Abstract
Monarch butterflies (Danaus plexippus) of eastern North America are well known for their long-range migration to overwintering roosts in south-central Mexico. An essential feature of this migration involves the exceptional longevity of the migrant adults; individuals persist from August/September to March while their summer counterparts are likely to live less than two months as adults. Migrant adults persist during a state of reproductive diapause in which both male and female reproductive development is arrested as a consequence of suppressed synthesis of juvenile hormone. Here, we describe survival in monarch butterflies as a function of the migrant syndrome. We show that migrant adults are longer lived than summer adults when each are maintained under standard laboratory conditions, that the longevity of migrant adults is curtailed by treatment with juvenile hormone and that the longevity of summer adults is increased by 100% when juvenile hormone synthesis is prevented by surgical removal of its source, the corpora allatum. Thus, monarch butterfly persistence through a long winter season is ensured in part by reduced ageing that is under endocrine regulation, as well as by the unique environmental properties of their winter roost sites. Phenotypic plasticity for ageing is an integral component of the monarch butterflies' migration-diapause syndrome.
Full Text
The Full Text of this article is available as a PDF (151.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker J. F., Herman W. S. Effect of photoperiod and temperature on reproduction of the monarch butterfly, Danaus plexippus. J Insect Physiol. 1976;22(12):1565–1568. doi: 10.1016/0022-1910(76)90046-9. [DOI] [PubMed] [Google Scholar]
- Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
- Herman W. S. Endocrine regulation of posteclosion enlargement of the male and female reproductive glands in Monarch butterflies. Gen Comp Endocrinol. 1975 Aug;26(4):534–540. doi: 10.1016/0016-6480(75)90176-8. [DOI] [PubMed] [Google Scholar]
- Kimura M. T., Yoshida K. M., Goto S. G. Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J Insect Physiol. 1998 Oct;44(10):1009–1015. doi: 10.1016/s0022-1910(97)00143-1. [DOI] [PubMed] [Google Scholar]
- Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lithgow G. J., White T. M., Hinerfeld D. A., Johnson T. E. Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol. 1994 Nov;49(6):B270–B276. doi: 10.1093/geronj/49.6.b270. [DOI] [PubMed] [Google Scholar]
- Lumme J., Oikarinen A., Lakovaara S., Alatalo R. The environmental regulation of adult diapause in Drosophila littoralis. J Insect Physiol. 1974 Oct;20(10):2023–2033. doi: 10.1016/0022-1910(74)90109-7. [DOI] [PubMed] [Google Scholar]
- Murakami S., Johnson T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics. 1996 Jul;143(3):1207–1218. doi: 10.1093/genetics/143.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partridge L., Barton N. H. Optimality, mutation and the evolution of ageing. Nature. 1993 Mar 25;362(6418):305–311. doi: 10.1038/362305a0. [DOI] [PubMed] [Google Scholar]
- Saunders D. S., Richard D. S., Applebaum S. W., Ma M., Gilbert L. I. Photoperiodic diapause in Drosophila melanogaster involves a block to the juvenile hormone regulation of ovarian maturation. Gen Comp Endocrinol. 1990 Aug;79(2):174–184. doi: 10.1016/0016-6480(90)90102-r. [DOI] [PubMed] [Google Scholar]
- Sgrò C. M., Partridge L. A delayed wave of death from reproduction in Drosophila. Science. 1999 Dec 24;286(5449):2521–2524. doi: 10.1126/science.286.5449.2521. [DOI] [PubMed] [Google Scholar]
- Silbermann R., Tatar M. Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution. 2000 Dec;54(6):2038–2045. doi: 10.1111/j.0014-3820.2000.tb01247.x. [DOI] [PubMed] [Google Scholar]
- Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatar M., Kopelman A., Epstein D., Tu M. P., Yin C. M., Garofalo R. S. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001 Apr 6;292(5514):107–110. doi: 10.1126/science.1057987. [DOI] [PubMed] [Google Scholar]
- Tatar M., Yin C. Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp Gerontol. 2001 Apr;36(4-6):723–738. doi: 10.1016/s0531-5565(00)00238-2. [DOI] [PubMed] [Google Scholar]
- Yocum G. D., Joplin K. H., Denlinger D. L. Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga, crassipalpis. Insect Biochem Mol Biol. 1998 Sep;28(9):677–682. doi: 10.1016/s0965-1748(98)00046-0. [DOI] [PubMed] [Google Scholar]