Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Oct 22;268(1481):2155–2161. doi: 10.1098/rspb.2001.1780

Sexual selection at the protein level drives the extraordinary divergence of sex-related genes during sympatric speciation.

G S Van Doorn 1, P C Luttikhuizen 1, F J Weissing 1
PMCID: PMC1088860  PMID: 11600080

Abstract

An increasing number of molecular studies are indicating that, in a wide variety of species, genes directly related to fertilization evolve at extraordinarily high rates. We try to gain insight into the dynamics of this rapid evolution and its underlying mechanisms by means of a simple theoretical model. In the model, sexual selection and sympatric speciation act together in order to drive rapid divergence of gamete recognition proteins. In this process, intraspecific competition for fertilizations enlarges male gamete protein variation by means of evolutionary branching, which initiates sympatric speciation. In addition, avoidance of competition for fertilizations between the incipient species drives the rapid evolution of gamete recognition proteins. This mechanism can account for both strong stabilizing selection on gamete recognition proteins within species and rapid divergence between species. Moreover, it can explain the empirical finding that the rate of divergence of fertilization genes is not constant, but highest between closely related species.

Full Text

The Full Text of this article is available as a PDF (843.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biermann C. H. The molecular evolution of sperm bindin in six species of sea urchins (Echinoida: Strongylocentrotidae). Mol Biol Evol. 1998 Dec;15(12):1761–1771. doi: 10.1093/oxfordjournals.molbev.a025902. [DOI] [PubMed] [Google Scholar]
  2. Dieckmann U., Doebeli M. On the origin of species by sympatric speciation. Nature. 1999 Jul 22;400(6742):354–357. doi: 10.1038/22521. [DOI] [PubMed] [Google Scholar]
  3. Ferris P. J., Pavlovic C., Fabry S., Goodenough U. W. Rapid evolution of sex-related genes in Chlamydomonas. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8634–8639. doi: 10.1073/pnas.94.16.8634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gavrilets S. Rapid evolution of reproductive barriers driven by sexual conflict. Nature. 2000 Feb 24;403(6772):886–889. doi: 10.1038/35002564. [DOI] [PubMed] [Google Scholar]
  5. Hellberg M. E., Moy G. W., Vacquier V. D. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein. Mol Biol Evol. 2000 Mar;17(3):458–466. doi: 10.1093/oxfordjournals.molbev.a026325. [DOI] [PubMed] [Google Scholar]
  6. Hellberg M. E., Vacquier V. D. Rapid evolution of fertilization selectivity and lysin cDNA sequences in teguline gastropods. Mol Biol Evol. 1999 Jun;16(6):839–848. doi: 10.1093/oxfordjournals.molbev.a026168. [DOI] [PubMed] [Google Scholar]
  7. Lee Y. H., Ota T., Vacquier V. D. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol Biol Evol. 1995 Mar;12(2):231–238. doi: 10.1093/oxfordjournals.molbev.a040200. [DOI] [PubMed] [Google Scholar]
  8. Luporini P., Vallesi A., Miceli C., Bradshaw R. A. Chemical signaling in ciliates. J Eukaryot Microbiol. 1995 May-Jun;42(3):208–212. doi: 10.1111/j.1550-7408.1995.tb01567.x. [DOI] [PubMed] [Google Scholar]
  9. Metz E. C., Gómez-Gutiérrez G., Vacquier V. D. Mitochondrial DNA and bindin gene sequence evolution among allopatric species of the sea urchin genus Arbacia. Mol Biol Evol. 1998 Feb;15(2):185–195. doi: 10.1093/oxfordjournals.molbev.a025914. [DOI] [PubMed] [Google Scholar]
  10. Metz E. C., Palumbi S. R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol Biol Evol. 1996 Feb;13(2):397–406. doi: 10.1093/oxfordjournals.molbev.a025598. [DOI] [PubMed] [Google Scholar]
  11. doi: 10.1098/rspb.1998.0520. [DOI] [PMC free article] [Google Scholar]
  12. Swanson W. J., Vacquier V. D. Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein. Science. 1998 Jul 31;281(5377):710–712. doi: 10.1126/science.281.5377.710. [DOI] [PubMed] [Google Scholar]
  13. Swanson W. J., Yang Z., Wolfner M. F., Aquadro C. F. Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2509–2514. doi: 10.1073/pnas.051605998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tsaur S. C., Ting C. T., Wu C. I. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol Biol Evol. 1998 Aug;15(8):1040–1046. doi: 10.1093/oxfordjournals.molbev.a026002. [DOI] [PubMed] [Google Scholar]
  15. Tucker P. K., Lundrigan B. L. Rapid evolution of the sex determining locus in Old World mice and rats. Nature. 1993 Aug 19;364(6439):715–717. doi: 10.1038/364715a0. [DOI] [PubMed] [Google Scholar]
  16. Vacquier V. D. Evolution of gamete recognition proteins. Science. 1998 Sep 25;281(5385):1995–1998. doi: 10.1126/science.281.5385.1995. [DOI] [PubMed] [Google Scholar]
  17. Vacquier V. D., Lee Y. H. Abalone sperm lysin: unusual mode of evolution of a gamete recognition protein. Zygote. 1993 Aug;1(3):181–196. doi: 10.1017/s0967199400001465. [DOI] [PubMed] [Google Scholar]
  18. Whitfield L. S., Lovell-Badge R., Goodfellow P. N. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature. 1993 Aug 19;364(6439):713–715. doi: 10.1038/364713a0. [DOI] [PubMed] [Google Scholar]
  19. Wyckoff G. J., Wang W., Wu C. I. Rapid evolution of male reproductive genes in the descent of man. Nature. 2000 Jan 20;403(6767):304–309. doi: 10.1038/35002070. [DOI] [PubMed] [Google Scholar]
  20. Yang Z., Swanson W. J., Vacquier V. D. Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol. 2000 Oct;17(10):1446–1455. doi: 10.1093/oxfordjournals.molbev.a026245. [DOI] [PubMed] [Google Scholar]
  21. Yund PO. How severe is sperm limitation in natural populations of marine free-spawners? Trends Ecol Evol. 2000 Jan;15(1):10–13. doi: 10.1016/s0169-5347(99)01744-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES