Abstract
Epithelial cells generate functional tissues in developing embryos through collective movements and shape changes. In some morphogenetic events, a tissue dramatically reorganizes its internal structure — often generating high degrees of structural disorder — to accomplish changes in tissue shape. However, the origins of structural disorder in epithelia and what roles it might play in morphogenesis are poorly understood. We study this question in the Drosophila germband epithelium, which undergoes dramatic changes in internal structure as cell rearrangements drive elongation of the embryo body axis. Using two order parameters that quantify volumetric and shear disorder, we show that structural disorder increases during body axis elongation and is strongly linked with specific developmental processes. Both disorder metrics begin to increase around the onset of axis elongation, but then plateau at values that are maintained throughout the process. Notably, the disorder plateau values for volumetric disorder are similar to those for random cell packings, suggesting this may reflect a limit on tissue behavior. In mutant embryos with disrupted external stresses from the ventral furrow, both disorder metrics reach wild-type maximum disorder values with a delay, correlating with delays in cell rearrangements. In contrast, in mutants with disrupted internal stresses and cell rearrangements, volumetric disorder is reduced compared to wild type, whereas shear disorder depends on specific external stress patterns. Together, these findings demonstrate that internal and external stresses both contribute to epithelial tissue disorder and suggest that the maximum values of disorder in a developing tissue reflect physical or biological limits on morphogenesis.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.