Abstract
Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that the accommodative level remained approximately constant (< 0.25 D change in mean level) even when the concurrent pupillary response was large (ca. 0.30 mm). The pupillary response to an isoluminant grating was sustained, delayed (by ca. 60 ms) and larger in amplitude than that for a isochromatic uniform stimulus, which supports previous work suggesting that the chromatic mechanism contributes to the pupillary response. In a second experiment, selected chromatic test gratings were used and isoresponse contours in cone contrast space were obtained. The results showed that the isoresponse contour in cone contrast space is well described (r(2) = 0.99) by a straight line with a positive slope. The results indicate that a /L - M/ linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses.
Full Text
The Full Text of this article is available as a PDF (140.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALPERN M., CAMPBELL F. W. The spectral sensitivity of the consensual light reflex. J Physiol. 1962 Dec;164:478–507. doi: 10.1113/jphysiol.1962.sp007033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson S. J., Burr D. C. Spatial and temporal selectivity of the human motion detection system. Vision Res. 1985;25(8):1147–1154. doi: 10.1016/0042-6989(85)90104-x. [DOI] [PubMed] [Google Scholar]
- Barbur J. L., Harlow A. J., Sahraie A. Pupillary responses to stimulus structure, colour and movement. Ophthalmic Physiol Opt. 1992 Apr;12(2):137–141. doi: 10.1111/j.1475-1313.1992.tb00276.x. [DOI] [PubMed] [Google Scholar]
- Barbur J. L., Weiskrantz L., Harlow J. A. The unseen color aftereffect of an unseen stimulus: insight from blindsight into mechanisms of color afterimages. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11637–11641. doi: 10.1073/pnas.96.20.11637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbur J. L., Wolf J., Lennie P. Visual processing levels revealed by response latencies to changes in different visual attributes. Proc Biol Sci. 1998 Dec 7;265(1412):2321–2325. doi: 10.1098/rspb.1998.0578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaparro A., Stromeyer C. F., 3rd, Chen G., Kronauer R. E. Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism. Vision Res. 1995 Nov;35(22):3103–3118. doi: 10.1016/0042-6989(95)00069-c. [DOI] [PubMed] [Google Scholar]
- Derrington A. M., Krauskopf J., Lennie P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol. 1984 Dec;357:241–265. doi: 10.1113/jphysiol.1984.sp015499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamlin P. D., Zhang H., Harlow A., Barbur J. L. Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey. Vision Res. 1998 Nov;38(21):3353–3358. doi: 10.1016/s0042-6989(98)00096-0. [DOI] [PubMed] [Google Scholar]
- Gouras P. Identification of cone mechanisms in monkey ganglion cells. J Physiol. 1968 Dec;199(3):533–547. doi: 10.1113/jphysiol.1968.sp008667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura E., Young R. S. A chromatic-cancellation property of human pupillary responses. Vision Res. 1996 Jun;36(11):1543–1550. doi: 10.1016/0042-6989(95)00229-4. [DOI] [PubMed] [Google Scholar]
- Kimura E., Young R. S. Nature of the pupillary responses evoked by chromatic flashes on a white background. Vision Res. 1995 Apr;35(7):897–906. doi: 10.1016/0042-6989(94)00188-r. [DOI] [PubMed] [Google Scholar]
- Kohn M., Clynes M. Color dynamics of the pupil. Ann N Y Acad Sci. 1969 Apr 21;156(2):931–950. doi: 10.1111/j.1749-6632.1969.tb14024.x. [DOI] [PubMed] [Google Scholar]
- Krastel H., Alexandridis E., Gertz J. Pupil increment thresholds are influenced by color opponent mechanisms. Ophthalmologica. 1985;191(1):35–38. doi: 10.1159/000309536. [DOI] [PubMed] [Google Scholar]
- MacLeod D. I., Boynton R. M. Chromaticity diagram showing cone excitation by stimuli of equal luminance. J Opt Soc Am. 1979 Aug;69(8):1183–1186. doi: 10.1364/josa.69.001183. [DOI] [PubMed] [Google Scholar]
- Pokorny J., Jin Q., Smith V. C. Spectral-luminosity functions, scalar linearity, and chromatic adaptation. J Opt Soc Am A. 1993 Jun;10(6):1304–1313. doi: 10.1364/josaa.10.001304. [DOI] [PubMed] [Google Scholar]
- Schaeffel F., Wilhelm H., Zrenner E. Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors. J Physiol. 1993 Feb;461:301–320. doi: 10.1113/jphysiol.1993.sp019515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith V. C., Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res. 1975 Feb;15(2):161–171. doi: 10.1016/0042-6989(75)90203-5. [DOI] [PubMed] [Google Scholar]
- Stromeyer C. F., 3rd, Chaparro A., Tolias A. S., Kronauer R. E. Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism. J Physiol. 1997 Feb 15;499(Pt 1):227–254. doi: 10.1113/jphysiol.1997.sp021923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stromeyer C. F., 3rd, Kronauer R. E., Ryu A., Chaparro A., Eskew R. T., Jr Contributions of human long-wave and middle-wave cones to motion detection. J Physiol. 1995 May 15;485(Pt 1):221–243. doi: 10.1113/jphysiol.1995.sp020726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsujimura S., Shioiri S., Hirai Y., Yaguchi H. Selective cone suppression by the L-M- and M-L-cone-opponent mechanisms in the luminance pathway. J Opt Soc Am A Opt Image Sci Vis. 1999 Jun;16(6):1217–1228. doi: 10.1364/josaa.16.001217. [DOI] [PubMed] [Google Scholar]
- Tsujimura S, Shioiri S, Hirai Y, Yaguchi H. Technique to investigate the temporal phase shift between L- and M-cone inputs to the luminance mechanism. J Opt Soc Am A Opt Image Sci Vis. 2000 May;17(5):846–857. doi: 10.1364/josaa.17.000846. [DOI] [PubMed] [Google Scholar]
- Ukai K. Spatial pattern as a stimulus to the pupillary system. J Opt Soc Am A. 1985 Jul;2(7):1094–1100. doi: 10.1364/josaa.2.001094. [DOI] [PubMed] [Google Scholar]
- Young R. S., Alpern M. Pupil responses to foveal exchange of monochromatic lights. J Opt Soc Am. 1980 Jun;70(6):697–706. doi: 10.1364/josa.70.000697. [DOI] [PubMed] [Google Scholar]
- Young R. S., Han B. C., Wu P. Y. Transient and sustained components of the pupillary responses evoked by luminance and color. Vision Res. 1993 Mar;33(4):437–446. doi: 10.1016/0042-6989(93)90251-q. [DOI] [PubMed] [Google Scholar]