Abstract
In the bloodstream of its mammalian host, the "slender" form of Trypanosoma brucei replicates extracellularly, producing a parasitaemia. At high density, the level of parasitaemia is limited at a sublethal level by differentiation to the non-replicative "stumpy" form and by the host immune response. Here, we derive continuous time equations to model the time-course, cell types and level of trypanosome parasitaemia, and compare the best fits with experimental data. The best fits that were obtained favour a model in which both density-dependent trypanosome differentiation and host immune response have a role in limiting the increase of parasites, much poorer fits being obtained when differentiation and immune response are considered independently of one another. Best fits also favour a model in which the slender-to-stumpy differentiation progresses in a manner that is essentially independent of the cell cycle. Finally, these models also make the prediction that the density-dependent trypanosome differentiation mechanism can give rise to oscillations in parasitaemia level. These oscillations are independent of the immune system and are not due to antigenic variation.
Full Text
The Full Text of this article is available as a PDF (165.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agur Z., Abiri D., Van der Ploeg L. H. Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9626–9630. doi: 10.1073/pnas.86.23.9626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antia R., Nowak M. A., Anderson R. M. Antigenic variation and the within-host dynamics of parasites. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):985–989. doi: 10.1073/pnas.93.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balber A. E. Trypanosoma brucei: fluxes of the morphological variants in intact and X-irradiated mice. Exp Parasitol. 1972 Apr;31(2):307–319. doi: 10.1016/0014-4894(72)90122-1. [DOI] [PubMed] [Google Scholar]
- Barry J. D., Crowe J. S., Vickerman K. Neutralization of individual variable antigen types in metacyclic populations of Trypanosoma brucei does not prevent their subsequent expression in mice. Parasitology. 1985 Feb;90(Pt 1):79–88. doi: 10.1017/s0031182000049039. [DOI] [PubMed] [Google Scholar]
- Barry J. D., Turner C. M. The dynamics of antigenic variation and growth of African trypanosomes. Parasitol Today. 1991 Aug;7(8):207–211. doi: 10.1016/0169-4758(91)90143-c. [DOI] [PubMed] [Google Scholar]
- Black S. J., Jack R. M., Morrison W. I. Host-parasite interactions which influence the virulence of Trypanosoma (Trypanozoon) brucei brucei organisms. Acta Trop. 1983 Mar;40(1):11–18. [PubMed] [Google Scholar]
- Black S. J., Sendashonga C. N., O'Brien C., Borowy N. K., Naessens M., Webster P., Murray M. Regulation of parasitaemia in mice infected with Trypanosoma brucei. Curr Top Microbiol Immunol. 1985;117:93–118. doi: 10.1007/978-3-642-70538-0_5. [DOI] [PubMed] [Google Scholar]
- Carotenuto R., Maturi G., Infante V., Capriglione T., Petrucci T. C., Campanella C. A novel protein cross-reacting with antibodies against spectrin is localised in the nucleoli of amphibian oocytes. J Cell Sci. 1997 Nov;110(Pt 21):2683–2690. doi: 10.1242/jcs.110.21.2683. [DOI] [PubMed] [Google Scholar]
- Frank S. A. A model for the sequential dominance of antigenic variants in African trypanosome infections. Proc Biol Sci. 1999 Jul 7;266(1426):1397–1401. doi: 10.1098/rspb.1999.0793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamm B., Schindler A., Mecke D., Duszenko M. Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture. Mol Biochem Parasitol. 1990 Apr;40(1):13–22. doi: 10.1016/0166-6851(90)90075-w. [DOI] [PubMed] [Google Scholar]
- Hesse F., Selzer P. M., Mühlstädt K., Duszenko M. A novel cultivation technique for long-term maintenance of bloodstream form trypanosomes in vitro. Mol Biochem Parasitol. 1995 Mar;70(1-2):157–166. doi: 10.1016/0166-6851(95)00027-x. [DOI] [PubMed] [Google Scholar]
- Matthews K. R. Developments in the differentiation of Trypanosoma brucei. Parasitol Today. 1999 Feb;15(2):76–80. doi: 10.1016/s0169-4758(98)01381-7. [DOI] [PubMed] [Google Scholar]
- Matthews K. R., Gull K. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. J Cell Biol. 1994 Jun;125(5):1147–1156. doi: 10.1083/jcb.125.5.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLintock L. M., Turner C. M., Vickerman K. A comparison of multiplication rates in primary and challenge infections of Trypanosoma brucei bloodstream forms. Parasitology. 1990 Aug;101(Pt 1):49–55. doi: 10.1017/s0031182000079749. [DOI] [PubMed] [Google Scholar]
- McLintock L. M., Turner C. M., Vickerman K. Comparison of the effects of immune killing mechanisms on Trypanosoma brucei parasites of slender and stumpy morphology. Parasite Immunol. 1993 Aug;15(8):475–480. doi: 10.1111/j.1365-3024.1993.tb00633.x. [DOI] [PubMed] [Google Scholar]
- Reuner B., Vassella E., Yutzy B., Boshart M. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture. Mol Biochem Parasitol. 1997 Dec 1;90(1):269–280. doi: 10.1016/s0166-6851(97)00160-6. [DOI] [PubMed] [Google Scholar]
- Seed J. R., Black S. J. A proposed density-dependent model of long slender to short stumpy transformation in the African trypanosomes. J Parasitol. 1997 Aug;83(4):656–662. [PubMed] [Google Scholar]
- Seed J. R., Black S. J. A revised arithmetic model of long slender to short stumpy transformation in the African trypanosomes. J Parasitol. 1999 Oct;85(5):850–854. [PubMed] [Google Scholar]
- Seed J. R., Sechelski J. B. Mechanism of long slender (LS) to short stumpy (SS) transformation in the African trypanosomes. J Protozool. 1989 Nov-Dec;36(6):572–577. doi: 10.1111/j.1550-7408.1989.tb01099.x. [DOI] [PubMed] [Google Scholar]
- Seed J. R., Sechelski J. Growth of pleomorphic Trypanosoma brucei rhodesiense in irradiated inbred mice. J Parasitol. 1988 Oct;74(5):781–789. [PubMed] [Google Scholar]
- Seed J. R., Sechelski J. The inheritance of factors controlling resistance in mice infected with Trypanosoma brucei rhodesiense. J Parasitol. 1995 Aug;81(4):653–657. [PubMed] [Google Scholar]
- Sendashonga C. N., Black S. J. Humoral responses against Trypanosoma brucei variable surface antigen are induced by degenerating parasites. Parasite Immunol. 1982 Jul;4(4):245–257. doi: 10.1111/j.1365-3024.1982.tb00436.x. [DOI] [PubMed] [Google Scholar]
- Turner C. M., Aslam N., Dye C. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology. 1995 Sep;111(Pt 3):289–300. doi: 10.1017/s0031182000081841. [DOI] [PubMed] [Google Scholar]
- Tyler K. M., Matthews K. R., Gull K. The bloodstream differentiation-division of Trypanosoma brucei studied using mitochondrial markers. Proc Biol Sci. 1997 Oct 22;264(1387):1481–1490. doi: 10.1098/rspb.1997.0205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassella E., Boshart M. High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture. Mol Biochem Parasitol. 1996 Nov 12;82(1):91–105. doi: 10.1016/0166-6851(96)02727-2. [DOI] [PubMed] [Google Scholar]
- Vickerman K. Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature. 1965 Nov 20;208(5012):762–766. doi: 10.1038/208762a0. [DOI] [PubMed] [Google Scholar]