s0042-6989(97)00379-9. [DOI] [PubMed] [Google Scholar]
- Solomon J. A., Morgan M. J. Facilitation from collinear flanks is cancelled by non-collinear flanks. Vision Res. 2000;40(3):279–286. doi: 10.1016/s0275-5408(99)00059-9. [DOI] [PubMed] [Google Scholar]
- Solomon J. A., Watson A. B., Morgan M. J. Transducer model produces facilitation from opposite-sign flanks. Vision Res. 1999 Mar;39(5):987–992. doi: 10.1016/s0042-6989(98)00143-6. [DOI] [PubMed] [Google Scholar]
- Somers D. C., Todorov E. V., Siapas A. G., Toth L. J., Kim D. S., Sur M. A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb Cortex. 1998 Apr-May;8(3):204–217. doi: 10.1093/cercor/8.3.204. [DOI] [PubMed] [Google Scholar]
- Stemmler M., Usher M., Niebur E. Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. Science. 1995 Sep 29;269(5232):1877–1880. doi: 10.1126/science.7569930. [DOI] [PubMed] [Google Scholar]
- Tyler C. W., McBride B. The Morphonome image psychophysics software and a calibrator for Macintosh systems. Spat Vis. 1997;10(4):479–484. doi: 10.1163/156856897x00410. [DOI] [PubMed] [Google Scholar]
- Watson A. B., Pelli D. G. QUEST: a Bayesian adaptive psychometric method. Percept Psychophys. 1983 Feb;33(2):113–120. doi: 10.3758/bf03202828. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Humanski R. Spatial frequency adaptation and contrast gain control. Vision Res. 1993 May;33(8):1133–1149. doi: 10.1016/0042-6989(93)90248-u. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., McFarlane D. K., Phillips G. C. Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Res. 1983;23(9):873–882. doi: 10.1016/0042-6989(83)90055-x. [DOI] [PubMed] [Google Scholar]
- Zenger B., Sagi D. Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection. Vision Res. 1996 Aug;36(16):2497–2513. doi: 10.1016/0042-6989(95)00303-7. [DOI] [PubMed] [Google Scholar]