Abstract
The origins of South America's domestic alpaca and llama remain controversial due to hybridization, near extirpation during the Spanish conquest and difficulties in archaeological interpretation. Traditionally, the ancestry of both forms is attributed to the guanaco, while the vicuña is assumed never to have been domesticated. Recent research has, however, linked the alpaca to the vicuña, dating domestication to 6000-7000 years before present in the Peruvian Andes. Here, we examine in detail the genetic relationships between the South American camelids in order to determine the origins of the domestic forms, using mitochondrial (mt) and microsatellite DNA. MtDNA analysis places 80% of llama and alpaca sequences in the guanaco lineage, with those possessing vicuña mtDNA being nearly all alpaca or alpaca-vicuña hybrids. We also examined four microsatellites in wild known-provenance vicuña and guanaco, including two loci with non-overlapping allele size ranges in the wild species. In contrast to the mtDNA, these markers show high genetic similarity between alpaca and vicuña, and between llama and guanaco, although bidirectional hybridization is also revealed. Finally, combined marker analysis on a subset of samples confirms the microsatellite interpretation and suggests that the alpaca is descended from the vicuña, and should be reclassified as Vicugna pacos. This result has major implications for the future management of wild and domestic camelids in South America.
Full Text
The Full Text of this article is available as a PDF (300.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bandelt H. J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999 Jan;16(1):37–48. doi: 10.1093/oxfordjournals.molbev.a026036. [DOI] [PubMed] [Google Scholar]
- Bertorelle G., Excoffier L. Inferring admixture proportions from molecular data. Mol Biol Evol. 1998 Oct;15(10):1298–1311. doi: 10.1093/oxfordjournals.molbev.a025858. [DOI] [PubMed] [Google Scholar]
- Bradley D. G., MacHugh D. E., Cunningham P., Loftus R. T. Mitochondrial diversity and the origins of African and European cattle. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5131–5135. doi: 10.1073/pnas.93.10.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakraborty R., Kamboh M. I., Nwankwo M., Ferrell R. E. Caucasian genes in American blacks: new data. Am J Hum Genet. 1992 Jan;50(1):145–155. [PMC free article] [PubMed] [Google Scholar]
- Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463–471. doi: 10.1093/genetics/139.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiendleder S., Mainz K., Plante Y., Lewalski H. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions from urial and argali sheep. J Hered. 1998 Mar-Apr;89(2):113–120. doi: 10.1093/jhered/89.2.113. [DOI] [PubMed] [Google Scholar]
- Lang K. D., Wang Y., Plante Y. Fifteen polymorphic dinucleotide microsatellites in llamas and alpacas. Anim Genet. 1996 Aug;27(4):293–293. doi: 10.1111/j.1365-2052.1996.tb00502.x. [DOI] [PubMed] [Google Scholar]
- Luikart G., Gielly L., Excoffier L., Vigne J. D., Bouvet J., Taberlet P. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5927–5932. doi: 10.1073/pnas.091591198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacHugh D. E., Shriver M. D., Loftus R. T., Cunningham P., Bradley D. G. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics. 1997 Jul;146(3):1071–1086. doi: 10.1093/genetics/146.3.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penedo M. C., Caetano A. R., Cordova K. I. Microsatellite markers for South American camelids. Anim Genet. 1998 Oct;29(5):411–412. [PubMed] [Google Scholar]
- Reynolds J., Weir B. S., Cockerham C. C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics. 1983 Nov;105(3):767–779. doi: 10.1093/genetics/105.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarno R. J., David V. A., Franklin W. L., O'Brien S. J., Johnson W. E. Development of microsatellite markers in the guanaco, Lama guanicoe: utility for South American camelids. Mol Ecol. 2000 Nov;9(11):1922–1924. doi: 10.1046/j.1365-294x.2000.01077-3.x. [DOI] [PubMed] [Google Scholar]
- Stanley H. F., Kadwell M., Wheeler J. C. Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proc Biol Sci. 1994 Apr 22;256(1345):1–6. doi: 10.1098/rspb.1994.0041. [DOI] [PubMed] [Google Scholar]
- Vilà C., Leonard J. A., Gotherstrom A., Marklund S., Sandberg K., Liden K., Wayne R. K., Ellegren H. Widespread origins of domestic horse lineages. Science. 2001 Jan 19;291(5503):474–477. doi: 10.1126/science.291.5503.474. [DOI] [PubMed] [Google Scholar]