Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Dec 7;268(1484):2453–2459. doi: 10.1098/rspb.2001.1828

Social, state-dependent and environmental modulation of faecal corticosteroid levels in free-ranging female spotted hyenas.

W Goymann 1, M L East 1, B Wachter 1, O P Höner 1, E Möstl 1, T J Van't Hof 1, H Hofer 1
PMCID: PMC1088899  PMID: 11747563

Abstract

Little is known about to what extent the sensitivity of the hypothalamic-pituitary-adrenal (HPA) axis may be state dependent and vary in the same species between environments. Here we tested whether the faecal corticosteroid concentrations of matrilineal adult female spotted hyenas are influenced by social and reproductive status in adjacent ecosystems and whether they vary between periods with and without social stress. Females in the Serengeti National Park frequently become socially subordinate intruders in other hyena territories by undertaking long-distance foraging trips to migratory herds, whereas in the Ngorongoro Crater they usually forage inside their own small territories on resident prey. The faecal corticosteroid concentrations in Serengeti females were significantly higher than in Ngorongoro females. Energy expenditure by lactation is exceptionally high in spotted hyenas and this may be reflected in their corticosteroid levels. The faecal corticosteroid levels in both populations were higher in lactating than in non-lactating females. During periods of social stability, faecal corticosteroid concentrations increased in non-lactating females but not in lactating females as social status declined. Lactating Serengeti females had significantly higher faecal corticosteroid concentrations during periods with acute severe social stress than during periods without, indicating that the HPA axis is sensitive to social stimuli even in lactating females. So far few studies have used non-invasive monitoring methods for assessing social stress in freeranging animals. This study demonstrates for the first time, to the authors' knowledge, that corticosteroid concentrations may differ between periods with and without social stress for a free-ranging female mammal and that the modulating effect of social status may depend on reproductive status.

Full Text

The Full Text of this article is available as a PDF (225.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts S. C., Sapolsky R. M., Altmann J. Behavioral, endocrine, and immunological correlates of immigration by an aggressive male into a natural primate group. Horm Behav. 1992 Jun;26(2):167–178. doi: 10.1016/0018-506x(92)90040-3. [DOI] [PubMed] [Google Scholar]
  2. Besedovsky H. O., del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev. 1996 Feb;17(1):64–102. doi: 10.1210/edrv-17-1-64. [DOI] [PubMed] [Google Scholar]
  3. Boswell T., Woods S. C., Kenagy G. J. Seasonal changes in body mass, insulin, and glucocorticoids of free-living golden-mantled ground squirrels. Gen Comp Endocrinol. 1994 Dec;96(3):339–346. doi: 10.1006/gcen.1994.1189. [DOI] [PubMed] [Google Scholar]
  4. Cavigelli SA. Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim Behav. 1999 Apr;57(4):935–944. doi: 10.1006/anbe.1998.1054. [DOI] [PubMed] [Google Scholar]
  5. Golla W, Hofer H, East ML. Within-litter sibling aggression in spotted hyaenas: effect of maternal nursing, sex and age. Anim Behav. 1999 Oct;58(4):715–726. doi: 10.1006/anbe.1999.1189. [DOI] [PubMed] [Google Scholar]
  6. Goymann W., Möstl E., Van't Hof T., East M. L., Hofer H. Noninvasive fecal monitoring of glucocorticoids in spotted hyenas, Crocuta crocuta. Gen Comp Endocrinol. 1999 Jun;114(3):340–348. doi: 10.1006/gcen.1999.7268. [DOI] [PubMed] [Google Scholar]
  7. Harper J. M., Austad S. N. Fecal glucocorticoids: a noninvasive method of measuring adrenal activity in wild and captive rodents. Physiol Biochem Zool. 2000 Jan-Feb;73(1):12–22. doi: 10.1086/316721. [DOI] [PubMed] [Google Scholar]
  8. Kenagy G. J., Place N. J. Seasonal changes in plasma glucocorticosteroids of free-living female yellow-pine chipmunks: effects of reproduction and capture and handling. Gen Comp Endocrinol. 2000 Feb;117(2):189–199. doi: 10.1006/gcen.1999.7397. [DOI] [PubMed] [Google Scholar]
  9. Kenagy G. J., Place N. J., Veloso C. Relation of glucocorticosteroids and testosterone to the annual cycle of free-living degus in semiarid central Chile. Gen Comp Endocrinol. 1999 Aug;115(2):236–243. doi: 10.1006/gcen.1999.7307. [DOI] [PubMed] [Google Scholar]
  10. McEwen B. S., Biron C. A., Brunson K. W., Bulloch K., Chambers W. H., Dhabhar F. S., Goldfarb R. H., Kitson R. P., Miller A. H., Spencer R. L. The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Brain Res Rev. 1997 Feb;23(1-2):79–133. doi: 10.1016/s0165-0173(96)00012-4. [DOI] [PubMed] [Google Scholar]
  11. McNamara J. M., Houston A. I. State-dependent life histories. Nature. 1996 Mar 21;380(6571):215–221. doi: 10.1038/380215a0. [DOI] [PubMed] [Google Scholar]
  12. Munck A., Guyre P. M., Holbrook N. J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 1984 Winter;5(1):25–44. doi: 10.1210/edrv-5-1-25. [DOI] [PubMed] [Google Scholar]
  13. Råberg L., Grahn M., Hasselquist D., Svensson E. On the adaptive significance of stress-induced immunosuppression. Proc Biol Sci. 1998 Sep 7;265(1406):1637–1641. doi: 10.1098/rspb.1998.0482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sapolsky R. M. Cortisol concentrations and the social significance of rank instability among wild baboons. Psychoneuroendocrinology. 1992 Nov;17(6):701–709. doi: 10.1016/0306-4530(92)90029-7. [DOI] [PubMed] [Google Scholar]
  15. Sapolsky R. M., Romero L. M., Munck A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000 Feb;21(1):55–89. doi: 10.1210/edrv.21.1.0389. [DOI] [PubMed] [Google Scholar]
  16. Sapolsky R. M. The endocrine stress-response and social status in the wild baboon. Horm Behav. 1982 Sep;16(3):279–292. doi: 10.1016/0018-506x(82)90027-7. [DOI] [PubMed] [Google Scholar]
  17. Strier K. B., Ziegler T. E., Wittwer D. J. Seasonal and social correlates of fecal testosterone and cortisol levels in wild male muriquis (Brachyteles arachnoides). Horm Behav. 1999 Apr;35(2):125–134. doi: 10.1006/hbeh.1998.1505. [DOI] [PubMed] [Google Scholar]
  18. Wasser S. K., Barash D. P. Reproductive suppression among female mammals: implications for biomedicine and sexual selection theory. Q Rev Biol. 1983 Dec;58(4):513–538. doi: 10.1086/413545. [DOI] [PubMed] [Google Scholar]
  19. Whitten P. L., Brockman D. K., Stavisky R. C. Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Am J Phys Anthropol. 1998;Suppl 27:1–23. doi: 10.1002/(sici)1096-8644(1998)107:27+<1::aid-ajpa2>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  20. de Kloet E. R., Oitzl M. S., Joëls M. Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci. 1999 Oct;22(10):422–426. doi: 10.1016/s0166-2236(99)01438-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings. Biological sciences / The Royal Society are provided here courtesy of The Royal Society

RESOURCES