Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Nov 7;268(1482):2245–2251. doi: 10.1098/rspb.2001.1797

Wolbachia-induced parthenogenesis in a genus of phytophagous mites.

A R Weeks 1, J A Breeuwer 1
PMCID: PMC1088872  PMID: 11674872

Abstract

The vertically transmitted endosymbiotic bacterium Wolbachia modifies host reproduction in several ways in order to enhance its own spread. One such modification results in the induction of parthenogenesis, where males, which are unable to transmit Wolbachia, are not produced. Interestingly, parthenogenesis-inducing Wolbachia have only been found within haplodiploid insects and it is not known whether this exclusivity is the result of functional constraints of Wolbachia. Here we find a unique pattern of Wolbachia infection that is associated with parthenogenesis in six species within the phytophagous mite genus Bryobia. Through antibiotic treatment we show that, in two species, Bryobia praetiosa and an unidentified species, the Wolbachia infection is strictly associated with parthenogenesis. Microsatellite loci show the mechanism of parthenogenesis to be functionally apomictic and not gamete duplication, with progeny identical to their infected mother. Crossing experiments within B. praetiosa showed no evidence of sexual reproduction. These results are discussed with reference to the distribution of parthenogenesis-inducing Wolbachia and the diversification of the Bryobia genus.

Full Text

The Full Text of this article is available as a PDF (128.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakaki N., Miyoshi T., Noda H. Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc Biol Sci. 2001 May 22;268(1471):1011–1016. doi: 10.1098/rspb.2001.1628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bordenstein S. R., O'Hara F. P., Werren J. H. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature. 2001 Feb 8;409(6821):707–710. doi: 10.1038/35055543. [DOI] [PubMed] [Google Scholar]
  3. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  4. Holden P. R., Brookfield J. F., Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet. 1993 Aug;240(2):213–220. doi: 10.1007/BF00277059. [DOI] [PubMed] [Google Scholar]
  5. Jeyaprakash A., Hoy M. A. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol. 2000 Aug;9(4):393–405. doi: 10.1046/j.1365-2583.2000.00203.x. [DOI] [PubMed] [Google Scholar]
  6. Mark Welch D., Meselson M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science. 2000 May 19;288(5469):1211–1215. doi: 10.1126/science.288.5469.1211. [DOI] [PubMed] [Google Scholar]
  7. Navajas M., Lagnel J., Gutierrez J., Boursot P. Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity (Edinb) 1998 Jun;80(Pt 6):742–752. doi: 10.1046/j.1365-2540.1998.00349.x. [DOI] [PubMed] [Google Scholar]
  8. doi: 10.1098/rspb.1998.0401. [DOI] [PMC free article] [Google Scholar]
  9. Stouthamer R., Breeuwer J. A., Hurst G. D. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol. 1999;53:71–102. doi: 10.1146/annurev.micro.53.1.71. [DOI] [PubMed] [Google Scholar]
  10. Weeks A. R., Marec F., Breeuwer J. A. A mite species that consists entirely of haploid females. Science. 2001 Jun 29;292(5526):2479–2482. doi: 10.1126/science.1060411. [DOI] [PubMed] [Google Scholar]
  11. Weeks A. R., van Opijnen T., Breeuwer J. A. AFLP fingerprinting for assessing intraspecific variation and genome mapping in mites. Exp Appl Acarol. 2000;24(10-11):775–793. doi: 10.1023/a:1006486400800. [DOI] [PubMed] [Google Scholar]
  12. Werren J. H., Windsor D. M. Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Biol Sci. 2000 Jul 7;267(1450):1277–1285. doi: 10.1098/rspb.2000.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zchori-Fein E., Gottlieb Y., Coll M. Wolbachia density and host fitness components in Muscidifurax uniraptor (Hymenoptera: pteromalidae). J Invertebr Pathol. 2000 May;75(4):267–272. doi: 10.1006/jipa.2000.4927. [DOI] [PubMed] [Google Scholar]
  14. Zhou W., Rousset F., O'Neil S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998 Mar 22;265(1395):509–515. doi: 10.1098/rspb.1998.0324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES