Abstract
Examples of Müllerian mimicry, in which resemblance between unpalatable species confers mutual benefit, are rare in vertebrates. Strong comparative evidence for mimicry is found when the colour and pattern of a single species closely resemble several different model species simultaneously in different geographical regions. Todemonstrate this, it is necessary to provide compelling evidence that the putative mimics do, in fact, form a monophyletic group. We present molecular phylogenetic evidence that the poison frog Dendrobates imitator mimics three different poison frogs in different geographical regions in Peru. DNA sequences from four different mitochondrial gene regions in putative members of a single species are analysed using parsimony, maximum-likelihood and neighbour-joining methods. The resulting hypotheses of phylogenetic relationships demonstrate that the different populations of D.imitator form a monophyletic group. To our knowledge, these results provide the first evidence for a Müllerian mimetic radiation in amphibians in which a single species mimics different sympatric species in different geographical regions.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Broughton R. E., Stanley S. E., Durrett R. T. Quantification of homoplasy for nucleotide transitions and transversions and a reexamination of assumptions in weighted phylogenetic analysis. Syst Biol. 2000 Dec;49(4):617–627. doi: 10.1080/106351500750049734. [DOI] [PubMed] [Google Scholar]
- Brower A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6491–6495. doi: 10.1073/pnas.91.14.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daly J. W., Brown G. B., Mensah-Dwumah M., Myers C. W. Classification of skin alkaloids from neotropical poison-dart frogs (Dendrobatidae). Toxicon. 1978;16(2):163–188. doi: 10.1016/0041-0101(78)90036-3. [DOI] [PubMed] [Google Scholar]
- Daly J. W., Myers C. W. Toxicity of Panamanian poison frogs (Dendrobates): some biological and chemical aspects. Science. 1967 May 19;156(3777):970–973. doi: 10.1126/science.156.3777.970. [DOI] [PubMed] [Google Scholar]
- Daly J. W., Myers C. W., Whittaker N. Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon. 1987;25(10):1023–1095. doi: 10.1016/0041-0101(87)90265-0. [DOI] [PubMed] [Google Scholar]
- Goldman N., Anderson J. P., Rodrigo A. G. Likelihood-based tests of topologies in phylogenetics. Syst Biol. 2000 Dec;49(4):652–670. doi: 10.1080/106351500750049752. [DOI] [PubMed] [Google Scholar]
- Greene H. W., McDiarmid R. W. Coral snake mimicry: does it occur? Science. 1981 Sep 11;213(4513):1207–1212. doi: 10.1126/science.213.4513.1207. [DOI] [PubMed] [Google Scholar]
- Kapan D. D. Three-butterfly system provides a field test of müllerian mimicry. Nature. 2001 Jan 18;409(6818):338–340. doi: 10.1038/35053066. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
- Myers C. W., Daly J. W. Dart-poison frogs. Sci Am. 1983 Feb;248(2):120–133. doi: 10.1038/scientificamerican0283-120. [DOI] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Rodríguez F., Oliver J. L., Marín A., Medina J. R. The general stochastic model of nucleotide substitution. J Theor Biol. 1990 Feb 22;142(4):485–501. doi: 10.1016/s0022-5193(05)80104-3. [DOI] [PubMed] [Google Scholar]
- Summers K., Bermingham E., Weigt L., McCafferty S., Dahlstrom L. Phenotypic and genetic divergence in three species of dart-poison frogs with contrasting parental behavior. J Hered. 1997 Jan-Feb;88(1):8–13. doi: 10.1093/oxfordjournals.jhered.a023065. [DOI] [PubMed] [Google Scholar]
- Summers K., Clough M. E. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proc Natl Acad Sci U S A. 2001 May 15;98(11):6227–6232. doi: 10.1073/pnas.101134898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers K., Symula R., Clough M., Cronin T. Visual mate choice in poison frogs. Proc Biol Sci. 1999 Nov 7;266(1434):2141–2145. doi: 10.1098/rspb.1999.0900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams P. L., Fitch W. M. Phylogeny determination using dynamically weighted parsimony method. Methods Enzymol. 1990;183:615–626. doi: 10.1016/0076-6879(90)83040-g. [DOI] [PubMed] [Google Scholar]