Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Oct 7;268(1480):2039–2045. doi: 10.1098/rspb.2001.1767

Complexity and fragility in ecological networks.

R V Solé 1, J M Montoya 1
PMCID: PMC1088846  PMID: 11571051

Abstract

A detailed analysis of three species-rich ecosystem food webs has shown that they display skewed distributions of connections. Such graphs of interaction are, in fact, shared by a number of biological and technological networks, which have been shown to display a very high homeostasis against random removals of nodes. Here, we analyse the responses of these ecological graphs to both random and selective perturbations (directed against the most-connected species). Our results suggest that ecological networks are very robust against random removals but can be extremely fragile when selective attacks are used. These observations have important consequences for biodiversity dynamics and conservation issues, current estimations of extinction rates and the relevance and definition of keystone species.

Full Text

The Full Text of this article is available as a PDF (199.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000 Jul 27;406(6794):378–382. doi: 10.1038/35019019. [DOI] [PubMed] [Google Scholar]
  2. Amaral L. A., Scala A., Barthelemy M., Stanley H. E. Classes of small-world networks. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11149–11152. doi: 10.1073/pnas.200327197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen R., Erez K., ben-Avraham D., Havlin S. Breakdown of the internet under intentional attack. Phys Rev Lett. 2001 Apr 16;86(16):3682–3685. doi: 10.1103/PhysRevLett.86.3682. [DOI] [PubMed] [Google Scholar]
  4. Fell D. A., Wagner A. The small world of metabolism. Nat Biotechnol. 2000 Nov;18(11):1121–1122. doi: 10.1038/81025. [DOI] [PubMed] [Google Scholar]
  5. Jeong H., Tombor B., Albert R., Oltvai Z. N., Barabási A. L. The large-scale organization of metabolic networks. Nature. 2000 Oct 5;407(6804):651–654. doi: 10.1038/35036627. [DOI] [PubMed] [Google Scholar]
  6. Lago-Fernández L. F., Huerta R., Corbacho F., Sigüenza J. A. Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett. 2000 Mar 20;84(12):2758–2761. doi: 10.1103/PhysRevLett.84.2758. [DOI] [PubMed] [Google Scholar]
  7. McCann K. S. The diversity-stability debate. Nature. 2000 May 11;405(6783):228–233. doi: 10.1038/35012234. [DOI] [PubMed] [Google Scholar]
  8. doi: 10.1098/rspb.1997.0172. [DOI] [PMC free article] [Google Scholar]
  9. Strogatz S. H. Exploring complex networks. Nature. 2001 Mar 8;410(6825):268–276. doi: 10.1038/35065725. [DOI] [PubMed] [Google Scholar]
  10. Watts D. J., Strogatz S. H. Collective dynamics of 'small-world' networks. Nature. 1998 Jun 4;393(6684):440–442. doi: 10.1038/30918. [DOI] [PubMed] [Google Scholar]
  11. Williams R. J., Martinez N. D. Simple rules yield complex food webs. Nature. 2000 Mar 9;404(6774):180–183. doi: 10.1038/35004572. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES