Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Oct 7;268(1480):1985–1992. doi: 10.1098/rspb.2001.1761

Mechanical and metabolic determinants of the preferred step width in human walking.

J M Donelan 1, R Kram 1, A D Kuo 1
PMCID: PMC1088839  PMID: 11571044

Abstract

We studied the selection of preferred step width in human walking by measuring mechanical and metabolic costs as a function of experimentally manipulated step width (0.00-0.45L, as a fraction of leg length L). We estimated mechanical costs from individual limb external mechanical work and metabolic costs using open circuit respirometry. The mechanical and metabolic costs both increased substantially (54 and 45%, respectively) for widths greater than the preferred value (0.15-0.45L) and with step width squared (R(2) = 0.91 and 0.83, respectively). As predicted by a three-dimensional model of walking mechanics, the increases in these costs appear to be a result of the mechanical work required for redirecting the centre of mass velocity during the transition between single stance phases (step-to-step transition costs). The metabolic cost for steps narrower than preferred (0.10-0.00L) increased by 8%, which was probably as a result of the added cost of moving the swing leg laterally in order to avoid the stance leg (lateral limb swing cost). Trade-offs between the step-to-step transition and lateral limb swing costs resulted in a minimum metabolic cost at a step width of 0.12L, which is not significantly different from foot width (0.11L) or the preferred step width (0.13L). Humans appear to prefer a step width that minimizes metabolic cost.

Full Text

The Full Text of this article is available as a PDF (387.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauby C. E., Kuo A. D. Active control of lateral balance in human walking. J Biomech. 2000 Nov;33(11):1433–1440. doi: 10.1016/s0021-9290(00)00101-9. [DOI] [PubMed] [Google Scholar]
  2. Brockway J. M. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987 Nov;41(6):463–471. [PubMed] [Google Scholar]
  3. Calloway D. H., Zanni E. Energy requirements and energy expenditure of elderly men. Am J Clin Nutr. 1980 Oct;33(10):2088–2092. doi: 10.1093/ajcn/33.10.2088. [DOI] [PubMed] [Google Scholar]
  4. Cavagna G. A. Force platforms as ergometers. J Appl Physiol. 1975 Jul;39(1):174–179. doi: 10.1152/jappl.1975.39.1.174. [DOI] [PubMed] [Google Scholar]
  5. Cavagna G. A., Franzetti P. The determinants of the step frequency in walking in humans. J Physiol. 1986 Apr;373:235–242. doi: 10.1113/jphysiol.1986.sp016044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cavagna G. A., Heglund N. C., Taylor C. R. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol. 1977 Nov;233(5):R243–R261. doi: 10.1152/ajpregu.1977.233.5.R243. [DOI] [PubMed] [Google Scholar]
  7. Cavanagh P. R., Williams K. R. The effect of stride length variation on oxygen uptake during distance running. Med Sci Sports Exerc. 1982;14(1):30–35. doi: 10.1249/00005768-198201000-00006. [DOI] [PubMed] [Google Scholar]
  8. Garcia M., Chatterjee A., Ruina A., Coleman M. The simplest walking model: stability, complexity, and scaling. J Biomech Eng. 1998 Apr;120(2):281–288. doi: 10.1115/1.2798313. [DOI] [PubMed] [Google Scholar]
  9. Griffin T. M., Kram R. Penguin waddling is not wasteful. Nature. 2000 Dec 21;408(6815):929–929. doi: 10.1038/35050167. [DOI] [PubMed] [Google Scholar]
  10. Murray M. P., Kory R. C., Clarkson B. H. Walking patterns in healthy old men. J Gerontol. 1969 Apr;24(2):169–178. doi: 10.1093/geronj/24.2.169. [DOI] [PubMed] [Google Scholar]
  11. Murray M. P., Sepic S. B., Gardner G. M., Downs W. J. Walking patterns of men with parkinsonism. Am J Phys Med. 1978 Dec;57(6):278–294. [PubMed] [Google Scholar]
  12. Poole D. C., Richardson R. S. Determinants of oxygen uptake. Implications for exercise testing. Sports Med. 1997 Nov;24(5):308–320. doi: 10.2165/00007256-199724050-00003. [DOI] [PubMed] [Google Scholar]
  13. Voorrips L. E., van Acker T. M., Deurenberg P., van Staveren W. A. Energy expenditure at rest and during standardized activities: a comparison between elderly and middle-aged women. Am J Clin Nutr. 1993 Jul;58(1):15–20. doi: 10.1093/ajcn/58.1.15. [DOI] [PubMed] [Google Scholar]
  14. Waters R. L., Hislop H. J., Perry J., Thomas L., Campbell J. Comparative cost of walking in young and old adults. J Orthop Res. 1983;1(1):73–76. doi: 10.1002/jor.1100010110. [DOI] [PubMed] [Google Scholar]
  15. Waters R. L., Hislop H. J., Thomas L., Campbell J. Energy cost of walking in normal children and teenagers. Dev Med Child Neurol. 1983 Apr;25(2):184–188. doi: 10.1111/j.1469-8749.1983.tb13742.x. [DOI] [PubMed] [Google Scholar]
  16. Willems P. A., Cavagna G. A., Heglund N. C. External, internal and total work in human locomotion. J Exp Biol. 1995 Feb;198(Pt 2):379–393. doi: 10.1242/jeb.198.2.379. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES