Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2024 Mar 4;14:5313. doi: 10.1038/s41598-024-56154-7

Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies

Amir Ghaffari Jolfayi 1, Erfan Kohansal 1, Serwa Ghasemi 1, Niloofar Naderi 2, Mahshid Hesami 1, MohammadHossein MozafaryBazargany 1, Maryam Hosseini Moghadam 2, Amir Farjam Fazelifar 1, Majid Maleki 2, Samira Kalayinia 2,
PMCID: PMC10912352  PMID: 38438525

Abstract

The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype–phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.

Keywords: TTN, Titin, Cardiomyopathy, Variant, Genetic

Subject terms: Genetics, Cardiology, Medical research, Molecular medicine

Introduction

Cardiomyopathies refer to a diverse range of complex diseases affecting heart muscle, which can lead to abnormalities in the structure and function of the myocardium. These abnormalities occur in the absence of other conditions like coronary artery disease, hypertension, or valvular heart disease1,2. The American Heart Association (AHA) has categorized cardiomyopathies into genetic, acquired or mixed forms like virally induced post-myocarditis cardiomyopathy. The European Society of Cardiology Organization (ESCO) proposed an alternative classification system dividing cardiomyopathies into two subgroups—familial/genetic cardiomyopathies and non-familial/non-genetic cardiomyopathies3,4. Based on morpho-functional phenotypes5, cardiomyopathies are classified into hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), and arrhythmogenic right ventricular (ARVC) which each one has their specific features6. The hallmark features of cardiomyopathies are genetic and clinical heterogeneity, variable expressivity, and incomplete penetrance. Numerous genes and mutations have been identified that can cause the various types of cardiomyopathies. The majority of known mutations are linked to DCM and HCM, while fewer are associated with RCM and ARVC. Cardiomyopathies demonstrate considerable genetic heterogeneity—mutations in various different genes can lead to cardiomyopathy. There is also phenotypic heterogeneity, where mutations in the same gene can result in diverse types and degrees of severity of cardiomyopathy7. Cardiomyopathy following myocarditis is probably the result of an interaction interplay between the viral infection and a person's inherent susceptibility. Certain subgroups induced by viral infection may be influenced, at least partially, by genetic factors, suggesting that the elimination of the virus and the immune response could be genetically predetermined8.

Among the genes involved in cardiomyopathies, the TTN gene plays a central role which is attributable to its key structural properties and mechanical function within the striated muscle sarcomeres9. TTN is a major human muscle disease-related gene that encodes the largest human protein, Titin, which is a fundamental structural and functional unit of striated muscles10,11. Due to the size and complexity of this gene, its sequencing was difficult to study the mutations and variants. The initial family studies were performed with primer pairs searching on the exons contained in a 280 kb genomics 2q31 region. This indeed led to the identification of titin mutations causing DCM by Gramlich et al.12 Subsequently, the introduction of NGS has allowed for the exploration of larger cohorts and various clinical entities.

Following the development of next-generation sequencing (NGS), as a potent tool for sequencing large and complex genes, TTN gene sequencing which was previously impossible to conduct a comprehensive analysis, has been performed. This improvement in study tools has led to identifying more than 60,000 TTN missense variants reported in the 1000 Genomes Project13,14. Determining which TTN variants actually cause disease versus which are benign is challenging. The goal of this review is to discuss the current state of understanding regarding the challenges in establishing clear associations between particular TTN mutations and specific cardiomyopathy subtypes in a clinical context.

Method and materials

Systematic search, selection criteria and data collection

The study systematically collected TTN variants associated with cardiomyopathy from the Human Gene Mutation Database (HGMD) and public archive of interpretations of clinically relevant variants (ClinVar). In prioritizing data reliability, only variants with documented reference articles were included, while those lacking reference articles were excluded. The search strategy, extending until February 2023, employed key parameters such as Position on Chromosome, Human Genome Variation Society (HGVS) DNA, HGVS Protein, exon or intron number, and dbSNP identifiers.

Variant annotation and pathogenicity assessment

The annotation of TTN variants involved a comprehensive pathogenicity assessment using multiple tools. This included the application of the American College of Medical Genetics and Genomics (ACMG) guidelines, consultation of ClinVar for variant interpretation, insights from Mutation Taster regarding potential pathogenicity, the use of the Combined Annotation Dependent Depletion (CADD) scoring system for deleteriousness prediction, and evaluation through Genomic Evolutionary Rate Profiling (GERP) to assess evolutionary conservation which are explain more in the following.

We determineded the ACMG score for each variant using franklin, an online database (https://franklin.genoox.com/clinical-db). After adding the name in this website, varints ACMG score anongside with other features are provided.

ACMG score

The American College of Medical Genetics and Genomics (ACMG) previously established guidelines for interpreting sequence variants. With the rapid advancements in sequencing technology over the past decade, this report suggests the adoption of standardized terms such as “pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign” to characterize variants found in genes associated with Mendelian disorders. Additionally, the recommendation outlines a systematic approach for classifying variants into these categories, relying on various types of evidence, including population data (Population, disease-specific, and sequence databases), computational data (using silico tools for missense prediction, splice site prediction and nucleotide conservation prediction), functional data, and segregation data15,16.

In this classification a variant is considered pathogenic if it meets the requirement of having a very strong criterion (PVS1) along with at least one strong criterion (PS1-PS4), or alternatively, two or more moderate criteria (PM1-PM6), or a combination of one moderate criterion and one supporting criterion (PP1-PP5). Another condition is that a variant can be classified as pathogenic if it satisfies the condition of having at least two strong criteria (PS1-PS4). Additionally, a variant can be considered pathogenic if it meets the criteria of having one strong criterion (PS1-PS4) and either three moderate criteria (PM1-PM6), two moderate criteria and at least two supporting criteria (PP1-PP5), or one moderate criterion and at least four supporting criteria (PP1-PP5)16.

A variant is considered likely pathogenic if it satisfies the condition of having one very strong criterion (PVS1) in combination with one moderate criterion (PM1-PM6). Alternatively, a likely pathogenic variant may exhibit one strong criterion (PS1-PS4) along with one to two moderate criteria (PM1-PM6). Another criterion designates a variant as likely pathogenic if it possesses one strong criterion (PS1-PS4) and at least two supporting criteria (PP1-PP5). Furthermore, likely pathogenic variants may be identified if they meet the requirement of having three or more moderate criteria (PM1-PM6). Additionally, a variant is classified as likely pathogenic if it has two moderate criteria (PM1-PM6) and at least two supporting criteria (PP1-PP5), or if it exhibits one moderate criterion (PM1-PM6) along with at least four supporting criteria (PP1-PP5)16. More information is provided in “Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology”16.

The ACMG score for each variant is determined using Franklin, an online database available at https://franklin.genoox.com/clinical-db. Upon entering the variant's name on this website, the ACMG score, along with other relevant features, is provided.

CADD score

CADD, or Combined Annotation Dependent Depletion, serves as a tool for evaluating the deleteriousness of various genetic variants, including single nucleotide changes, multi-nucleotide substitutions, and insertion/deletion variants within the human genome. In contrast to many other annotation tools that often rely on a singular type of information or have limited applicability, CADD offers a versatile metric that objectively combines diverse annotations. The framework integrates multiple annotations into a unified metric by comparing variants that have undergone natural selection with simulated mutations. It incorporates information from more than 60 genomic features to assess single nucleotide variants and short insertions and deletions across the reference assembly. The C-scores generated by CADD demonstrate robust correlations with allelic diversity, pathogenicity of coding and non-coding variants, and experimentally measured regulatory effects. Notably, C-scores of variants associated with complex traits in genome-wide association studies (GWAS) are significantly higher than matched controls, showing correlation with study sample size, indicative of improved accuracy in larger GWAS. CADD employs a machine learning model that distinguishes between simulated de novo variants, potentially encompassing neutral or harmful alleles, and variants persisting in human populations since the split from chimpanzees.

CADD's capability to quantitatively prioritize functional, deleterious, and disease-causing variants spans a wide range of functional categories, effect sizes, and genetic architectures. This tool enhances the scoring of coding variants through features derived from the ESM-1v protein language model and improves the scoring of regulatory variants using features from a convolutional neural network trained on open chromatin regions. For more information CADD has been detailed in four publications1720.

MutationTaster

MutationTaster is a web-based application designed to assess the disease-causing potential of DNA sequence variants. It employs in silico tests to estimate the impact of a variant on the gene product or protein, conducting assessments at both the protein and DNA levels. Unlike tools limited to single amino acid substitutions, MutationTaster can handle a variety of variants, including synonymous and intronic ones21. The software, written in Perl programming language and utilizes integrated databases (Ensembl, UniProt, ClinVar, ExAC, 1000 Genomes Project, phyloP and phastCons) to filter out known harmless polymorphisms. Various tests, such as amino acid substitution, conservation, domain functionality, splicing effects, and regulatory element abrogation, are performed on the remaining single-nucleotide polymorphisms (SNPs). The results are evaluated by a Naive Bayes classifier, and the output indicates whether the alteration is known or predicted to be harmless or disease-causing, providing detailed information about the mutation. While the tool demonstrates a raw accuracy of approximately 90%, considering knowledge about common polymorphisms and known disease mutations significantly improves the rate of correct classifications. However, it is important to note that predictions of clinical effects suffer from a lack of specificity, a common constraint across various prediction methods22,23.

GERP

Comparative genomic approaches have historically identified mutation sites under purifying selection by examining conserved sequences across distantly related species. Additionally, the performance of such approaches may be limited for short-lived functional elements that don't exhibit sequence conservation across numerous species. Genomic Evolutionary Rate Profiling (GERP) score is associated with the strength of selection (Nes). Results indicate that the GERP score is linked to the intensity of purifying selection. Nevertheless, variations in selection coefficients or turnover of functional elements over time can significantly impact the GERP distribution, leading to unexpected relationships between GERP and Nes24. The GERP score is characterized as the decrease in the count of substitutions in the multi-species sequence alignment in comparison to the neutral expectation. GERP++ scores span from − 12.3 to 6.17, with elevated scores signifying a greater level of evolutionary constraint.

Data integration

Data integration encompassed the consolidation of relevant information, including Position on Chromosome, HGVS DNA, HGVS Protein, exon or intron number, and dbSNP identifiers. Rigorous quality control measures were then applied to ensure the accuracy and consistency of data extraction and annotation.

Statistical analysis

Descriptive statistics were employed for a comprehensive analysis, summarizing the distribution of TTN variants in terms of positions, types, and associated pathogenicity.

Ethical considerations

Ethical considerations are considered in the study, with a commitment to adhering to Data reliability and responsible data handling. In the present study, it is important to note that no human subjects were involved, as this investigation is a comprehensive review rather than an experimental study. The research focused on analyzing reported variants available on PubMed, and ethical approval or consent from human participants was not applicable.

Results

The molecular structure of titin

The TTN gene located on the second human chromosome in the 2q31 area. This gene contains 364 exons, which their translation produces a 4200-kDa protein with ~ 38,000 amino acid residues, the largest polypeptide found in the human body. The Titin giant protein, also known as connectin, is the third most abundant protein found in striated muscle among the vertebrates, after myosin and actin. The Titin is a flexible filament that is more than 1 µm long and 3–4 nm wide and spans half of the sarcomere as the repeating contractile unit that gives striated muscle characteristic striped appearance25.

Titin has a complex multidomain structure which is composed of four main structural and functional regions: the N-terminal Z-line acts as an anchor for the sarcomeric Z-disk; the I-band provides elastic properties; the A-band stabilizes the thick filament; and the C-terminal M-line extremity overlaps in an antiparallel orientation with another titin molecule's C-terminus, allowing for modulation of titin expression and turnover via the tyrosine kinase domain26.

The N-terminus contains immunoglobulin (Ig) domains, fibronectin (FN) domains, and a Z-disk region27. The rest of the titin molecule includes an elastic I-band region, a spring-like Pro-Glu-Val-Lys (PEVK) domain, three unique sequences called Novex 1, 2, and 3, cardiac-specific N2B and N2A domains, a thick A-band region, and an M-band region where the C-terminus is embedded.

Extensive alternative splicing in the 364 exons of TTN leads to forming various molecular isoforms. Previous studies have shown three main titin isoforms expressed in cardiomyocytes: the adult N2B isoform, the adult N2BA isoform, and the fetal cardiac titin (FCT) isoform. The distinct characteristics of each titin isoform arise from differences in their I-band sequences, while the Z-disk, A-band, and M-line regions are highly conserved across all isoforms28. Due to the longer extensible I-band region, the N2BA isoform is more compliant than N2B. The N2BA isoform contains additional spring-like elements in the PEVK and tandem Ig regions, leading to lower passive tension in cardiomyocytes compared to other isoforms2931.

Molecular structure of sarcomere and the interaction of Titin with thin and thick filaments is demonstrated in Fig. 1.

Figure 1.

Figure 1

Molecular structure of sarcomere and the interaction of Titin with thin and thick filaments.

Z-disk

The Z-disk region spans 826 amino acids horizontally across the structure and contains seven Ig domains separated by Z-insertion sequences. As the site of numerous structural and functional interactions with myofibrillar and sarcolemmal proteins, the Z-disk is critical for myofibril assembly, stability, and signaling. Z-disks anchor essential proteins like titin-Tcap (telethonin), which enables key Z-disk functions including mechanosensing. Mechanosensing involves recruiting other interacting and signaling partners to the Z-disk in response to mechanical stimuli. Overall, Z-disks play indispensable roles in anchoring titin and enabling vital structural and sensory functions3234.

The Z-disk interacts with small ankyrin proteins, spectrin, desmin, and obscurin, connecting it to other cytoskeletal structures. Filamin C links the Z-disk to costameres via integrins and sarcoglycans, participating in mechanosensory pathways. Additionally, the Z-disk binds nebulin, which helps stabilize Z-disk anchorage through interactions with actin, desmin, CapZ and myopalladin. α-Actinin binding also enhances Z-disk mechanical stability. Overall, the Z-disk forms critical protein interactions that provide structural support and sensory functions3540.

I-band

The I-band region of titin displays extensive alternative splicing, generating diverse isoforms that confer tissue-specific mechanical properties in cardiac and skeletal muscles. Through alternative splicing mechanisms, a spectrum of isoforms emerges, tailoring titin's mechanical functions to meet the needs of different muscle types. The I-band thus acts as a central adapter, converting titin into specialized molecular springs via splicing variability. This interactive segment contains a meta-transcript with principal cardiac and skeletal isoforms. Key components include immunoglobulin folds, the cardiac N2B zone, and the skeletal N2A zone containing nonrepetitive sequences and immunoglobulin domains. The proline-glutamate-valine-lysine (PEVK) domain follows, acting as a spring-like element. Together, the I-band components enable the elasticity of titin38,41.

The I-band region has distinct proximal and distal segments with specialized roles. The proximal I-band maintains sarcomere integrity, while the medial/distal I-band acts as a bidirectional molecular ruler setting resting length and passive tension42. The I-band also functions as a biochemical stress sensor through interactions with αβ-crystallin, a chaperone that stabilizes I-band immunoglobulin domains. Additionally, metabolic enzymes like DRAL, FHL1, and FHL2 associate with I-band sarcomere regions via the Gαq-MAPK pathway37,43,44. Indeed, though I-band interactions with the Ca+2-dependent proteases Calpain-1 and Calpain-3, I-band not only contributes to a sarcomeric quality control pathway but also serves as a reservoir for inactive forms of Calpain-345,46.

A-band

The A-band spans the sarcomere from M-line to M-line, containing thick filaments of myosin. Within the A-band, titin forms a network that maintains the structural integrity of the thick filaments and regulates their length. The A-band exclusively contains fibronectin type III (FnIII) motifs. Immunoglobulin (Ig) and FnIII motifs are arranged in two super-repeats bisected by Ig folds. Unlike the elastic I-band, the A-band is inextensible, providing myosin binding sites that function as stable anchors. A-band super-repeat domains interact with and position sarcomeric myosin binding protein C (MyBP-C). The A-band also contains binding sites for muscle ring finger proteins MURF1 and MURF2. MURF1 likely facilitates quality control and protein turnover at the sarcomere center, while MURF2 interactions aid formation of mature A-band structures36,38.

M-band

The M-band integrates structural, signaling, metabolic and protein quality control functions. It contains a putative serine/threonine kinase domain and immunoglobulin cross-hatched rectangle (CII) domains interspersed with M-insertion sequences47. While its kinase activity is debated, the M-band kinase domain likely participates in stress sensing through Ca2+-calmodulin-regulated mechanochemical signaling38,48. During sarcomerogenesis, myomesin constructs an M-band scaffold linking titin to myosin thick filaments, establishing the myomesin-titin-myosin stability axis49. The M-band also senses metabolic stress via ligands DRAL/FHL2 that tether metabolic enzymes, and enables ubiquitin-mediated turnover through interactions with nbr1, p62, MURF1 and MURF250. MURF2 binding facilitates M-band's role in cardiac development51. Additionally, the extreme C-terminal TTN/calpain-3/p94 interaction participates in M-band-associated protein turnover37,52.

The molecular function of titin

Since the discovery of titin, the complexity and diverse functional roles of titin in health and disease continue to emerge. As the third filament system of the sarcomere alongside actin and myosin, titin forms a unique filament network in cardiomyocytes that engages in mechanical and signaling roles10. During muscle development, titin likely controls the assembly of actin and myosin contractile proteins, regulating sarcomere size and thick filament structure. In mature muscle, titin contributes to elasticity mechanisms affecting sarcomere resting lengths and tension-related processes25.

The enormity and intricate three-dimensional structure of titin provides structural support to maintain sarcomere integrity during contraction while generating passive tension during stretching. Additionally, the numerous titin-binding proteins arranged in signaling hotspots allow titin to participate in mechanosensing and signal transduction26,53. Thus, titin has multifaceted roles beyond viscoelastic force generation: (a) centering thick filaments for optimal active force; (b) assembling sarcomeres; (c) mechanochemical signaling through binding partners; and (d) potentially enabling length-dependent activation underlying the Frank-Starling law54.

Comparative analysis of TTN variants

In this study we found 611 distant TTN variant which were not benign and they were pathogenic, likely pathogenic or variant of uncertain significance (VUS).

85% of the variants were reported in exon fragments, while 15% were reported in intron fragments. In ACMG classification, 69.6% of the variants were classified as Pathogenic, 21.6% as Likely Pathogenic, and 8.8% as Variants of Uncertain Significance (VUS). Substitution accounted for 57.25% of the variants, deletion for 29.62%, duplication for 7.36%, and insertion for 5.72%.

The majority of variants occurred in the interval from exon 200 to the end of the molecule, with the hotspot regions identified at exon 326 and 358 being the most common points for variations (Fig. 2).

Figure 2.

Figure 2

Prevalence of variants in different exons and introns in TTN.

Most pathogenic variants are located after the exon 326 to the end of the molecule which has higher CADD number compared to others (Fig. 3A). The Genomic Evolutionary Rate Profiling (GERP) score is used to compare the gene nucleotides among the species in the TTN gene24. It is supposable that the nucleotides and exons which are conserved in the evolution, can be considered a vital element for survive and loss of function of these components are associated with death and the prevention of its inheritance. In the comparison of the conservity of the gene nucleotides, it can be concluded that most the variants have a notable GERP score which indicates their conservity (Fig. 3B).

Figure 3.

Figure 3

Comparative analysis of TTN variants with their pathogenicity, type of alternation, and conservity.

In comparing the average CADD score of various exons, it can be concluded that exons with higher CADD scores are located in the end of the gene and the middle part of the gene, the average CADD score is not notable. The first few exons of the gene have a higher CADD score but in the last exons, the CADD score is increased considerably especially in the last 50 exons. VUS variants have less CADD score and likely pathogenic variants also have lesser scores compared to pathogenic variants (Fig. 3C,D).

In the comparing type of genetic alternation in variants, it can be concluded that the most common alternations are substitution and deletions. Most of the deletions have high score numbers while substitutions have various CADD scores. Most of the insertion and duplications also have notable CADD score because of frameshift events while in the substitutions we can observe some lesser CADD score which is not exists in other types of alternations. As demonstrated, most of the pathogenic variants in the first parts of the gene are deletions but the most pathogenic variants in the last parts of the gene have substitutions (Fig. 3E,F).

The biogenesis pathways of TTN

Role of alternative splicing

TTN gene consists of 364 exons as translatable parts according to NCBI55 and is estimated to code 34,350 amino acid residues according to UniProt56. TTN can be spliced in different ways to produce different transcript forms. Since alternative splicing of TTN, the protein has various sizes. The I-band, M-line, and Z-disc areas of Titin are the most variable parts, which lead to various isoforms with a wide range of elasticity. Due to variations in the I-band area, different muscle types have varying degrees of elasticity. The Titin gene's I-band encoding region is the site of many splicing processes resulting in isoforms with various spring compositions. This process even can discriminate cardiac Titin with skeletal muscle Titin.

All cardiac Titin isoforms have exon 49, which contains the N2B sequence; however, skeletal muscle does not57. The cardiac isoform known as N2B Titin is a small 2970-kDa weight protein produced by splicing exons 49/50. Deletion of Titin N2B region causes diastolic dysfunction and cardiac atrophy58. Another isoform is N2BA which is made up of exons 102 to 109, which code for the N2A element. A specific property of this isoform is that it contains more PEVK segments and is longer with more Ig domains58.

I-band and its isoforms in cardiac compliance and DCM

Protein composition patterns can change among different populations and even in various stages of human life. The isoform transforming of sarcomeric proteins in the troponin complex, Myosine heavy chain (MHC), Myosine light chain (MLC) and Titin from fetal to adult through transcriptional changes or alternative splicing is the essential element of myofibril maturation59.

A study by Lahmers et al.59 revealed that fetal titin isoforms are expressed in neonates, containing additional spring elements in the tandem Ig and PEVK regions. This leads to lower stiffness compared to adults, explained by the unique spring composition of fetal cardiac titin in neonates. Changes in titin expression during development likely impact functional transitions and diastolic filling as the heart matures. The fetal cardiac titin isoform, with its extra Ig and PEVK spring elements, gradually disappears postnatally in a species-dependent manner.

In the human heart, the ratio of titin isoform expression is established based on passive tension. There is a high correlation between titin-based passive tension and I-band region size, with lower tension associated with a larger, more elastic I-band. In healthy adult hearts, the N2BA and N2B titin isoforms express at 30–40% and 60–70% respectively. The relative levels of these two isoforms are a key determinant of cardiomyocyte stiffness60. Titin plays a central role in the passive ventricular tension. Animal studies have proved that the N2BA isoform is present in the near-term fetus 6 days before birth but after birth disappears and is replaced by a smaller N2B isoform, which predominates in 1-week-old neonate and adults. Adult cardiomyocytes have 15 times more passive tension compared to fetal cardiomyocytes which is confirmed by immunofluorescence microscopy. This transformation is compatible with the heart's function in each stage of life which after birth needs more passive tension to pump the blood effectively through the vessels61.

Alternative splicing of the TTN gene plays significant roles in cardiac diseases like dilated cardiomyopathy (DCM). In DCM, the more compliant N2BA isoform is upregulated, decreasing passive stiffness and increasing chamber compliance. Overall, variable expression and splicing of titin isoforms critically influence myocardial passive tension and compliance30,31,62,63.

Hidalgo et al.64 conducted sophisticated experiments to identify the mechanisms influencing myocardial passive stiffness by modifying the phosphorylation state of titin. The study revealed that titin serves as a substrate not only for protein kinase A but also for protein kinase G and protein kinase C α (PKCα). The researchers pinpointed the PEVK region of titin as the primary site for PKCα phosphorylation, demonstrating that phosphorylation at this site enhances passive tension in the myocardium.

Novex variants and tiny titin results alternative splicing

The whole sequence of the human TTN gene contains three isoform-specific mutually exclusive exons named novel exons (novex), which encode for the I-band sequence. Novex1 is presented in exon 45, novex-2 is located in exon 46, and novex-3 is placed in exon 48. The novex-1 and novex-2 Titin isoforms are encoded by transcripts that either include the novex-1 or novex-2 exons. Early stop-gain codon in the novex-3 transcript produces a remarkably tiny isoform (700 kDa) known as novex-3 Titin. The 'tiny Titin' isoform, expressed in all striated muscles, stretches from the Z-disc to the novex-3 domain (C-terminus). Therefore, stress-induced sarcomeric rearrangement may be mediated by novex-3 Titin because of its regulatory involvement in calcium level and GTPase-associated myofibrillar pathways65. Furthermore, novexes 2 and 3 may be linked to DCM or ARVC based on the expression levels of novex variations in human cardiac tissues affected by cardiomyopathies. Previous research suggests that novex variations may be attributable to cardiomyopathy66.

Splicing regulation of alternative splicing

Encoding Titin by a single gene into various forms is the result of different mRNA splice pathways which leads to Titin isoform classes57. The titin gene contains 409 introns, enabling generation of 57 distinct mRNA transcripts through extensive alternative splicing. These include 29 unspliced forms and 28 spliced isoforms. Additional diversity arises from 5 alternative promoters, 9 non-overlapping final exons, and 9 verified polyadenylation sites. The resulting mRNAs vary in: 3’ end truncations, 5’ end truncations, presence/absence of 173 cassette exons, overlapping exons with different borders, and splicing versus retention of 3 introns67.

RBM20 regulates a subset of genes involved in developing the heart's muscles by modulating their mRNA alternative splicing. Titin, known to undergo extremely complex alternative splicing, is one of the RBM20’s targets. RBM20 specifically manipulates alternative splicing within the I-band of TTN pre-mRNA, which possesses the highest frequency of the alternative splicing process. It has been demonstrated that some alterations in the protein can produce pathogenic TTN isoforms, which are believed to lead to DCM68. Surprisingly, Khan et al.69, detected 80 distinct circRNAs among nearly a thousand from human hearts, indicating that the I-band of Titin is a hotspot region of circRNAs. Remarkably, the introns on each side of the back-spliced junctions were enriched in RBM20 binding sites, and the introns related to the TTN circRNAs had a five-fold higher frequency of RBM20 binding sites compared to a control set of introns. Studies on the RBP20 knock-out animals, and a cardiac sample of heterozygous RBM20 mutation carrier with substantially compromised synthesis of TTN circRNAs, both provided evidence that RBP20 is involved in the biogenesis of these TTN circRNAs69. Furthermore, the most recent study by Czubak et al.70, also found that Type 1 diabetes patients' human skeletal muscles included a significant amount of circRNAs primarily derived from the I-band of Titin. Titin has considerable interaction with other functional and structural proteins of sarcomeres. So, it is assumable that it has numerous binding sites for muscle-associated proteins and serves as an adhesion template for contractile machinery assembly in cardiac cells. So, it should be considered a dynamic and transformable molecule.

The role of TTN variants in cardiomyopathies

Heterozygous mutations in TTN are commonly associated with cardiomyopathies and TTN has been reported as the most common gene involved in cardiomyopathies71. The mutations can be broadly classified into two categories, which are truncating or missense mutations. Truncating mutations lead to premature termination of Titin protein synthesis, resulting in either an altered protein or the loss of functional domains. In contrast, missense mutations result in the replacement of amino acids, potentially causing interference with the typical operation of the Titin protein36.

The ongoing inquiry into the exact molecular mechanisms by which TTN mutations lead to cardiomyopathies illuminates the intricate relationship between TTN mutations and various forms of cardiomyopathies. The haploinsufficiency model is a notable mechanism that proposes the presence of truncating mutations in one allele of the TTN gene results in a reduction in Titin expression, consequently inducing a functional deficit of Titin protein. The phenomenon mentioned above possesses the capability to disrupt the sarcomere assembly process, alter the mechanical properties of cardiac muscle cells, and prevent the heart's contractile function, leading to the manifestation of cardiomyopathy. Another proposed mechanism which even can be manifest in dominant pattern is missense mutations. This occurrence takes place when the mutated form of the Titin protein impairs the normal functioning of the unaltered Titin protein, leading to compromised assembly and operation of the sarcomere.

Moreover, it is plausible that TTN mutations may trigger aberrant splicing occurrences, leading to the production of deficient or abnormal Titin isoforms, thus playing a role in the pathogenesis of cardiomyopathy c. The bioinformatics analysis of reported variants in TTN related to cardiomyopathies has been shown in Table 1.

Table 1.

Bioinformatics analysis of Pathogenic, Likely pathogenic, Unknown Significance reported variants in TTN related to cardiomyopathies.

No Position on Chr. 2 HGVS DNA HGVS Protein Exon/Intron dbSNP ACMG ClinVar Mutation Taster CADD GERP Reference
1 179391826 c.107889del p.Lys35963AsnfsTer9 E.363 rs281864930 P P DC 76 5.79 195
2 179391848 c.107867T > C p.Leu35956Pro E.363 rs267607156 LP LP DC 35 6.17 196
3 179391875 c.107840T > A p.Ile35947Asn E.363 rs281864928 P VUS DC 34 4.9 196
4 179391915 c.107800G > T p.Gly35934Ter E.363 rs368277535 LP VUS DC 76 6.05 197
5 179391925 c.107780-107790delinsTGAAAGAAAAA p.Glu35927-Trp35930delinsValLysGluLys E.363 rs281864927 P P DC 65 4.87 198
6 179391925 c.107780-107781insTGAAAGAAAAA p.Glu35927AspfsTer6 E.363 NA LP NA PO 65 4.52 196
7 179391972 c.107743A > C p.Thr35915Pro E.363 NA LP NA DC 32 6.06 196
8 179392207 c.107646del p.Ser35883GlnfsTer10 E.362 NA LP NA DC 75 5.76 199
9 179392218 c.107635C > T p.Gln35879Ter E.362 rs757082154 P VUS DC 75 4.87 196
10 179392275 c.107578C > T p.Gln35860Ter E.362 rs1009131948 P LP/P DC 73 3.75 200
11 179393000 c.107377 + 1G > A I.361 rs112188483 P P/LP NA NA 4.96 201
12 179393027 c.107351del p.Ser35784Ter E.361 rs778765016 P NA DC 81 4.97 202
13 179393094 c.107284C > T p.Arg35762Ter E.361 rs1477669354 P LP DC 70 4.36 203
14 179393272 c.107208del p.Phe35736LeufsTer15 E.360 NA P NA DC 75 5.17 204
15 179393329 c.107149C > T p.Gln35717Ter E.360 rs369157062 P NA DC 81 5.56 202
16 179393480 c.106998dup p.Ala35667SerfsTer6 E.360 rs1031891465 LP NA NA 65 4.56 202
17 179393500 c.106978C > T p.Gln35660Ter E.360 rs1687693219 P NA DC 81 5.56 205
18 179393519 c.106959T > A p.Tyr35653Ter E.360 rs369450212 LP NA DC 41 − 7.15 202,206
19 179393524 c.106954C > T p.Arg35652Ter E.360 rs565675340 P P DC 70 − 3.94 207
20 179393564 c.106914G > C p.Trp35638Cys E.360 rs758497512 LP VUS DC 35 5.55 205
21 179393709 c.106768dup p.His35590ProfsTer2 E.360 NA P LP NA 65 5.10 202
22 179393738 c.106740del p.Ala35581GlnfsTer36 E.360 NA P LP DC 75 5.53 202
23 179393845 c.106668del p.Lys35556AsnfsTer6 E.360 rs587776772 P P DC 75 2.76 208
24 178529118 c.106632-106633del p.Leu35545LysfsTer3 E.360 NA P NA DC 9.91 1.97 204
25 179393849 c.106629del p.Ala35544ProfsTer2 E.360 rs869312069 P LP DC 75 2.82 202
26 179393907 c.106571del p.Lys35524ArgfsTer22 E.360 rs199469666 P NA DC 73 3.39 208
27 179394686 c.106531 + 1G > A I.359 rs760915007 P P NA NA 5.61 209
28 179394796 c.106422del p.Phe35475SerfsTer3 E.359 NA LP NA DC 72 − 0.80 206
29 179394967 c.106374 + 1del I.358 rs763404256| LP VUS NA NA 5.13 202
30 179395292 c.106050del p.Glu35351AsnfsTer54 E.358 NA LP NA DC 74 − 10.5 206
31 179395323 c.106019del p.Gly35340ValfsTer65 E.358 rs727504482 P NA DC 74 5.23 210
32 179395428 c.105910-105914del p.Thr35304CysfsTer3 E.358 NA P NA DC 73 3.24 206
33 179395510 c.105832C > T p.Gln35278Ter E.358 NA LP NA DC 11.95 2.7 211
34 179395528 c.105814del p.Thr35272HisfsTer21 E.358 rs759645441 LP NA DC 66 0.59 202
35 179395600 c.105739-105742dup p.Lys35248SerfsTer2 E.358 rs866421715 LP NA NA 62 0.88 202
36 179395807 c.105528-105535del p.Gln35176HisfsTer9 E.358 rs199469665 P LP DC 66 3.57 212
37 179395811 c.105523-105531del p.His35175-Val35177del E.358 NA VUS NA PO 53 3.49 199
38 179395856 c.105486del p.Trp35162CysfsTer8 E.358 rs1553485330 P P DC 66 4.78 213
39 179395919 c.105423C > A p.Tyr35141Ter E.358 NA LP NA DC 64 − 4.25 214
40 179396571 c.104771C > A p.Ser34924Ter E.358 rs1559003939 P LP DC 75 5.56 215
41 179396675 c.104666-104667del p.Pro34889ArgfsTer3 E.358 NA P LP DC 66 − 0.66 216
42 179396929 c.104413C > T p.Arg34805Ter E.358 rs750519430 P LP/P DC 71 4.59 217
43 179397250 c.104092C > T p.Arg34698Ter E.358 rs727504184 P LP DC 79 4.19 202,218
44 179397397 c.103945C > T p.Arg34649Ter E.358 rs995029896 P LP DC 74 3.46 219
45 179397492 c.103850-103851insAAC p.Lys34618AspfsTer2 E.358 NA VUS NA PO 62 0.00 210
46 179397546 c.103796G > A p.Arg34599Lys E.358 rs1362778188 LP NA DC 35 5.80 205
47 179397637 c.103705A > T p.Lys34569Ter E.358 rs1553490574 P LP DC 75 5.94 202
48 179397824 c.103518del p.Ala34507LeufsTer8 E.358 rs1553491220 P LP DC 66 − 4.55 209
49 179397934 c.103408G > T p.Glu34470Ter E.358 rs769023413 LP VUS DC 68 5.78 202
50 179397982 c.103360del p.Glu34454AsnfsTer3 E.358 rs760768093 P P DC 66 3.87 220
51 179398245 c.103096-103097insSVAelement E.358 rs1575266261 NA LP NA NA NA 202
52 179398266 c.103073-103076dup p.Ser34359ArgfsTer2 E.358 NA P LP NA 62 0.89 202
53 179398340 c.103002-103003insA p.Ala34335SerfsTer7 E.358 NA P NA DC 62 3.24 205
54 179398393 c.102949C > T p.Gln34317Ter E.358 rs397517787 P LP DC 75 5.5 80
55 179398396 c.102946del p.Tyr34316ThrfsTer3 E.358 NA P NA DC 66 4.28 205
56 179398410 c.102932C > G p.Ser34311Ter E.358 NA LP NA DC 72 5.6 221
57 179398712 c.102630del p.Val34211Ter E.358 rs869312101 p VUS DC 66 4.82 202
58 179398819 c.102523C > T p.Arg34175Ter E.358 rs752697861 P P DC 13.12 4.23 221
59 179398833 c.102509G > A p.Trp34170Ter E.358 NA P NA DC 73 5.38 205
60 179399071 c.102271C > T p.Arg34091Trp E.358 rs140319117 P VUS DC 35 4.82 205
61 179399128 c.102214T > A p.Trp34072Arg E.358 NA LP NA DC 34 5.88 204
62 179399285 c.102057del p.Asn34020ThrfsTer9 E.358 NA P LP DC 66 − 2.96 204
63 179400115 c.101227C > T p.Arg33743Ter E.358 rs794729305 P LP DC 76 4.63 222
64 179400229 c.101113del p.Ser33705LeufsTer4 E.358 NA P NA DC 65 4.4 213
65 179400244 c.101098-101099insT p.Asp33700ValfsTer13 E.358 rs869312122 P LP DC 62 5.59 202
66 179400320 c.101021-101022del p.Arg33674IlefsTer4 E.358 rs869312087 P LP DC 65 3.01 202
67 179400405 c.100936-100937del p.Val33646HisfsTer26 E.358 NA LP NA DC 65 4.08 205
68 179400516 c.100826G > A p.Arg33609Gln E.358 rs771243505 VUS VUS DC 35 5.3 223
69 179400517 c.100825C > T p.Arg33609Ter E.358 rs1057518195 P LP/P DC 72 5.3 224
70 179400577 c.100766-1G > T I.357 rs185589320 LP NA NA NA 5.3 202
71 179400887 c.100587G > A p.Trp33529Ter E.357 rs1064793560 P LP DC 70 5.76 225
72 179400913 c.100558-100561dup p.Gly33521AspfsTer25 E.357 rs1553501572 P LP NA 62 4.18 213
73 179401029 c.100445C > A p.Ser33482Ter E.357 rs869312086 P LP DC 77 5.76 202
74 179401230 c.100244C > T p.Pro33415Leu E.357 rs72648282 LP VUS DC 35 5.76 226
75 179402067 c.99865 + 2T > C I.355 rs1453570860 P NA NA NA 5.53 199
76 179403522 c.99034A > T p.Lys33012Ter E.354 rs771511344 P LP DC 72 5.71 199
77 179403562 c.98994del p.Lys32998AsnfsTer63 E.354 rs727504535 P P DC 65 3.68 222
78 179403888 c.98774del p.Gly32925ValfsTer56 E.353 NA P LP DC 65 6.15 210
79 179404189 c.98603del p.Phe32868SerfsTer11 E.352 NA P NA DC 65 3.44 201
80 179404241 c.98551C > T p.Arg32851Ter E.352 rs553821887 P VUS DC 69 3.78 202
81 179404286 c.98506C > T p.Arg32836Ter E.352 rs869312085 P LP DC 72 4.88 202
82 179404492 c.98299-98300del p.Arg32767GlyfsTer2 E.352 rs397517776 P P DC 65 4.91 202
83 179404493 c.98299del p.Arg32767GlyfsTer26 E.352 rs772061676 P LP DC 65 3.65 202
84 179404524 c.98265-98268dup p.His32757AsnfsTer4 E.352 rs869312067 P LP NA 62 5.02 202
85 179404687 c.98105del p.Pro32702LeufsTer15 E.352 NA P NA DC 65 6.17 213
86 179405030 c.97863G > A p.Trp32621Ter E.351 NA LP NA DC 68 5.96 201
87 179406990 c.97492 + 1G > A I.349 rs727505319 P NA NA NA 6.17 227
88 179407385 c.97192 + 4A > G I.348 rs370069759 VUS VUS NA NA 4.4 202
89 179407531 c.97050dup p.Glu32351ArgfsTer6 E.348 rs794729365 P P NA 62 5.27 228
90 179407808 c.96892C > T p.Gln32298Ter E.347 rs201108270 LP VUS DC 68 5.91 202
91 179408200 c.96500-96501insAGAATTC p.Gly32168GlufsTer27 E.347 NA P NA DC 61 6.03 205
92 179408240 c.96460dup p.Thr32154AsnfsTer39 E.347 rs869312084 P LP NA 61 4.75 202
93 179408364 c.96336-96337insC p.Lys32113GlnfsTer3 E.347 NA P NA DC 61 5.32 80
94 179408990 c.95966del p.Asn31989ThrfsTer2 E.345 rs72648265 P LP DC 64 6.17 199
95 179409084 c.95872C > T p.Arg31958Ter E.345 NA P LP DC 69 5.23 229
96 179410544 c.95416 + 3–95416 + 4insCCT I.343 NA LP NA NA NA 3.31 199
97 179410545 c.95415–95416 + 2del I.343 rs769407533 P LP NA NA 5.82 202
98 179410592 c.95371G > C p.Gly31791Arg E.343 NA P VUS DC 31 5.82 230
99 179410605 c.95358C > G p.Asn31786Lys E.343 rs869320743 P P DC 31 4.95 231
100 179410622 c.95341C > T p.Arg31781Ter E.343 NA P NA DC 69 2.95 205
101 179410768 c.95195C > T p.Pro31732Leu E.343 rs753334568 P LP/P DC 35 5.82 231
102 179410778 c.95185T > C p.Trp31729Arg E.343 rs869320741 LP P DC 34 5.82 231
103 179410799 c.95164C > T p.Gln31722Ter E.343 NA P NA DC 66 4.95 199
104 179410829 c.95134T > C p.Cys31712Arg E.343 rs869320740 LP P DC 33 5.82 231
105 179411050 c.95008C > T p.Arg31670Ter E.342 rs1322596650 P P DC 68 4.78 232
106 179411199 c.94859T > G p.Leu31620Ter E.342 rs561946873 LP NA DC 70 6.03 207
107 179411200 c.94852-94858del p.Ala31618TyrfsTer37 E.342 rs869312066 P LP DC 64 4.51 202
108 179411203 c.94855C > T p.Arg31619Ter E.342 rs869312121 P LP DC 68 2.36 202
109 179411339 c.94816C > T p.Arg31606Ter E.341 rs1060500435 P LP DC 69 1.72 233
110 179411593 c.94562dup p.Thr31522AsnfsTer12 E.341 rs869312083 P LP NA 61 2.50 202
111 179411905 c.94344-94347del p.Lys31448AsnfsTer8 E.340 rs727503546 P P DC 64 5.67 234
112 179411967 c.94285T > A p.Trp31429Arg E.340 NA LP NA DC 35 6.03 196
113 179412186 c.94167del p.Phe31389LeufsTer7 E.339 rs747837187 LP NA DC 64 5.26 202
114 179412199 c.94154C > G p.Ser31385Ter E.339 rs548010682 LP NA DC 72 6.03 207
115 179412246 c.94103-94107del p.Ile31368SerfsTer34 E.339 rs769488730 P P DC 64 5.33 199
116 179412456 c.93897del p.Phe31299LeufsTer14 E.339 rs397517758 P P DC 64 3.15 80
117 179412902 c.93451G > T p.Glu31151Ter E.339 NA P NA DC 67 5.65 199
118 179413151 c.93202G > T p.Glu31068Ter E.339 NA P NA DC 68 5.65 205
119 179413187 c.93166C > T p.Arg31056Ter E.339 rs72648250 P LP/P DC 69 5.65 202
120 179413477 c.92876G > A p.Trp30959Ter E.339 rs72648249 P NA DC 67 5.22 199
121 179413670 c.92683C > T p.Asp30885SerfsTer30895Ter E.339 rs869312065 P LP DC 16.84 5.3 202
122 179413694 c.92652-92659del p.Asp30885SerfsTer3 E.339 rs1559175090 P LP DC 63 2.1 224
123 178549148 c.92478dup p.Val30827SerfsTer22 E.339 NA P LP NA 7.36 3.45 235
124 179414036 c.92317C > T p.Arg30773Ter E.339 rs794729301 P LP/P DC 68 3.79 225
125 179414065 c.92284-92288dup p.Ser30763ArgfsTer7 E.339 rs756367933 P VUS NA 64 4.17 202
126 179414119 c.92234C > A p.Ser30745Ter E.339 NA P NA DC 67 5.74 205
127 179414186 c.92167C > T p.Pro30723Ser E.339 rs758537709 P VUS DC 32 5.73 213
128 179414303 c.92146C > T p.Gln30716Ter E.338 NA P NA DC 70 5.73 205
129 179414366 c.92083T > C p.Ser30695Pro E.338 rs768267695 LP NA DC 31 5.74 236
130 179414574 c.91875del p.Pro30626GlnfsTer2 E.338 rs757451467 P P DC 63 4.82 205
131 179414812 c.91753T > G p.Phe30585Val E.337 rs1060500507 P VUS DC 34 5.74 237
132 179414850 c.91715dup p.Asn30572LysfsTer16 E.337 rs779129892 P VUS NA 61 4.08 202
133 179415706 c.91551-91552del p.Asp30519Ter E.336 NA P NA DC 63 3.18 205
134 179416527 c.91097-91100dup p.Asn30367LysfsTer3 E.335 NA P NA NA 61 5.07 79
135 179416849 c.90778dup p.Tyr30260LeufsTer12 E.335 rs397517750 P LP NA 61 4.10 199
136 179416870 c.90757G > A p.Gly30253Arg E.335 P NA DC 35 5.9 205
137 179417040 c.90587del p.Lys30196ArgfsTer94 E.335 rs397517749 P LP DC 63 6.06 238
138 179417257 c.90370G > T p.Glu30124Ter E.335 rs1553539995 P LP DC 67 5.76 239
139 179417305 c.90322-90323insT p.Glu30108ValfsTer6 E.335 rs869312082 P LP DC 61 5.76 202
140 178552691 c.90208-90209insSVAelement E.335 NA NA LP NA NA NA 202
141 179417539 c.90087-90088del p.Glu30029AspfsTer7 E.335 rs869312064 P LP DC 63 3.32 202
142 179417542 c.90085del p.Glu30029LysfsTer11 E.335 NA P NA DC 63 5.76 238
143 179417543 c.90084del p.Glu30029LysfsTer11 E.335 NA LP NA DC 63 -9.19 199
144 179417724 c.89900-89903del p.Asn29967MetfsTer27 E.335 rs869312081 P LP DC 63 4.36 202
145 179417877 c.89750dup p.Val29918SerfsTer3 E.335 rs869312063 P LP NA 63 3.12 202
146 179418418 c.89314G > T p.Glu29772Ter E.334 NA P P DC 64 4.71 240
147 179418468 c.89265G > A p.Trp29755Ter E.334 rs1179247052 P LP DC 66 5.6 225
148 179418639 c.89197 + 2T > G I.333 rs1575536935 P LP DC NA 5.61 241
149 179418639 c.89197–89197 + 2del I.333 rs397517741 P LP NA NA 4.10 80
150 179418640 c.89197 + 1G > C I.333 rs1131691873 P LP DC NA 5.61 225
151 179418877 c.88961G > A p.Trp29654Ter E.333 NA P NA DC 66 5.61 205
152 179419329 c.88745C > T p.Ser29582Phe E.332 NA LP NA DC 35 5.66 237
153 179419370 c.88703-88704del p.His29568LeufsTer7 E.332 rs794729360 P P DC 63 5.29 242
154 179419765 c.88421G > A p.Trp29474Ter E.331 rs869025546 P LP DC 66 5.66 243
155 179422099 c.87887-87890del p.His29296ProfsTer104 E.329 rs869312120 P LP DC 63 5.77 202
156 179422273 c.87716del p.Gly29239AspfsTer32 E.329 rs869312028 P VUS DC 63 5.56 202
157 179422457 c.87624C > A p.Tyr29208Ter E.328 rs772121356 P LP DC 66 0.93 202
158 179422552 c.87529A > T p.Lys29177Ter E.328 NA LP NA DC 33 4.44 201
159 179422565 c.87516del p.Tyr29173ThrfsTer24 E.328 rs727503552 P LP DC 63 -1.28 199
160 179422726 c.87355del p.Ala29119LeufsTer17 E.328 rs794729356 P P DC 63 5.63 244
161 179422902 c.87179C > A p.Ser29060Ter E.328 NA P NA DC 67 5.69 205
162 179423093 c.87093del p.Pro29032LeufsTer8 E.327 NA P NA DC 63 4.57 205
163 179423146 c.87040C > T p.Arg29014Ter E.327 rs776065839 P P DC 67 4.77 209
164 179423220 c.86967G > A p.Trp28989Ter E.327 rs869312062 P LP DC 66 5.76 202
165 179423314 c.86872dup p.Ser28958LysfsTer10 E.327 NA P NA NA 61 0.07 79
166 179424036 c.86821 + 2T > A I.326 rs397517735 P P DC NA 5.61 199
167 179424057 c.86799-86802del p.Gly28936Ter E.326 rs727504856 P P DC 63 1.24 228
168 179424114 c.86742-86745del p.Tyr28915ThrfsTer22 E.326 rs1415420768 P LP DC 63 0.88 225
169 179424219 c.86640C > A p.Tyr28880Ter E.326 NA P LP DC 65 3.92 202
170 179424219 c.86640delC p.His28881ThrfsX2 E.326 rs794729298 P LP DC 63 3.92 202
171 179424399 c.86459-86460del p.Ser28820TrpfsTer50 E.326 rs869312080 P LP DC 63 2.79 202
172 179424496 c.86363G > A p.Trp28788Ter E.326 rs1064793814 P P DC 66 5.87 199
173 179424743 c.86116C > T p.Arg28706Ter E.326 rs794729384 P P DC 64 2.05 232
174 179424783 c.86076dup p.Ser28693IlefsTer2 E.326 rs1285329277 P P NA 61 0.61 245
175 179424844 c.86015G > A p.Trp28672Ter E.326 NA P NA DC 66 5.87 223
176 179424968 c.85891del p.Ala28631LeufsTer3 E.326 rs1575610911 P LP DC 63 6.08 246
177 179425091 c.85768C > T p.Arg28590Ter E.326 rs748689777 P P DC 65 2.95 227
178 179425207 c.85640-85652del p.Pro28547GlnfsTer12 E.326 rs762286447 P LP DC 63 4.12 205
179 179425598 c.85261-85262insAlu E.326 NA P LP NA NA NA 247
180 179425708 c.85151G > A p.Arg28384Gln E.326 rs1465916943 LP NA DC 34 5.09 223
181 179425709 c.85150C > T p.Arg28384Ter E.326 NA P LP DC 65 3.09 205
182 179425748 c.85109-85111del p.Lys28370-Ala28371delinsThr E.326 NA P NA DC 50 4.99 223
183 179425769 c.85090C > T p.Arg28364Ter E.326 rs770038577 P LP/P DC 66 5.09 202
184 179425848 c.85008-85011del p.Glu28338HisfsTer9 E.326 rs869312100 P VUS DC 62 0.90 202
185 179426041 c.84819G > A p.Trp28273Ter E.326 rs72648222 P P DC 66 5.78 199
186 179426302 c.84557dup p.Ile28187AsnfsTer6 E.326 rs1553564589 P LP NA 61 2.28 80
187 179426383 c.84476del p.Gly28159ValfsTer15 E.326 rs1553564694 P LP DC 62 5.56 80
188 179426471 c.84388del p.Cys28130ValfsTer44 E.326 NA P NA DC 62 − 0.12 205
189 179426483 c.84376C > T p.Gln28126Ter E.326 rs869312119 P LP DC 66 5.22 202
190 179426940 c.83919del p.Asn27973LysfsTer2 E.326 NA LP NA DC 62 − 1.64 223
191 179427344 c.83515C > T p.Arg27839Ter E.326 rs869312118 P P DC 67 5.76 202
192 179427362 c.83497G > T p.Gly27833Ter E.326 NA P P DC 66 4.87 199
193 179428087 c.82772G > A p.Trp27591Ter E.326 NA P NA DC 66 5.85 205
194 179428202 c.82657G > T p.Gly27553Ter E.326 rs869178171 P P DC 65 4.96 248
195 179428256 c.82603A > G p.Thr27535Ala E.326 rs775733174 P NA DC 24 4.8 236
196 179428346 c.82513del p.Ile27505PhefsTer20 E.326 rs869312060 P LP DC 62 0.86 202
197 179428522 c.82337C > T p.Ala27446Val E.326 rs780558473 LP NA DC 34 5.97 249
198 179428586 c.82273C > T p.Gln27425Ter E.326 rs371332011 P LP DC 65 5.97 202
199 179428871 c.81988C > T p.Gln27330Ter E.326 rs72648222 P NA DC 65 6.07 199
200 179428916 c.81943G > T p.Glu27315Ter E.326 rs373533040 P LP DC 66 6.07 202
201 179428920 c.81942del p.Glu27315AsnfsTer35 E.326 NA LP NA DC 62 0.49 223
202 179428980 c.81878-81879del p.Phe27293CysfsTer3 E.326 rs727504660 P P DC 62 3.73 199
203 179429341 c.81518del p.Pro27173HisfsTer17 E.326 rs869312079 P LP DC 62 4.63 202
204 179429515 c.81340-81344del p.Lys27114GlnfsTer9 E.326 rs886038928 P LP DC 62 4.1 250
205 179429538 c.81321C > G p.Tyr27107Ter E.326 rs557312035 P P DC 64 4.22 202
206 179429590 c.81262-81269del p.Gln27088CysfsTer5 E.326 rs869312059 P LP DC 62 4.82 202
207 179429862 c.80997-81012del p.Tyr26999Ter E.326 rs727503559 P LP DC 64 2.08 251
208 179430143 c.80716C > T p.Arg26906Ter E.326 rs727505284 P P DC 64 3.71 252
209 179430224 c.80635C > T p.Gln26879Ter E.326 rs79926414 LP VUS DC 65 5.49 202
210 179430320 c.80539C > T p.Gln26847Ter E.326 rs561152891 P NA DC 65 4.59 243
211 179430345 c.80514del p.Val26839LeufsTer5 E.326 NA P P DC 62 1.22 199
212 179430692 c.80167C > T p.Arg26723Cys E.326 rs1412497882 LP VUS DC 35 4.92 223
213 179430807 c.80052del p.Gly26685AspfsTer11 E.326 NA LP NA DC 62 3.32 223
214 179431048 c.79809-79811del p.Val26604del E.326 rs776591304 VUS NA PO 48 0.24 223
215 179431175 c.79684C > T p.Arg26562Ter E.326 rs869025545 P LP DC 65 4.03 253
216 179431293 c.79566T > A p.Tyr26522Ter E.326 NA LP NA DC 62 − 2.28 205
217 179431416 c.79443del p.Cys26482ValfsTer16 E.326 NA P NA DC 62 2.22 243
218 179431868 c.78991C > T p.Arg26331Ter E.326 rs779996703 P P DC 65 1.45 254
219 179431880 c.78979C > T p.Arg26327Ter E.326 rs1419374180 P LP DC 65 0.75 232
220 179432352 c.78507del p.Gly26170ValfsTer3 E.326 rs869312058 P LP DC 62 3.06 202
221 179432357 c.78502G > A p.Ala26168Thr E.326 NA LP NA DC 28.7 5.75 199
222 179432675 c.78184G > T p.Glu26062Ter E.326 rs869312057 P LP DC 64 5.58 202
223 179432681 c.78178G > T p.Glu26060Ter E.326 rs794729289 P P DC 64 5.58 225
224 179432761 c.78095-78098del p.Arg26032ThrfsTer41 E.326 rs869312117 P LP DC 62 4.37 202
225 179433095 c.77764C > T p.Gln25922Ter E.326 rs794729288 P VUS DC 65 5 210
226 179433197 c.77646-77662delinsAGA p.Ile25883AspfsTer3 E.326 rs794729345 P LP DC 11.72 3.33 199
227 179433210 c.77647-77649del p.Ile25883del E.326 NA LP P DC 48 1.91 199
228 179433274 c.77585del p.Lys25862ArgfsTer25 E.326 NA P NA DC 62 6.03 205
229 179433407 c.77452G > T p.Glu25818Ter E.326 NA P P DC 63 6.03 205
230 179433438 c.77421dup p.Ser25808GlnfsTer19 E.326 rs730880343 P LP NA 61 3.64 80
231 179433632 c.77227G > T p.Glu25743Ter E.326 rs765997807 P LP DC 64 5.74 223
232 179433630 c.77226-77229del p.Ser25742ArgfsTer9 E.326 NA P NA DC 61 3.86 196
233 179433665 c.77194C > T p.Gln25732Ter E.326 NA P NA DC 64 5.74 243
234 179433714 c.77145dup p.Ser25716LeufsTer8 E.326 rs1205409465 P LP NA 60 3.91 225
235 179433758 c.77101-77102insT p.Pro25701LeufsTer9 E.326 NA P NA DC 60 5.83 199
236 179433759 c.77100dup p.Pro25701ThrfsTer9 E.326 rs794729343 P P NA 60 3.71 255
237 179433781 c.77077-77078delATinsGA p.Ile25693Asp E.326 NA LP NA DC 60 2.62 256
238 179434010 c.76849-76850insGT p.Ser25617CysfsTer18 E.326 NA P NA DC 60 3.76 243
239 179434060 c.76790-76799del p.Arg25597ThrfsTer9 E.326 NA P NA DC 61 4.08 79
240 179434161 c.76697-76698del p.Leu25566ArgfsTer3 E.326 NA P NA DC 61 2.12 199
241 179434463 c.76393-76396del p.Asn25465Ter E.326 rs727504483 P LP DC 59 2.75 210
242 179434473 c.76383-76386del p.Asn25462LysfsTer4 E.326 rs869312078 P LP DC 61 3.78 202
243 179434486 c.76373del p.Pro25458GlnfsTer9 E.326 rs869025553 P P DC 60 5.02 243
244 179434743 c.76116-76117insA p.His25373ThrfsTer4 E.326 rs869312077 P LP DC 61 3.03 202
245 179435035 c.75824A > G p.Tyr25275Cys E.326 NA LP NA DC 34 5.87 249
246 179435223 c.75633-75636dup p.Val25213CysfsTer25 E.326 rs1553603036 P LP NA 60 4.42 224
247 179435390 c.75469C > T p.Arg25157Ter E.326 rs1553603394 P P DC 64 0.01 220
248 179435609 c.75250C > T p.Arg25084Ter E.326 rs794729286 P P DC 64 4.74 257
249 179435628 c.75231T > A p.Tyr25077Ter E.326 NA P LP DC 63 − 4.72 227
250 179435718 c.75138-75141del p.Lys25046AsnfsTer8 E.326 rs794729340 P P DC 60 4.16 258
251 179435736 c.75123T > A p.Tyr25041Ter E.326 rs753526510 P VUS DC 62 − 0.24 202
252 179435976 c.74880-74883dup p.Pro24962AsnfsTer9 E.326 rs869312116 P LP NA 60 3.48 202
253 179436177 c.74682C > A p.Tyr24894Ter E.326 NA P NA DC 63 1.11 223
254 179436456 c.74403del p.Asn24802MetfsTer20 E.326 NA P NA DC 60 3.495 227
255 179436521 c.74338C > T p.Arg24780Ter E.326 rs794729285 P P DC 64 5.09 202
256 179436553 c.74306dup p.Asn24769LysfsTer2 E.326 rs869312056 P LP NA 59 4.02 202
257 179437013 c.73846C > T p.Arg24616Ter E.326 rs794729284 P P DC 64 3.98 259
258 179437291 c.73568del p.Pro24523HisfsTer4 E.326 rs1559415567 P P DC 59 3.58 260
259 179437750 c.73109G > A p.Trp24370Ter E.326 rs869312115 P LP DC 63 5.19 202
260 179438060 c.72799C > T p.Gln24267Ter E.326 NA P P DC 63 4.17 205
261 179438190 c.72669del p.Asp24224IlefsTer8 E.326 rs727504531 P P DC 59 − 3.04 260
262 179438873 c.71980-71986delGCATATGinsTA p.Ala23994Ter E.326 rs794729338 P P DC 58 4.05 199
263 179439257 c.71602C > T p.Arg23868Ter E.326 rs397517689 P P DC 64 2.44 227
264 179439359 c.71500C > T p.Gln23834Ter E.326 rs730880242 P LP DC 63 5.7 243
265 179439438 c.71421T > A p.Tyr23807Ter E.326 NA LP NA DC 61 − 4.4 205
266 179439506 c.71353A > G p.Thr23785Ala E.326 rs765937279 P NA DC 26.9 5.6 223
267 179439852 c.71007dup p.Gly23670ArgfsTer6 E.326 NA P NA NA 59 3.79 243
268 179439881 c.70978C > T p.Arg23660Ter E.326 rs1553612386 P P DC 63 5.51 243
269 179439924 c.70935del p.Ala23647LeufsTer19 E.326 NA P NA DC 59 5.06 205
270 179439980 c.70879C > T p.Gln23627Ter E.326 rs1575799625 P LP DC 64 4.71 203
271 179440068 c.70791del p.Gly23598GlufsTer8 E.326 rs869312076 P LP DC 58 5.02 202
272 179440084 c.70775del p.Val23592GlyfsTer4 E.326 rs1216966174 LP NA DC 59 3.16 202
273 179440168 c.70690-70691dup p.Thr23565SerfsTer5 E.326 NA P NA NA 59 4.66 199
274 179440565 c.70294G > C p.Val23432Leu E.326 NA VUS NA DC 32 5.76 237
275 179440697 c.70162C > T p.Arg23388Ter E.326 rs781540455 P P DC 63 2.78 261
276 179440982 c.69877G > T p.Gly23293Ter E.326 rs869312114 P LP DC 62 5.87 202
277 179440999 c.69860G > A p.Trp23287Ter E.326 NA P LP DC 63 5.87 248
278 179441016 c.69843del p.Val23282Ter E.326 rs869312075 P LP DC 53 3.28 202
279 179441101 c.69758C > T p.Thr23253Ile E.326 NA LP NA DC 31 5.74 236
280 179441300 c.69671del p.Pro23224HisfsTer10 E.325 NA P NA DC 54 4.37 205
281 179441341 c.69630C > A p.Tyr23210Ter E.325 rs777602537 P LP DC 62 − 5.08 205
282 179441449 c.69522T > G p.Tyr23174Ter E.325 NA P P DC 63 0.22 199
283 179441479 c.69491-69492del p.Val23164GlyfsTer2 E.325 rs869312113 P LP DC 42 − 5.32 202
284 179441510 c.69458-69461dup p.Asn23154LysfsTer14 E.325 rs397517679 P LP NA 57 2.62 80
285 179441550 c.69421-69422insAAAAG p.Gly23141GlufsTer38 E.325 rs1247353236 P LP PO 59 4.64 225
286 179441649 c.69412 + 1G > A I.324 rs869312074 P LP DC NA 5.72 202
287 179442329 c.68824 + 5G > C I.323 rs749639627 VUS VUS DC NA 5.79 199
288 179442329 c.68824G > A p.Glu22942Lys E.323 rs199506676 VUS VUS DC 24.8 4.08 202
289 179443336 c.68329 + 2–68329 + 3insTT I.321 rs536078303 LP VUS NA NA 5.39 246
290 179443339 c.68328A > G p.Thr22776 =  E.321 rs1553619783 VUS VUS DC 43 5.78 199
291 179443889 c.67868T > C p.Ile22623Thr E.320 NA LP NA DC 31 5.98 262
292 179444012 c.67745del p.Val22582AlafsTer10 E.320 NA P NA DC 57 5.68 199
293 179444052 c.67705-67706insLINE1 E.320-I.319 NA P LP NA NA NA 219
294 179444405 c.67519C > T p.Gln22507Ter E.319 rs1559490694 P LP DC 62 5.78 196
295 179444429 c.67495C > T p.Arg22499Ter E.319 rs574660186 P P DC 63 4.63 202
296 179444577 c.67349-2A > C I.318 rs753948675 P P DC NA 5.10 263
297 179444661 c.67348 + 5G > A I.318 rs765587170 VUS VUS PO NA 3.7 199
298 179444666 c.67348C > T p.Gln22450Ter E.318 NA P P DC 62 2.24 264
299 179444735 c.67279C > T p.Arg22427Ter E.318 rs1200988060 P LP DC 63 0.99 265
300 179444855 c.67159del p.Ile22387Ter E.318 rs869312092 LP VUS DC 54 4.48 202
301 179444925 c.67089del p.Lys22364ArgfsTer24 E.318 NA P NA DC 56 1.07 213
302 179445166 c.66940G > T p.Asp22314Tyr E.317 rs768380109 LP VUS DC 24.6 5.25 236
303 179446219 c.66769 + 3–66769 + 7delAAGTAinsT I.316 NA LP NA NA NA 4.29 266
304 179446300 c.66695T > A p.Val22232Glu E.316 NA LP NA DC 31 5.41 204
305 179446471 c.66523-66524del p.Leu22175IlefsTer8 E.316 rs866120156 P NA DC 52 2.96 202
306 179447667 c.65860-65863dup p.Asp21955ValfsTer3 E313 –I.313 NA P NA NA 57 3.88 229
307 179447693 c.65837C > G p.Ser21946Ter E.313 rs775504996 P NA DC 63 5.02 267
308 179448411 c.65498G > C p.Arg21833Thr E.312 NA VUS NA DC 24.7 5.14 205
309 179448433 c.65476G > T p.Glu21826Ter E.312 rs763824247 P LP DC 63 6.02 202
310 179449208 c.65070del p.Ile21691LeufsTer5 E.311 NA P NA DC 57 4.15 199
311 179449453 c.64915C > T p.Arg21639Ter E.310 rs1432889079 P LP DC 63 4.3 242
312 179450018 c.64453C > T p.Arg21485Ter E.309 rs768345594 P LP DC 62 5.25 202
313 179451443 c.64185del p.Ala21396LeufsTer26 E.308 NA LP NA DC 56 − 10 205
314 179452145 c.63794-1G > A I.306 rs2049262622 P LP DC NA 5.98 268
315 179452435 c.63601C > T p.Arg21201Ter E.306 rs764243269 P P DC 63 4.92 202
316 179453427 c.63025C > T p.Arg21009Ter E.304 rs368452607 P LP DC 62 5.27 202
317 179453720 c.62733G > A p.Trp20911Ter E.304 NA P NA DC 63 6.07 243
318 179453730 c.62722C > T p.Arg20908Ter E.304 rs543860009 P P DC 62 − 3.88 224
319 179453946 c.62506C > T p.Arg20836Ter E.304 rs757231565 P VUS DC 63 4.14 202
320 179454235 c.62217T > A p.Tyr20739Ter E.304 rs727503586 P P DC 62 2.63 199
321 179454531 c.61921C > T p.Arg20641Ter E.304 rs878854324 P P DC 63 5.2 268
322 179454576 c.61876C > T p.Arg20626Ter E.304 rs72646846 P P DC 62 5.17 242
323 179454770 c.61682C > G p.Ser20561Ter E.304 rs1114167324 P LP DC 62 4.21 244
324 179454784 c.61668del p.His20557MetfsTer20 E.304 NA LP NA DC 54 − 0.84 223
325 179454957 c.61495C > T p.Arg20499Ter E.304 rs869312112 P LP DC 62 3.97 224
326 179455112 c.61339del p.Ile20447Ter E.304 rs1576086839 P LP DC 52 6.11 243
327 179455162 c.61290T > A p.Cys20430Ter E.304 NA P NA DC 63 6.11 199
328 179455521 c.60931C > T p.Arg20311Ter E.304 rs869312055 P LP DC 62 5.23 202
329 179455598 c.60854-60855insG p.Asn20286LysfsTer13 E.304 NA P LP DC 55 5.535 205
330 179455719 c.60733C > T p.Arg20245Ter E.304 rs1057522256 P P DC 62 4.26 205
331 179455726 c.60726T > A p.Tyr20242Ter E.304 rs145423907 LP NA DC 61 − 1.83 202
332 179455780 c.60672del p.Gly20225GlufsTer7 E.304 NA P NA DC 55 0.045 205
333 179456553 c.59993G > A p.Trp19998Ter E.303 NA P NA DC 62 6.16 79
334 179456704 c.59926 + 1G > A I.302 rs553526525 P P DC NA 6.16 269
335 179456766 c.59865-59866insA p.Gln19956ThrfsTer9 E.302 NA P NA DC 45 4.98 205
336 179456783 c.59848C > T p.Arg19950Ter E.302 rs1559598775 P LP DC 63 5.16 253
337 179457005 c.59627-1G > A I.301 rs869312073 P LP DC NA 6.03 202
338 179457273 c.59460G > A p.Trp19820Ter E.301 rs1250461669 P LP DC 62 6.03 225
339 179457321 c.59411dup p.Arg19805LysfsTer3 E.301 rs755261062 P LP NA 54 2.46 202
340 179457380 c.59352del p.Glu19785SerfsTer2 E.301 rs869312111 P LP DC 53 5.01 202
341 179457644 c.59201-59202del p.Pro19734ArgfsTer5 E.300 rs752948913 P LP DC 52 4.85 257
342 179457977 c.58958G > C p.Arg19653Pro E.299 NA LP NA DC 32 6.16 205
343 179458080 c.58855del p.Glu19619LysfsTer27 E.299 NA LP NA DC 52 6.16 199
344 179458083 c.58852dup p.Arg19618LysfsTer6 E.299 NA LP NA NA 54 1.43 205
345 179458293 c.58732 + 2T > C I.298 rs869312054 P LP DC NA 6.02 202
346 179458407 c.58620del p.Val19541PhefsTer22 E.298 rs1576147786 P LP DC 52 5.63 210
347 179458459 c.58567-58568dup p.Lys19524ValfsTer8 E.298 rs1553650442 P P NA 53 3.26 234
348 179458477 c.58550T > C p.Ile19517Thr E.298 rs72646838 VUS VUS DC 24.8 5.86 226
349 179458850 c.58270G > T p.Glu19424Ter E.297 rs72646837 P P DC 63 6.17 199
350 179458948 c.58172del p.Asp19391AlafsTer45 E.297 rs869312072 P LP DC 52 5.03 202
351 179459155 c.58066dup p.Glu19356GlyfsTer27 E.296 NA LP NA NA 54 4.11 199
352 179459226 c.57995del p.His19332ProfsTer18 E.296 rs397517633 P LP DC 52 6.17 80
353 179460233 c.57847 + 1G > A I.295 rs397517631 LP VUS DC NA 6.07 80
354 179460312 c.57769C > T p.Arg19257Ter E.295 rs794729275 P LP DC 62 5.08 270
355 179460320 c.57761A > G p.Tyr19254Cys E.295 NA VUS NA DC 33 5.98 10
356 179460363 c.57718C > T p.Arg19240Ter E.295 rs2051361827 P LP DC 62 3.94 79
357 179460478 c.57603C > A p.Cys19201Ter E.295 rs1418030810 P LP DC 62 5.17 225
358 179462264 c.57544 + 1G > A I.294 rs2052045274 P LP DC NA 6.06 202
359 179462478 c.57331C > T p.Arg19111Ter E.294 rs72646831 P P DC 62 4.23 228
360 179462682 c.57215del p.Gly19072GlufsTer12 E.293 rs397517628 P LP DC 54 5.87 80
361 179463603 c.56834del p.Gly18945ValfsTer6 E.291 rs869312110 P LP DC 53 4.97 202
362 179463948 c.56572C > T p.Arg18858Ter E.290 rs745376275 P LP DC 62 3.19 271
363 179464342 c.56286T > A p.Tyr18762Ter E.289 NA P NA DC 62 − 1.01 205
364 179464422 c.56206del p.Thr18736ProfsTer8 E.289 rs869312109 P LP DC 49 4.5 202
365 179466193 c.55525-55531del p.Asp18509SerfsTer29 E.287 rs869312052 P LP DC 50 4.37 202
366 179466263 c.55460-55461del p.Lys18487SerfsTer3 E.287 rs1064796230 P P DC 49 4.96 272
367 179466466 c.55351C > T p.Arg18451Ter E.286 rs1440093502 P P DC 62 5.83 205
368 179466515 c.55303-1G > A I.285 rs748369265 P VUS DC NA 6.07 202
369 179466726 c.55269 + 3A > G I. 284 rs72646820 P NA NA NA 4.92 199
370 179468833 c.54581G > T p.Gly18194Val E.282 NA LP NA DC 26.8 6.16 205
371 179469477 c.54339del p.Glu18113AspfsTer10 E.281 rs796122911 P LP DC 51 4.33 205
372 179469738 c.54166C > T p.Arg18056Ter E.280 rs768431507 P LP DC 62 5.05 272
373 179469837 c.54067C > T p.Arg18023Ter E.280 rs1553682168 P P DC 62 4.83 273
374 179469882 c.54022G > A p.Glu18008Lys E.280 NA P NA DC 23.9 5.74 237
375 179469986 c.53918del p.Gly17973GlufsTer18 E.280 rs1486129583 P P DC 51 5.74 199
376 179470140 c.53881 + 1G > T I.279 rs869312051 P LP DC NA 5.63 202
377 179470359 c.53656-53663del p.Pro17886Ter E.279 NA P NA DC 49 3.10 205
378 179471841 c.53488G > T p.Gly17830Ter E.278 rs759231562 P LP DC 62 5.35 202
379 179471975 c.53355G > A p.Trp17785Ter E.278 rs794729273 P P DC 62 5.99 274
380 179472042 c.53288-1G > C I.277 rs1553685927 P LP DC NA 5.99 199
381 179472127 c.53287 + 1G > T I.277 rs1064794266 P VUS DC NA 5.99 199
382 179472156 c.53259del p.Lys17753AsnfsTer7 E.277 rs1389777522 P LP DC 48 5.19 205
383 179472209 c.53206C > T p.Arg17736Ter E.277 rs571702144 P LP DC 62 4.84 275
384 179472611 c.52903C > T p.Arg17635Ter E.276 NA P LP DC 62 5.16 276
385 179473206 c.52406-2A > C I.274 rs753798236 P LP DC NA 5.72 199
386 179473427 c.52311-52312insTTGA p.Gly17438LeufsTer12 E.274 NA P NA DC 46 4.90 205
387 179473511 c.52223-52227dup p.Asp17410ArgfsTer25 E.274 rs869312050 P LP NA 48 5.29 202
388 179473610 c.52128del p.Phe17376LeufsTer27 E.274 rs869312095 LP VUS DC 49 3.55 202
389 179474002 c.52035-52036insTT p.Leu17346PhefsTer4 E.273 rs869312049 P LP DC 51 2.55 202
390 179474121 c.51913-51916del p.Lys17305ValfsTer13 E.273 rs747513278 P LP DC 50 1.81 79
391 179474220 c.51817G > T p.Gly17273Ter E.273 NA P NA DC 61 5.85 205
392 179474816 c.51436 + 1G > A I.271 rs761807131 P P DC NA 5.48 244
393 179474817 c.51436C > T p.Gln17146Ter E.271 rs906494713 P P DC 62 5.48 224
394 179474936 c.51317G > A p.Trp17106Ter E.271 NA P NA DC 61 5.48 199
395 179476484 c.50551 + 1G > A I.268 rs188050862 LP NA DC NA 5.18 202
396 179476569 c.50467C > T p.Gln16823Ter E.268 NA P NA DC 62 5.08 205
397 179477005 c.50247del p.Phe16749LeufsTer15 E.266 rs869312071 P LP DC 56 2.6 202
398 179477082 c.50170C > T p.Arg16724Ter E.266 rs794729265 P P DC 62 2.83 202
399 179477226 c.50026G > T p.Glu16676Ter E.266 NA P NA DC 62 5.71 196
400 179477886 c.49648 + 2del I.264 rs727504851 P P NA NA 5.95 199
401 179478553 c.49458G > A p.Trp16486Ter E.263 rs869312108 P LP DC 61 6.07 202
402 179478665 c.49346-1G > A I.262 rs869312070 P P DC NA 6.07 202
403 179478861 c.49263C > A p.Tyr16421Ter E.262 NA P P DC 58 0.84 205
404 179478865 c.49259del p.Glu16420GlyfsTer23 E.262 NA LP NA DC 55 6.07 199
405 179478953 c.49171C > T p.Arg16391Ter E.262 rs570046043 P LP DC 59 3.38 277
406 179479481 c.48761-1G > C I.260 rs876657665 P LP DC NA 5.63 80
407 179480145 c.48527G > A p.Trp16176Ter E.259 rs869312048 P LP DC 61 5.96 202
408 179480423 c.48405T > A p.Cys16135Ter E.258 rs371722903 LP NA DC 61 4.62 202
409 179480446 c.48382-48383insT p.Lys16128IlefsTer6 E.258 rs771146720 LP NA DC 49 5.76 202
410 179481235 c.48283C > T p.Arg16095Ter E.257 rs374140736 P P DC 61 3.9 202
411 179481846 c.47875 + 1G > A I.255 rs869312047 P LP DC NA 5.76 202
412 179482115 c.47697C > A p.Cys15899Ter E.254 rs373040154 P LP DC 59 2.18 202
413 179482120 c.47692C > T p.Arg15898Ter E.254 rs775186117 P LP DC 61 0.77 202
414 179482230 c.47582G > A p.Ser15861Asn E.254 NA VUS NA DC 28.2 6.08 236
415 179482584 c.47494C > T p.Arg15832Ter E.253 rs751746401 P P DC 62 4.74 232
416 179482662 c.47416del p.Asp15806IlefsTer4 E.253 NA P NA DC 53 5.63 205
417 179483042 c.47142-47143dup p.Glu15715ValfsTer19 E.252 rs869312107 P LP NA 56 4.12 202
418 179483495 c.46782C > A p.Tyr15594Ter E.251 rs397517587 P LP DC 60 4.5999 202
419 179483504 c.46773T > A p.Tyr15591Ter E.251 rs397517586 P LP DC 57 3.1199 80
420 179485012 c.46236C > A p.Cys15412Ter E.248 rs368200299 P LP DC 60 2.73 202
421 179485178 c.46069-46070del p.Met15357ValfsTer4 E.248 rs397517584 P LP DC 51 5.0099 80
422 179485525 c.45812T > G p.Leu15271Ter E.247 rs869312046 P LP DC 60 5.83 202
423 179485581 c.45756dup p.Tyr15253IlefsTer15 E.247 rs869312045 P LP NA 49 5.44 202
424 179485589 c.45732-45748del p.Glu15245PhefsTer17 E.247 NA P NA DC 60 4.23 205
425 179485878 c.45567C > A p.Tyr15189Ter E.246 NA LP NA DC 48 -9.56 278
426 179485878 c.45566dup p.Tyr15189Ter E.246 NA P NA DC 48 0.73 218
427 179486054 c.45391delA p.Ile15131TyrfsTer46 E.246 rs869312091 LP VUS DC 61 3.71 202
428 179486229 c.45322C > T p.Arg15108Ter E.245 rs1060500405 P VUS DC 61 6.17 243
429 179486244 c.45307C > T p.Arg15103Ter E.245 rs397517580 P VUS DC 61 3.01 80
430 179487411 c.44899C > T p.Arg14967Ter E.243 rs727505350 P VUS DC 60 2.65 205
431 179487495 c.44816-1G > A I.242 rs749705939 P VUS DC NA 5.54 210
432 179489209 c.44798G > A p.Cys14933Tyr E.242 NA LP NA DC 28 5.72 279
433 179490056 c.44492G > C p.Gly14831Ala E.241 NA LP NA DC 27.3 5.95 279
434 179494088 c.44364del p.Tyr14789ThrfsTer15 E.240 rs397517576 P VUS DC 54 0.52 205
435 179494967 c.44281 + 1G > A I.239 rs771562210 P VUS DC NA 6.04 202
436 179494968 c.44281C > T p.Pro14761Ser E.239 rs192766485 VUS VUS DC 25.2 6.04 202
437 179494977 c.44272C > T p.Arg14758Ter E.239 rs140743001 P VUS DC 61 3.14 202
438 179495983 c.43792del p.Val14598Ter E.237 rs869312044 P LP DC 49 3.81 202
439 179497082 c.43539-43540insA p.Ala14514SerfsTer10 E.236 NA P NA DC 45 5.51 199
440 179497414 c.43319G > A p.Trp14440Ter E.235 rs372663057 LP VUS DC 60 6.16 202
441 179498055 c.42947-2A > G I.232 rs1553741357 P VUS DC NA 6.17 199
442 179498176 c.42909-42910del p.Cys14303TrpfsTer12 E.232 rs1114167333 P LP DC 56 4.69 244
443 179498592 c.42636del p.Ala14213LeufsTer6 E.231 rs869312106 P LP DC 57 0.47 202
444 179500295 c.41756A > G p.Asp13919Gly E.227 NA VUS NA DC 24.4 6.05 237
445 179500825 c.41473C > T p.Arg13825Ter E.226 rs869312043 P VUS DC 57 0.36 202
446 179500851 c.41447del p.Gly13816AlafsTer18 E.226 rs869312042 P LP DC 47 5.8 202
447 179505267 c.40723 + 1G > T I.221 rs371770198 LP VUS DC NA 0.36 202
448 179506963 c.40558 + 1G > A I.219 rs368219776 LP VUS DC NA 5.55 199
449 179506964 c.40558G > C p.Val13520Leu E.219 rs587780488 P VUS DC 24.9 5.55 199
450 179514543 c.39895 + 1G > T I.211 179514543 LP VUS DC NA 5.58 202
451 179516234 c.39492dup p.Glu13165Ter E.207 NA P NA DC 55 5.22 213
452 179516991 c.39211G > T p.Val13071Phe E.203 rs1334646153 LP VUS DC 22.2 3.64 199
453 179516996 c.39204-39206dup p.Thr13069dup E.203 NA VUS NA NA 60 0.72 210
454 179517379 c.39043 + 1G > T I.201 rs373516134 LP NA DC NA 5.64 202
455 179517464 c.38960–3-38960-1del I.200 rs773282707 LP NA DC NA 5.64 202
456 179523240 c.37579-37582del p.Lys12527HisfsTer419 E.184 NA P NA DC 43 2.07 266
457 179526509 c.37262del p.Lys12421SerfsTer526 E.180 rs867008501 LP NA DC 60 2.65 202
458 179532021 c.35739dup p.Pro11914SerfsTer7 E.162 rs968544783 LP VUS NA 46 0.67 202
459 179532190 c.35692A > T p.Arg11898Ter E.161 rs188568710 LP NA DC 52 4.84 202
460 179535816 c.35308 + 1G > T I.156 rs1423135750 P VUS DC NA 5.92 199
461 179537361 c.34855 + 1G > A I.153 rs377319699 LP VUS DC NA 5.25 202
462 179542346 c.34291 + 2T > C I.146 rs186084940 LP NA DC NA 6.17 202
463 179542507 c.34132del p.Leu11378TyrfsTer90 E.146 rs869025551 LP VUS DC 53 -0.01 243
464 179544666 c.33535del p.Glu11179SerfsTer3 E.140 rs757135518 LP NA DC 47 3.86 202
465 179544980 c.33418 + 1G > A I.139 rs746588865 LP VUS DC NA 4.98 202
466 179547631 c.32888-1del I.134 rs869312041 P VUS DC NA 5.18 202
467 179549632 c.32554 + 1G > C I.130 rs376018437 LP VUS DC NA 5.81 202
468 179549717 c.32471-1G > A I.129 rs371725574 P VUS DC NA 5.81 202
469 179554062 c.31966A > T p.Lys10656Ter E.124 rs368775510 LP NA DC 40 2.7 202
470 179554624 c.31763-1G > A I.121 rs202234172 P VUS DC NA 5.29 227
471 179558336 c.31594G > T p.Val10532Phe E.119 rs763955552 VUS VUS DC 24 5.85 202
472 179558736 c.31427-1G > A I.117 NA P NA DC NA 6.16 199
473 179559325 c.31426 + 1G > C I.117 rs6749719 LP VUS DC NA 6.07 202
474 179559557 c.31347del p.Val10450TyrfsTer25 E.116 NA P NA DC 61 5.26 205
475 179560998 c.30803-2A > G I.113 rs869312089 LP VUS DC NA 5.5 202
476 179563643 c.30683-2del I.111 rs1553868981 LP VUS DC NA 5.57 202
477 179566913 c.30484-30493del p.Thr10162CysfsTer3 E.108 rs727504452 P LP DC 61 3.22 199
478 179567322 c.30292G > T p.Glu10098Ter E.107 NA P NA DC 58 5.72 227
479 179569962 c.29543G > A p.Arg9848Gln E.103 rs773444238 VUS NA DC 24.4 5.82 280
480 179571370 c.29231G > A p.Arg9744His E.102 rs760305440 VUS VUS DC 27.4 6.1 280
481 179571652 c.29071A > T p.Lys9691Ter E.101 rs376189903 LP NA DC 60 6.14 202
482 179571661 c.29062del p.Ala9688GlnfsTer7 E.101 rs869312040 P LP DC 51 5.05 202
483 179571683 c.29042-2A > C I.100 rs6716782 P VUS DC NA 6.16 202
484 179572327 c.28967dup p.Asp9656GlufsTer8 E.100 NA LP NA NA 42 3.43 202
485 179575947 c.28016dup p.Pro9340AlafsTer23 E.97 rs954237155 LP NA NA 54 2.52 202
486 179577042 c.27607G > A p.Glu9203Lys E.95 rs769097909 VUS VUS DC 25.7 5.88 202
488 179580418 c.25723G > A p.Gly8575Arg E.89 rs397517517 VUS VUS DC 24.2 5.33 205
489 179582078 c.25383del p.Lys8461AsnfsTer5 E.88 rs1452206214 LP NA DC 61 -1.14 202
500 179582856 c.24863-24877del p.Asp8288-Ile8293delinsVal E.86 NA LP NA DC 60 3.55 210
490 179583072 c.24749-24761del p.Gly8250ValfsTer8 E.85 NA LP VUS DC 60 2.80 199
491 179583429 c.24498dup p.Val8167CysfsTer13 E.84 rs1282574211 P NA NA 41 3.99 243
492 179583702 c.24227-2A > G I.83 rs373060681 P NA DC NA 5.71 202
493 179584983 c.23386C > T p.Arg7796Ter E.81 rs748111134 LP VUS DC 51 5.91 202
495 179585718 c.23014-2328del p.Ser7672-Ser7676del E.79 NA NA DC 61 2.29 210
496 179586600 c.22788-22790delCATinsG p.Asp7596GlufsTer16 E.78 NA LP NA DC 60 5.08 266
497 179587599 c.22027C > T p.Gln7343Ter E.76 rs886043434 P VUS DC 50 5.8 196
498 179587773 c.21961G > A p.Glu7321Lys E.75 NA P NA DC 23.2 5.95 210
499 179588844 c.21142C > T p.Arg7048Ter E73 rs770579313 LP VUS DC 41 1.61 202
501 179590572 c.20477C > A p.Ser6826Ter E.70 NA P NA DC 42 4.85 214
502 179591958 c.20134del p.Asp6712IlefsTer5 E.69 NA P NA DC 51 6.17 199
503 179596801 c.16895T > C p.Ile5632Thr E.57 rs727504971 VUS VUS DC 23.1 6.17 262
504 179597846 c.16057C > T p.Arg5353Ter E.55 rs267599069 P VUS DC 47 5.29 281
505 179597615 c.16288C > T p.Arg5430Ter E.55 rs772235481 P VUS DC 44 5.29 282
506 179598224 c.15796C > T p.Arg5266Ter E.54 rs372277017 P VUS DC 45 1.13 202
507 179598245 c.15776-1G > T I.53 rs869312094 LP VUS DC NA 5.86 202
509 179598437 c.15679del p.Ile5227SerfsTer29 E.53 NA LP NA DC 59 0.07 202
510 179599054 c.15496 + 1G > A I.52 rs397517481 P VUS DC NA 5.86 210
511 179599091 c.15460G > A p.Gly5154Ser E.52 rs772907723 VUS NA DC 25.5 5.86 205
512 179602835 c.14344-14345delAGinsGA p.Ser4782Asp E.49 NA VUS NA DC 61 5.8 97
513 179602866 c.14314T > C p.Cys4772Arg E.49 NA VUS NA DC 26.6 5.8 205
514 179603088 c.14093-1G > A I.48 rs869312099 P VUS DC NA 5.37 202
515 179603867 c.14092 + 1G > T I.48 NA P NA DC NA 5.62 205
516 179603904 c.14056del p.Thr4686GlnfsTer9 E.48 rs869312104 P LP DC 49 0.97 202
517 179604264 c.13696C > T p.Gln4566Ter E.48 rs775072385 LP VUS DC 36 4.95 199
518 179604345 c.13615-13616insT p.Asn4539IlefsTer5 E.48 NA LP NA DC 61 − 5.64 205
519 179604363 c.13597del p.Glu4533LysfsTer38 E.48 NA LP NA DC 55 3.84 205
520 179604368 c.13592C > G p.Ser4531Ter E.48 NA P P DC 36 4.91 199
521 179604528 c.13432-13433insA p.Cys4478Ter E.48 NA LP NA DC 56 4.66 230
522 179604852 c.13108C > T p.Gln4370Ter E.48 rs267607158 P P DC 35 5.02 97
523 179604950 c.13010del p.Lys4337SerfsTer14 E.48 NA P NA DC 49 3.46 199
524 179598224 c.15796C > T p.Arg5266Ter E.48 rs372277017 P VUS DC 45 1.13 202
525 179605203 c.12757C > T p.Gln4253Ter E.48 rs869312039 P LP DC 38 4.91 202
526 179605317 c.12643C > T p.Gln4215Ter E.48 rs368329612 LP VUS DC 35 2.51 202
527 179605373 c.12587C > A p.Ser4196Ter E.48 rs370912401 P VUS DC 35 3.39 202
528 179605482 c.12478del p.Thr4160ProfsTer8 E.48 NA P VUS DC 40 1.23 205
529 179605512 c.12438-12448del p.Ser4147ThrfsTer20 E.48 rs1553939749 P LP DC 43 − 0.52 244
530 179605752 c.12208G > T p.Glu4070Ter E.48 rs397517830 P LP DC 36 4.73 283
531 179606008 c.11952C > A p.Tyr3984Ter E.48 NA P NA DC 38 0.85 205
532 179606286 c.11674T > C p.Cys3892Arg E.48 NA VUS NA DC 21.9 6.08 205
533 179606303 c.11657del p.Asp3886ValfsTer22 E.48 rs397517826 P VUS DC 60 6.08 80
534 179606362 c.11598C > A p.Tyr3866Ter E.48 NA P NA DC 37 6.08 205
535 179606445 c.11497-11515del p.Met3833CysfsTer3 E.48 NA P VUS DC 60 1.90 205
536 179612657 c.11311 + 5184_11311 + 5194dup I.47 rs869312088 VUS VUS NA NA 0.83 202
537 179611822 c.11312-5174del I.47 rs869312097 VUS VUS DC NA 3.71 202
538 179611814 c.11312-5166C > T I.47 rs376396183 VUS NA DC NA 1.64 202
539 179610598 c.11312-3950del I.47 rs774991940 VUS VUS DC NA 3.58 202
540 179612712 c.11311 + 5139del I.47 rs750893661 VUS NA DC NA 1.18 202
541 179616552 c.11311 + 1299T > A I.47 rs1561044021 P NA DC NA 3.52 205
542 179616684 c.11311 + 1167del I.47 rs869312096 VUS VUS DC NA 2.36 202
543 179613467 c.11311 + 4384dup I.47 rs771985828 VUS VUS DC NA 1.80 202
544 179613188 c.11311 + 4663del I.47 rs781363456 VUS VUS DC NA 3.13 202
545 179613422 c.11311 + 4429G > T I.47 rs372994805| VUS VUS DC NA 4.68 202
546 179613717 c.11311 + 4134dup I.47 rs768458450 VUS VUS NA NA 3.61 202
547 179610611 c.11312-3963G > T I.47 rs148430495 VUS VUS DC NA 5.94 202
548 179614105 c.11311 + 3746C > G I.47 rs763408700 LP VUS DC NA 5.25 202
549 179610383 c.11312-3735G > T I.47 rs143376837 VUS VUS DC NA 6.17 202
550 179614541 c.11311 + 3310G > T I.47 rs372772094 VUS NA DC NA 4.95 202
551 179615375 c.11311 + 2476G > T I.47 rs373480236 VUS NA DC NA 4.66 202
552 179616345 c.11311 + 1506del I.47 rs777963995 VUS NA DC NA 2.31 202
553 179620948 c.11254 + 1G > C I.46 rs192945689 LP NA DC NA 2.21 202
554 179620947 c.11254 + 2T > C I.46 rs199565715 LP VUS DC NA 0.77 202
555 179621013 c.11190C > G p.Tyr3730Ter E.46 rs373667402 LP VUS DC 38 1.99 202
556 179621020 c.11183dup p.Leu3729ThrfsTer9 E.46 rs778172350 P VUS NA 61 3.38 202
557 179621090 c.11113del p.Arg3705AspfsTer2 E.46 rs746386040 LP VUS DC 59 6.16 202
558 179621351 c.10852C > T p.Gln3618Ter E46 rs779064556 LP VUS DC 39 4.31 202
559 179621404 c.10799C > A p.Ser3600Ter E.46 rs374300381 LP VUS DC 40 6.17 202
560 179622355 c.10592C > G p.Ser3531Ter E.45 rs767420661 LP VUS DC 38 5.12 202
561 179622472 c.10475-10476insAGAC p.Lys3493AspfsTer10 E.45 NA LP NA DC 60 5.57 210
562 179623709 c.10303 + 2T > C I.44 rs371596417 P VUS DC NA 6.03 202
563 179629492 c.9749-9750del p.Val3250AlafsTer40 E.42 rs1445295628 LP NA DC 60 1.06 202
564 179629515 c.9727C > T p.Gln3243Ter E.42 rs869312093 LP VUS DC 38 5.69 202
565 179631234 c.9577C > T p.Arg3193Ter E.41 rs746115846 P VUS DC 36 0.59 211
566 179632509 c.9448C > T p.Arg3150Ter E.40 rs146572907 P VUS DC 43 5.11 202
567 179632576 c.9381C > A p.Tyr3127Ter E.40 NA P LP/P DC 36 2.19 205
568 179632841 c.9205del p.Val3069TyrfsTer23 E.39 NA P NA DC 61 2.956 243
569 179632884 c.9164-2A > T I.38 rs777369921 LP VUS DC NA 5.73 202
570 179633403 c.9160G > C p.Glu3054Gln E.38 VUS NA DC 23.2 5.81 249
571 179633431 c.9132del p.Ala3045GlnfsTer14 E.38 rs36059692 LP NA DC 52 3.46 202
572 179634417 c.8891-8892insC p.Thr2965AspfsTer17 E.37 NA P NA DC 59 4.49 205
573 179634544 c.8764G > T p.Glu2922Ter E.37 NA P NA DC 38 5.93 205
574 179634621 c.8687C > T p.Thr2896Ile E.37 rs72647884 VUS VUS DC 27.1 6.06 226
575 179635166 c.8353G > T p.Gly2785Ter E.35 NA P NA DC 36 5.19 243
576 179635211 c.8307-8308del p.Ala2770HisfsTer4 E.35 rs869312037 P VUS DC 61 4.71 202
577 179636183 c.7871dup p.Pro2625AlafsTer9 E.34 rs1553997502 LP NA NA 43 3.86 202
578 179638333 c.7450C > T p.Gln2484Ter E.32 NA P VUS DC 37 5.82 199
579 179639171 c.6820C > T p.Gln2274Ter E.30 rs145649088 P VUS DC 36 − 1.22 202
580 179640236 c.6355G > T p.Glu2119Ter E.28 rs869312098 LP VUS DC 36 5.33 202
581 179640343 c.6248del p.Arg2083LysfsTer56 E.28 rs72647879 P NA DC 61 3.54 236
582 179640343 c.6248G > T p.Arg2083Ile E.28 rs781676050 VUS NA DC 21.9 3.54 236
583 179640344 c.6247del p.Arg2083GlufsTer56 E.28 NA P NA DC 57 3.68 199
584 179640468 c.6123G > A p.Trp2041Ter E.28 179640468 LP NA DC 36 5.19 202
585 179640970 c.5622G > A p.Trp1874Ter E.28 rs777078420 P NA DC 38 5.09 197
586 179641014 c.5577G > C p.Arg1859Ser E.28 NA VUS NA B 23.6 1.41 284
587 179641524 c.5067G > A p.Trp1689Ter E.28 rs375648277 P NA DC 37 5.33 202
588 179641962 c.4724-4728del p.Met1575SerfsTer6 E.27 rs756433029 P VUS DC 60 4.81 202
589 179641976 c.4714C > T p.Arg1572Ter E.27 rs1554008881 P VUS DC 37 3.89 203
590 179643691 c.4118C > A p.Ala1373Glu E.24 NA VUS NA DC 25 5.91 205
591 179644006 c.3913G > A p.Gly1305Arg E.23 NA VUS NA DC 25.9 5.72 205
592 179644174 c.3742-3745del p.Ser1248ProfsTer14 E.23 NA P LP DC 61 5.48 205
593 179647331 c.3101-2A > T I.18 rs1060500467 P VUS DC NA 5.54 199
594 179647533 c.3100G > A p.Val1034Met E18 rs142951505 VUS VUS DC 24 6.17 202
595 179647588 c.3045C > G p.Cys1015Trp E.18 NA VUS NA DC 25 4.09 223
596 179647599 c.3034C > T p.Arg1012Ter E.18 rs397517547 P VUS DC 36 3.03 80
597 179647707 c.2926T > C p.Trp976Arg E.18 rs267607155 P LP DC 24.5 6.17 285
598 179647707 c.2926T > A p.Trp976Arg E.18 rs267607155 P NA DC 24.5 6.17 10
599 179648447 c.2841G > T p.Ser947 =  E.17 rs774074192 LP VUS DC 45 1.07 202
600 179649078 c.2494G > T p.Ala832Ser E.16 rs376133574 P VUS DC 22.3 5.52 202
601 179650574 c.2370 + 1G > T I.14 rs375796806 LP NA DC NA 4.99 202
602 179650717 c.2228C > T p.Ala743Val E.14 rs267607157 VUS P PO 19.42 5.3 97
603 179650808 c.2137C > T p.Arg713Ter E.14 rs727505277 P VUS DC 39 5.99 205
604 179658212 c.1455dup p.Ala486SerfsTer26 E.9 rs758662735 P NA NA 60 3.36 243
605 179659281 c.1246-3del I.7 NA VUS NA DC NA 1.44 199
606 179659646 c.1245 + 3A > G I.7 rs757221300 LP VUS DC NA 5.87 202
607 179613717 c.11311 + 4134dup I.47 rs768458450 VUS VUS NA NA 3.61 202
608 179664231 c.897-898insT p.Thr300TyrfsTer23 E.6 NA P NA DC 58 − 2.83 205
609 179664293 c.835C > T p.Arg279Trp E.6 rs138060032 LP VUS DC 24.5 4.82 191
610 179665172 c.533C > A p.Ala178Asp E.4 NA LP NA DC 23.4 5.16 286
611 179665380 c.325C > T p.Arg109Ter E.4 rs150954246 LP VUS DC 38 3.8 202

Dilated cardiomyopathy

Idiopathic factors are just as significant in the pathophysiology of DCM as acquired variables (such as infections, poisons, or autoimmune diseases). Individuals harboring TTN mutations exhibit a higher susceptibility to developing DCM compared to other forms of the disease36,7274. Idiopathic DCM, including familial and sporadic instances, has a genetic etiology, according to a vast number of studies75,76.

A review study by Chauveau et al.26 reported that Among the TTN mutations linked to DCM, 29 are categorized as nonsense mutations, with three of them occurring in the I-band, while the remaining 26 are located in the A-band. Additionally, 17 frameshift mutations are reported, with three in the I-band and 14 in the A-band. Furthermore, 18 mutations are predicted to affect TTN splicing TTN mutations, particularly truncating variants (TTNtv) in the A-band region and in exons that are highly utilized across the range of titin isoforms, have been shown in a number of studies to be strongly associated with the occurrence of DCM and its severity, accounting for the majority of cases7780.

Although fewer TTNtv have been identified in pediatrics, a study by Fatkin et al.81 on the young population showed that the prevalence between adolescents and adults is similar, indicating that they need to have multiple clinical and genetic risk factors other than a single TTNtv to present with CDM. TTNtv accounts for 25% of familial cases and 18% of sporadic cases of idiopathic dilated cardiomyopathy82. The aforementioned TTNtv have demonstrated a remarkably low prevalence within the broader populace.

According to Fatkin et al. the prevalence of TTNtv is 20% among individuals with DCM, whereas only 0.5% of the general population carries this type of mutation83,84. The aforementioned data aligns with the results of Fang et al.85 survey, which indicated an overall prevalence rate of 17%. The survey also revealed that 23% of cases were familial, while 16% were sporadic. For example, mutations in the A-band are implicated as predominant genetic causes of DCM8688.

An important question is how minor TTNtv carrier populations can avoid presenting with DCM. A convincing explanation comes from a study by Roberts et al.77 showing that the two major adult cardiac titin isoforms, N2BA and N2B, are responsible. These abundant full-length isoforms predominantly contain distal A-band exons, where most DCM-causing TTNtvs are located. However, mutations in proximal exons not present in all TTN transcripts do not cause DCM.

Hypertrophic cardiomyopathy

HCM is the most common inherited cardiomyopathy, frequently arising from sarcomere gene defects. Characterized by arrhythmias and heart failure symptoms due to left ventricular outflow obstruction, diastolic dysfunction, ischemia, or mitral regurgitation, HCM displays autosomal dominant inheritance. Mutations, predominantly missense, in one or more sarcomere genes underlie most cases of HCM. To date, over 1400 mutations have been identified in genes encoding primarily sarcomeric proteins89.

Due to the involvement of a vast range of mutations with distinctive penetrance, a comprehensive understanding of the pathophysiological mechanisms underlying the development of HCM in the presence of sarcomere-related gene mutations is still unfulfilling90. In a study conducted by Ingles et al.91 on 33 genes reported to have an association with HCM, only 8 genes (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL2, and MYL3) were shown to have a definitive impact on occurring HCM. It is estimated that around 30% of HCM patients have unidentified genes responsible for the condition.

The gene MYBPC3, which codes for cardiac myosin-binding protein C, is the most important gene in this process accounting for up to half of the mutations identified9294. In the second place, MYH7, which is responsible for encoding the beta-myosin heavy chain, is present in approximately 15–25% of patients diagnosed with HCM92,95.

In comparison to other plausible etiologies of HCM, the presence of the TTN gene mutations exhibits a relatively low ranking. Several studies reported four TTN variants resulting in gain-of-function effects in HCM patients. Satoh et al.96 found a Z-line mutation (c.2219G > T, p.Arg740Leu) which increases alpha-actinin binding affinity. Two studies, similarly, reported a mutation in cardiac-specific N2B exon 49 [c.12347C > A, p.Ser4116Tyr] resulting in increased TTN binding to DRAL/FHL297,98. The TTN/T-CARP interaction is reinforced by the presence of two mutations located in exons 103 and 104-N2A, c.29231G > A, p.Arg9744 (initially reported as p.Arg8500His) and c.29543G > A, p.Arg9848Gln (initially reported as p.Arg8604Gln), as reported by Arimura et al.99. Lopes et al., in a different study, reported 219 TTN variants in a population of unrelated HCM patients. Of those 87% coexisted with mutations in HCM-related sarcomere gene defects and only 13% were found isolated26,100. However, in a study on 90 HCM patients and their close relatives, the mutation screening revealed no clue of the TTN gene being involved in their pathogenesis101. Similarly, Martijn Bos et al.102 detected no TTN mutation in a group of 389 HCM patients.

Restrictive cardiomyopathy

Restrictive cardiomyopathy is a diverse collection of disorders that primarily affect the myocardium, with a lesser impact on the endocardium and sub-endocardium. It is characterized by increased stiffness of the ventricular walls leading to restricted ventricular filling, which consequently results in significant diastolic dysfunction, elevated end-diastolic pressure, and reduced ejection fraction in the advanced stages103,104.

The epidemiology of this disease is not well understood in the literature due to classification and etiology reporting difficulties, but RCM is surely the least common form of cardiomyopathies, representing 2% to 5% of cases2,105. There are a variety of diseases that can cause it, including infiltrative disorders like amyloidosis and sarcoidosis, non-infiltrative disorders like diabetes and scleroderma, storage disease, endomyocardial disease, and cardiotoxicity brought on by chemotherapy or radiotherapy2.

Numerous genes that encode non-sarcomeric, sarcomeric, and sarcomere-associated proteins have been shown to play a role in RCM occurrence and inheritance. Examples include the TTR gene variants (V122I; I68L; L111M; T60A; S23N; P24S; W41L; V30M; V20I) and APOA1 gene in Amyloidosis; GLA gene in Fabry disease; GBA gene in Gaucher disease; HAMP, HFE, HFE2, HJV, PNPLA3, SLC40A1, TfR2 genes in Hereditary hemochromatosis; NPC1, NPC2 and SMPD1 genes in Niemann-Pick disease; AG3, CRYAB, DES, DNAJB6, FHL1, FLNC, LDB3, and MYOT genes in Myofibrillar myopathies; ABCC6 gene in Pseudoxanthoma elasticum; ACTC, MHC, TNNT2, TNNI3, TNNC1, DES, MYH, MYL3, and CRYAB genes in Sarcomeric protein disorders; WRN gene in Werner's syndrome; and BMP5, BMP7 and TAZ genes in Endocardial fibroelastosis1,2,106,107.

The role of TTN variants in RCM is relatively unknown and more investigations are needed to illustrate this fact. In 2013, for the first time, Peled et al. discovered a novel missense mutation (c.50057A > G, p.Tyr16686Cys) in the intersection of the A and I regions of Titin (IA junction). This mutation was found to play a role in early-onset familial RCM, which affected six members of a family. They asserted that Titin determines the sarcomere's resting tension, and their study offers genetic proof of its critical significance in diastolic function.36,108,109. In another study, Kizawa et al.110 found another novel TTN missense mutation (c.22769C > A, p.P7590Q) in a young boy with neurofibromatosis type 1, which is thought to be responsible for RCM co-occurrence. This de novo mutation is also located at the IA junction.

Arrhythmogenic right ventricular cardiomyopathy (ARVC)

Arrhythmogenic cardiomyopathy (ACM), is a rare and potentially life-threatening heart muscle disease with a prevalence of approximately 1:1000 to 1:5000111113. Although asymptomatic in most instances upon diagnosis, it is characterized by palpitations, atypical chest pain, and syncope caused by cardiac arrhythmia, mostly in the right ventricle, which leads to the term “arrhythmogenic right ventricular cardiomyopathy (ARVC)”114116. This condition is characterized by the progressive replacement of the myocardium with fibrofatty tissue, a process that begins at the epicardium, turns into a regional wall motion abnormality, and eventually spreads throughout the myocardium, resulting in the development of ventricular dilation and multiple aneurysms117119.

The primary etiology of ACM is attributed to mutations in genes that encode desmosomal proteins, mainly with an autosomal dominant pattern of inheritance and over 30 percent of cases being familial. JUP, DSP, PKP2, DSG2, and DSC2 genes are the most probable to be involved. LMNA and TMEM43 are two additional genes that have been linked to the nuclear envelope, and there are genes that are shared with other cardiomyopathies (such as DES, PLN, TGFB3, TTN, and SCN5A)112,120123.

Several studies have been conducted on the role of TTN variations in the pathogenesis of ARVC. In one study by Taylor et al.121, eight novel TTN variants (c.C29453T, p.Thr2896Ile; c.A97341G, p.Tyr8031Cys; c.C106734T, p.His8848Tyr; c.T215598C, p.Ile16949Thr; c.G221380A, p.Ala18579Thr; c.G226177T, p.Ala19309Ser; c.C272848T, p.Pro30847Leu; c.T281801C, p.Met33291Thr) were identified in seven unrelated families with well-established ARVC. They claimed the most prominent variant was Thr2896Ile, showing strong segregation evidence. In another investigation on the phenotype-genotype relationship of ARVC in 39 families, Brun et al.123 found 13% of their studied population, had rare TTN variants (c.29453C > T, p.Thr2896Ile; 281801T > C, Ala18579Thr; c.221380AG > T, p.Met33291Thr; c.226177G > T, p.Ala19309Ser; c.97341G > A, p.Tyr8031Cys; c.272848C > T, p.Pro30847Leu). In the investigation of the levels of Novex variant expression in human hearts with cardiomyopathies, Chen et al.124 came to the conclusion that this factor was altered in cardiomyopathies such as DCM and ARVC.

Other muscle disorders

Beyond cardiomyopathies, TTN mutations are implicated in numerous non-cardiac muscle disorders. According to Chauveau et al.26, 39 TTN mutations have been identified so far in four pure skeletal muscle myopathies: limb girdle muscular dystrophy type 2J (LGMD2J), late-onset autosomal dominant tibial muscular dystrophy (TMD), hereditary myopathy with early respiratory failure (HMERF), and congenital centronuclear myopathy (CNM). Additional conditions associated with TTN variants include early adult onset recessive distal titinopathy, early-onset myopathy with fatal cardiomyopathy, multi-minicore disease with heart disease, childhood-juvenile Emery-Dreifuss-like phenotype without cardiomyopathy, and adult-onset recessive proximal muscular dystrophy125.

Frequent TTN-related molecules in cardiomyopathies

There are several molecules which play a considerable role in the signaling and function of Titin. In the present study, we evaluated their interaction with Titin and consider their interaction with Titin in the pathogenesis of cardiomyopathies (Fig. 4).

Figure 4.

Figure 4

Illustration of the intricate signaling pathway implicated in the development of cardiomyopathy associated with Titin and other related proteins.

Calpain

Calpain, a family of Ca2+-dependent cytosolic cysteine proteases, plays a role in various cellular processes, including cell death and tissue remodeling126. It has been implicated in several cardiac conditions, including dilated cardiomyopathy, alcohol-related cardiomyopathy, chemotherapy-induced cardiomyopathy, arrhythmogenic cardiomyopathy, and diabetic cardiomyopathy127131. Sustained over-expression of calpain-2, specifically in cardiomyocytes, induced age-dependent dilated cardiomyopathy in mice127.

MuRF1/2

Muscle ring finger (MuRF) proteins are muscle-specific ubiquitin E3 ligases that regulate the ubiquitin–proteasome system and modulate cardiac mass and function132. A study by Su et al.133 showed a higher prevalence of rare MuRF1 and MuRF2 variants in hypertrophic cardiomyopathy (HCM) patients compared to controls. HCM patients with these rare MuRF1/2 variants were younger and had greater maximum left ventricular wall thickness than those without the variants133.

ERK

ERK (Extracellular signal-regulated kinase) plays a central role in cardiac physiology and hypertrophy134136. ERK signaling is implicated in various forms of cardiac hypertrophy and progression to heart failure135. Altered ERK activity has been linked to HCM134. ERKs are considered key regulators of cardiac hypertrophy since they are activated by most, if not all, stress stimuli known to induce hypertrophic growth137. Studies show that concurrently eliminating ERK1 and ERK2 in the heart leads to eccentric hypertrophy with chamber dilatation and cardiomyocyte elongation136.

NFAT

Nuclear factor of activated T-cells (NFAT) transcription factors are implicated in developing cardiac hypertrophy and heart failure138. Activation of NFAT signaling induces pathological remodeling of cardiomyocytes139. Inhibition of NFAT prevents maladaptive cardiac growth in response to stress stimuli140. Targeting NFAT signaling pathways may be therapeutic for specific cardiomyopathies141,142.

FHL1/2

Mutations in the four-and-a-half LIM domain proteins 1 and 2 (FHL1 and FHL2) are associated with reducing body myopathy and hypertrophic cardiomyopathy143. FHL1/2 are involved in sarcomere assembly and signaling and highly expressed in skeletal and cardiac muscle144,145. Abnormal FHL proteins cause structural defects in sarcomeres and impaired muscle contraction146. FHL1 mutations account for 8–10% of familial reducing body myopathy cases which can include cardiomyopathy147,148. Chu et al.145 reported FHL1 upregulation in Cardiac ventricles of two mouse models with cardiac hypertrophy and dilated cardiomyopathy.

MARP

Muscle ankyrin repeat proteins (MARPs), including CARP, Ankrd1/2, and DARP, are a family of ankyrin repeat proteins expressed in striated muscle that are induced by stress. MARPs play regulatory roles in the muscle stress response and hypertrophy pathogenesis149. Overexpression of CARP is linked to dilated cardiomyopathy in animal models150. In addition, Patients with hypertrophic, dilated, ischemic, and arrhythmogenic right ventricular cardiomyopathy are more likely to develop CARP upregulation62,149,151,152. Missense mutations in the Ankrd1 gene have recently been identified as the cause of dilated and hypertrophic cardiomyopathy in humans99,149,153,154. CARP modulation of gene expression may contribute to adverse ventricular remodeling in cardiomyopathies155.

Nbr1

Neighbor of BRCA1 gene 1 (Nbr1) is a cardiac-expressed protein involved in autophagy, protein degradation and sarcomere organization156. Several studies suggested role of Nbr1 overexpression in developing dilated cardiomyopathy157159.

SRF

Serum response factor (SRF) is a transcription factor regulating cardiac gene expression important for adaptation to stress160. SRF inactivation in animal models causes dilated cardiomyopathy160. SRF likely controls genes involved in maintaining normal cardiac structure and function161. Alterations in SRF-dependent gene regulation may underlie some cardiomyopathies162.

MLP

Muscle LIM protein (MLP) is involved in mechanosensing and stretch response in cardiomyocytes163. MLP knockout mice develop dilated cardiomyopathy164. Loss of MLP leads to impaired myocyte stretch signaling and contraction165. MLP deficiency is implicated in some forms of familial dilated cardiomyopathy166.

MyBP-C

Myosin binding protein C (MyBP-C) is important for maintaining sarcomere structure and regulating muscle contraction167. Mutations in cardiac MyBP-C are the most common cause of hypertrophic cardiomyopathy168. Abnormal MyBP-C disrupts sarcomere function leading to reduced contractility and development of hypertrophy169.

Myomesin

Myomesin is a major component of the sarcomeric M-band involved in thick filament organization170. Myomesin mutations have been associated with hypertrophic and dilated cardiomyopathy in some patients171. Altered myomesin disrupts myofilament integrity and crosstalk resulting in cardiomyocyte damage172.

Sh2 domain

Src homology 2 (SH2) domains mediate protein–protein interactions in cell signaling cascades173. Mutations affecting SH2 domains of ZASP/Cypher proteins are linked to dilated cardiomyopathy174. Disruption of ZASP protein interactions likely impairs structural organization and signaling processes in cardiac muscle175.

Ras

Ras family small GTPases regulate growth and survival signaling176. Constitutively active mutant Ras expressed in mouse hearts causes dilated cardiomyopathy phenotype177. Hyperactive Ras leads to increased cell growth, altered metabolism and myocardial dysfunction178.

Raf

Raf kinases act downstream of Ras to activate MEK/ERK signaling involved in cell proliferation and differentiation179. Cardiac-specific expression of activated Raf in transgenic mice induces dilated cardiomyopathy180.

Alpha actinin

Alpha-actinin-2 (ACTN2) is the sole muscle isoform of α-actinin expressed in cardiac muscle181. Previous studies have shown that novel ACTN2 variants are associated with familial HCM182. Previous studies have shown that novel ACTN2 variants are associated with181. Mutations in ACTN2 have been linked to mild to moderate forms of HCM181. Disease modeling of an ACTN2 mutation has guided clinical therapy in HCM183. Genome-wide analyses have also demonstrated that ACTN2 mutations can cause HCM184.

Filamin C

In striated muscle, different forms of the Ank3 gene product (ankyrins-G) are produced due to tissue-specific alternative splicing. These ankyrins-G have a shared segment called the Obscurin/Titin-Binding-related Domain (OTBD), which is consistent across ankyrin genes and links obscurin and Titin to Ank1 gene products. Previously, it was suggested that the OTBD segment in ankyrins plays a unique role in muscle protein interactions. In recent studies, muscle proteins that can bind to the ankyrin-G OTBD were identified as plectin and filamin C, both crucial for muscle development and structure. These three proteins (ankyrin-G, plectin, and filamin C) are found together in skeletal muscle and are observed in the same regions (costameres) of adult muscle fibers185. Filamin C (FLNC) is an actin-binding cytoskeletal protein encoded by the FLNC gene, instrumental in maintaining sarcomeric integrity. While first identified as causative in myofibrillar myopathy, recent evidence reveals a key role for FLNC in cardiomyopathy pathogenesis. Truncated FLNC variants predominate in DCM and ARVC, while non-truncated forms are more common in hypertrophic cardiomyopathy and restrictive cardiomyopathy. The primary mechanisms underlying FLNC-associated cardiomyopathies are protein aggregation from non-truncating mutations and haploinsufficiency resulting from filamin C truncation186.

Nebulin

Members of the nebulin protein family, which includes nebulin, nebulette, LASP-1, LASP-2, and N-RAP, are diverse in size, expression pattern, and function, but they all bind to actin. While nebulin's presence in the heart is minimal, nebulette stands out for its heart-specific expression. Crucially, mutations in the nebulette gene have been linked to DCM. Transgenic mice with these mutations display symptoms that mirror this human heart condition187.

Mechanosensory signaling mechanism of titin

Titin plays a crucial role in mechanosensing, which is the ability of cells to sense mechanical forces. When muscles undergo stretch or contraction, Titin is subjected to mechanical stress and strain. This mechanical deformation of Titin can trigger mechanotransduction pathways, converting mechanical signals into biochemical signals. These pathways involve the activation of various signaling molecules, including kinases, phosphatases, and transcription factors, leading to cellular responses such as gene expression changes, protein synthesis, and remodeling of the contractile apparatus188 (Fig. 4).

Z disk region

The Z-disc region of Titin consists of Z-repeats and Ig-domains Z1 and Z2, forming the very NH2-terminal end. Telethonin connects two Titin molecules from one sarcomere, which is essential for sarcomere integrity. Cardiac telethonin undergoes phosphorylation by various kinases and mutations in telethonin are linked to various cardiac cardiomyopthies. Some mutations might disrupt its phosphorylation and, thus, its function. Telethonin interacts with the muscle LIM protein (MLP), together with actinin, MLP, Titin, and telethonin might form a complex that senses mechanical stretch50.

N2-B region

Cardiac-specific N2-B region which made up of Ig-domains can bind to two isoforms of the LIM domain protein, FHL-1 and FHL-2 which respond strongly to biomechanical stress, and can move to the nucleus to work as transcriptional co-activators. FHL-2's activity could suppress calcineurin, inhibiting pathological cardiac growth while FHL1 might connect to the MAPK signaling cascade. Under non-stimulating conditions, MEK1/2 anchors ERK in the cytoplasm, but after activation, it shifts ERK to the nucleus, activating specific transcription factors.

ERK2 has been seen to phosphorylate Titin's N2-Bus sequence, potentially affecting myofilament stiffness. Knocking down FHL1 in mice changed myofibrillar responsiveness and reduced hypertrophic signaling. Hence, the N2-B/FHL-1/MAPK complex might be a key biomechanical stress sensor in cardiomyocytes44,58,137,189,190.

M-band region

The M-band region of Titin, particularly the Titin kinase (TK) domain, is a significant area for hypertrophic signaling. TK's conformational changes, suggesting its role as a biomechanical stress sensor, might be biomechanically induced. When activated, TK interacts with Nbr1, forming a complex with p62/SQSTM1 and muscle-specific ubiquitin E3 ligases MuRF1, MuRF2, and MuRF3.

The TK signaling complex with the zinc-finger protein nbr1 is involved in mechanically-activated signaling. Nbr1 directs the ubiquitin-binding protein p62/SQSTM1 to sarcomeres where it interacts with the muscle-specific E3 ligase MuRF2, linked to the transactivation domain of serum response factor (SRF). Mechanical inactivity triggers MuRF2 nuclear migration, decreasing nuclear SRF and suppressing transcription. Mutations in the TK domain disrupt this mechanism, resulting in hereditary muscle disorders50,191.

Of course, it should be considered that subsequent investigations have proposed that TK functions as an inactive pseudokinase, utilizing its kinase scaffold to recruit MuRF1 for biomechanically regulated autophagy pathways192,193.

The hotspot region for TTN variants

In a quantitative analysis of variants, it was revealed that the most common hotspot region for variants is the exon number 326 which is located in the A band as the Fibronectin type III domain194 and has a more considerable number of variants compared to other parts which are followed by exon 358 (containing Ig-like domain and Fibronectin type III domain)194 and exon 48. Among the introns, intron 47 can be considered as the hotspot point for variants compared to other introns194 (Fig. 2).

Discussion

This study identified 611 distant TTN variants, classified as pathogenic, likely pathogenic, or variants of uncertain significance (VUS). These variants predominantly occurred in exon fragments (85%), with 69.6% classified as pathogenic, 21.6% as likely pathogenic, and 8.8% as VUS in ACMG classification. Substitutions accounted for 57.25% of the variants, deletions for 29.62%, duplications for 7.36%, and insertions for 5.72%. The majority of pathogenic variants were located after exon 326, exhibiting higher CADD scores. GERP scores indicated conservity among gene nucleotides, with most variants having notable GERP scores. Exons at the end of the gene displayed higher average CADD scores. VUS variants had lower CADD scores.

TTN, a functionally and structurally essential component of striated muscles, is the largest human protein10,11. It consists of four functional regions including N-terminal, I-band, A-band, and C-terminal26. The N-terminal is an anchor for Z-disk, which not only plays a crucial role in myofibril assembly and stability but also in sensory functions, protein interactions, and signaling pathways3240. Owing to alternative splicing, I-band is the central adopter specializing titin for specific tissues. The elasticity of the titin is mostly attributable to the I-band unit38,41. On the contrary to the I-band, the A-band is not extensible and is a stable anchor for myosin fibers. It also interacts with various proteins contributing to protein turnover at the sarcomeric center38,41. The M-band constitutes the myomesin-titin-myosin and also senses and responds to the metabolic stress50.

The passive tension of the human heart is determined by the pattern of expression of titin isoforms. Expression of more elastic and larger I-band isoforms is associated with lower titin passive tension. The ratio of N2BA and N2B isoform expression determines the stiffness of cardiomyocytes60. If the balance between N2BA and N2B is disrupted and N2BA isoform upregulates, the decrease in passive stiffness of the heart brings about DCM30,31,62,63. Mutations in the TTN gene are speculated to bring about cardiomyopathies through disruption in sarcomere assembly or contractility, or triggering aberrant splicing30,31,62,63.

In accordance with our study, another study demonstrated that most TTN variants associated with TTN are located in the A-band unit followed by the I-band26. Truncating TTN variants located in the A-band region are the predominant TTN mutations associated with the DCM7780,8688. The N2BA and N2B isoforms contain distal exons of the A-band. Therefore, variants affecting the A-band and its distal regions are more frequently reported to manifest with DCM, while, the N-terminal mutations are less likely to bring about DCM, considering they are not expressed in N2BA and N2B isoforms77.

TTN mutations are not as prominent in HCM compared to DCM. HCM is speculated to arise from mutations in sarcomere-related genes; nonetheless, the exact pathophysiology of HCM is yet to be found90. Mutations in Sarcomeric, non-sarcomeric, and sarcomere-associated proteins are proposed to contribute to the development and inheritance of RCM1,2,106,107. Although the role of TTN variants in the pathogenesis and inheritance of RCM is not fully understood, it is known that titin is the key determinant of sarcomere resting tension and diastolic function36,108,109. Similarly, the impact of TTN mutations in ARVC is not yet determined. However, rare TTN variants have been reported in probands and family members of ARVC patients121,123.

The most common hotspot for mutations is exon 326 of the TTN gene which is located in the A-band region. Notably, the exon containing the most TTN variants is 358, also in the A-band. As presented, the TTN variants were primarily located in a small number of exons which are mostly situated at A- and I-bands. This localization of TTN variants might stem from the higher fatality of mutations in other locations, or conversely, these mutations do not exhibit clinical symptoms to prompt genetic evaluation.

The conservatory TTN exons seem to be associated with the pathogenicity of the variants This might be explained, at least in part, by the theory that more conserved nucleotides could be essential, and mutations affecting this nucleotide could be more pathogenic.

Acknowledgements

We appreciate the support from Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.

Author contributions

A.G., E.K. and S.K. wrote the initial manuscript. S.K., M.M., A.F., and M.H. contributed to the research design. S.K. made a comprehensive revise. S.G.H., M.H., M.H.M., and N.N. contributed to the collection of data. All the authors read and approved the final manuscript.

Funding

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Data availability

The datasets generated and/or analyzed during the current study are available in the the public archive of interpretations of clinically relevant variants (ClinVar) repository, (https://www.ncbi.nlm.nih.gov/clinvar/?term=TTN%5Bgene%5D&redir=gene).

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Ormerod, J.O. and A. Yavari, Cardiomyopathies. Medicine, 2022.
  • 2.Ciarambino T, et al. Cardiomyopathies: An Overview. Int. J. Mol. Sci. 2021;22(14):7722. doi: 10.3390/ijms22147722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Maron BJ, et al. Contemporary definitions and classification of the cardiomyopathies: An American heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation. 2006;113(14):1807–1816. doi: 10.1161/CIRCULATIONAHA.106.174287. [DOI] [PubMed] [Google Scholar]
  • 4.Elliott P, et al. Classification of the cardiomyopathies: A position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 2008;29(2):270–276. doi: 10.1093/eurheartj/ehm342. [DOI] [PubMed] [Google Scholar]
  • 5.Maurizia Grasso B, Favalli V, Riccardo Bellazzi M. The MOGE (S) classification of cardiomyopathy for clinicians. J. Am. College Cardiol. 2014;64(3):304–318. doi: 10.1016/j.jacc.2014.05.027. [DOI] [PubMed] [Google Scholar]
  • 6.Brandenburg R. Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br. Heart J. 1980;44:672–673. doi: 10.1136/hrt.44.6.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Czepluch FS, Wollnik B, Hasenfuß G, (2018) Genetic determinants of heart failure: facts and numbers, Wiley Online Library. Cham. 211-217 [DOI] [PMC free article] [PubMed]
  • 8.Cannata A, et al. Myocarditis evolving in cardiomyopathy: When genetics and offending causes work together. Eur. Heart J. Suppl. 2019;21(Suppl B):B90–b95. doi: 10.1093/eurheartj/suz033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.The Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–678. doi: 10.1038/nature05911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Gerull B. The rapidly evolving role of titin in cardiac physiology and cardiomyopathy. Can. J. Cardiol. 2015;31(11):1351–1359. doi: 10.1016/j.cjca.2015.08.016. [DOI] [PubMed] [Google Scholar]
  • 11.Tabish AM, et al. Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy. Biophys. Rev. 2017;9(3):207–223. doi: 10.1007/s12551-017-0265-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Gerull B, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 2002;30(2):201–204. doi: 10.1038/ng815. [DOI] [PubMed] [Google Scholar]
  • 13.Arbustini E, et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur. J. Heart Fail. 2006;8(5):477–483. doi: 10.1016/j.ejheart.2005.11.003. [DOI] [PubMed] [Google Scholar]
  • 14.Merlo M, et al. Poor prognosis of rare sarcomeric gene variants in patients with dilated cardiomyopathy. Clin. Transl. Sci. 2013;6(6):424–428. doi: 10.1111/cts.12116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Richards S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. 2015;17(5):405–424. doi: 10.1038/gim.2015.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Richards S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. 2015;17(5):405–423. doi: 10.1038/gim.2015.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kircher M, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–315. doi: 10.1038/ng.2892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Rentzsch P, et al. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–d894. doi: 10.1093/nar/gky1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Rentzsch P, et al. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13(1):31. doi: 10.1186/s13073-021-00835-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Schubach M, et al. CADD v1.7: Using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res. 2024;52(D1):D1143–d1154. doi: 10.1093/nar/gkad989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Schwarz JM, et al. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods. 2010;7(8):575–576. doi: 10.1038/nmeth0810-575. [DOI] [PubMed] [Google Scholar]
  • 22.Steinhaus R, et al. MutationTaster2021. Nucleic Acids Res. 2021;49(W1):W446–w451. doi: 10.1093/nar/gkab266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Šimčíková D, Heneberg P. Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases. Sci. Rep. 2019;9(1):18577. doi: 10.1038/s41598-019-54976-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Huber CD, Kim BY, Lohmueller KE. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. PLoS Genet. 2020;16(5):e1008827. doi: 10.1371/journal.pgen.1008827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Tskhovrebova L, Trinick J. Titin: Properties and family relationships. Nat. Rev. Mol. Cell Biol. 2003;4(9):679–689. doi: 10.1038/nrm1198. [DOI] [PubMed] [Google Scholar]
  • 26.Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum. Mutat. 2014;35(9):1046–1059. doi: 10.1002/humu.22611. [DOI] [PubMed] [Google Scholar]
  • 27.Tskhovrebova L, et al. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature. 1997;387(6630):308–312. doi: 10.1038/387308a0. [DOI] [PubMed] [Google Scholar]
  • 28.LeWinter MM, Granzier H. Cardiac titin: A multifunctional giant. Circulation. 2010;121(19):2137–2145. doi: 10.1161/CIRCULATIONAHA.109.860171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lahmers S, et al. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ. Res. 2004;94(4):505–513. doi: 10.1161/01.RES.0000115522.52554.86. [DOI] [PubMed] [Google Scholar]
  • 30.Cazorla O, et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ. Res. 2000;86(1):59–67. doi: 10.1161/01.RES.86.1.59. [DOI] [PubMed] [Google Scholar]
  • 31.Neagoe C, et al. Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J. Muscle Res. Cell Motil. 2003;24(2):175–189. doi: 10.1023/A:1026053530766. [DOI] [PubMed] [Google Scholar]
  • 32.Knoll R, Buyandelger B, Lab M. The sarcomeric Z-disc and Z-discopathies. J. Biomed. Biotechnol. 2011;2011:569628. doi: 10.1155/2011/569628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Knoll R, Hoshijima M, Chien KR. Muscle LIM protein in heart failure. Exp. Clin. Cardiol. 2002;7(2–3):104–105. [PMC free article] [PubMed] [Google Scholar]
  • 34.Knöll R, et al. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circ. Res. 2010;106(4):695–704. doi: 10.1161/CIRCRESAHA.109.206243. [DOI] [PubMed] [Google Scholar]
  • 35.Clark KA, et al. Striated muscle cytoarchitecture: An intricate web of form and function. Ann. Rev. Cell Dev. Biol. 2002;18(1):637–706. doi: 10.1146/annurev.cellbio.18.012502.105840. [DOI] [PubMed] [Google Scholar]
  • 36.Gigli M, et al. A review of the giant protein titin in clinical molecular diagnostics of cardiomyopathies. Front Cardiovasc. Med. 2016;3:21. doi: 10.3389/fcvm.2016.00021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Granzier HL, Labeit S. Titin and its associated proteins: The third myofilament system of the sarcomere. Adv. Protein Che. 2005;71:89–119. doi: 10.1016/S0065-3233(04)71003-7. [DOI] [PubMed] [Google Scholar]
  • 38.Kontrogianni-Konstantopoulos A, et al. Muscle giants: Molecular scaffolds in sarcomerogenesis. Physiol. Rev. 2009;89(4):1217–1267. doi: 10.1152/physrev.00017.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Linke WA. Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc. Res. 2008;77(4):637–648. doi: 10.1016/j.cardiores.2007.03.029. [DOI] [PubMed] [Google Scholar]
  • 40.Miller MK, et al. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J. Mol. Biol. 2003;333(5):951–964. doi: 10.1016/j.jmb.2003.09.012. [DOI] [PubMed] [Google Scholar]
  • 41.Trombitas K, et al. Titin extensibility in situ: Entropic elasticity of permanently folded and permanently unfolded molecular segments. J. Cell Biol. 1998;140(4):853–859. doi: 10.1083/jcb.140.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Helmes M, Trombitas K, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circ. Res. 1996;79(3):619–626. doi: 10.1161/01.RES.79.3.619. [DOI] [PubMed] [Google Scholar]
  • 43.Hojayev B, et al. FHL2 binds calcineurin and represses pathological cardiac growth. Mol. Cell. Biol. 2012;32(19):4025–4034. doi: 10.1128/MCB.05948-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Hojayev B, et al. FHL2 binds calcineurin and represses pathological cardiac growth. Mol. Cell Biol. 2012;32(19):4025–4034. doi: 10.1128/MCB.05948-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Granzier HL, Labeit S. The giant protein titin: A major player in myocardial mechanics, signaling, and disease. Circ. Res. 2004;94(3):284–295. doi: 10.1161/01.RES.0000117769.88862.F8. [DOI] [PubMed] [Google Scholar]
  • 46.Witt CC, et al. Induction and myofibrillar targeting of CARP, and suppression of the Nkx2.5 pathway in the MDM mouse with impaired titin-based signaling. J. Mol. Biol. 2004;336(1):145–54. doi: 10.1016/j.jmb.2003.12.021. [DOI] [PubMed] [Google Scholar]
  • 47.Obermann WM, et al. Molecular structure of the sarcomeric M band: Mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J. 1997;16(2):211–220. doi: 10.1093/emboj/16.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Gautel M, et al. A calmodulin-binding sequence in the C-terminus of human cardiac titin kinase. Eur. J. Biochem. 1995;230(2):752–759. [PubMed] [Google Scholar]
  • 49.Musa H, et al. Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J. Cell Sci. 2006;119(20):4322–4331. doi: 10.1242/jcs.03198. [DOI] [PubMed] [Google Scholar]
  • 50.Kotter S, Andresen C, Kruger M. Titin: central player of hypertrophic signaling and sarcomeric protein quality control. Biol. Chem. 2014;395(11):1341–1352. doi: 10.1515/hsz-2014-0178. [DOI] [PubMed] [Google Scholar]
  • 51.McElhinny AS, et al. Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J. Cell Sci. 2004;117(15):3175–3188. doi: 10.1242/jcs.01158. [DOI] [PubMed] [Google Scholar]
  • 52.Beckmann JS, Spencer M. Calpain 3, the “gatekeeper” of proper sarcomere assembly, turnover and maintenance. Neuromusc. Disord. 2008;18(12):913–921. doi: 10.1016/j.nmd.2008.08.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Granzier H, et al. Titin: Physiological function and role in cardiomyopathy and failure. Heart Fail. Rev. 2005;10(3):211–223. doi: 10.1007/s10741-005-5251-7. [DOI] [PubMed] [Google Scholar]
  • 54.Tskhovrebova, L. and J. Trinick, Roles of titin in the structure and elasticity of the sarcomere. Journal of Biomedicine and Biotechnology, 2010 (2010). [DOI] [PMC free article] [PubMed]
  • 55.Medicine, N.L.o. TTN titin [ Homo sapiens (human) ]. 2024; Available from: https://www.ncbi.nlm.nih.gov/gene/7273.
  • 56.Resource, T.U.P. Q8WZ42 · TITIN_HUMAN. Available from: https://www.uniprot.org/uniprotkb/Q8WZ42/entry.
  • 57.Bang ML, et al. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ. Res. 2001;89(11):1065–1072. doi: 10.1161/hh2301.100981. [DOI] [PubMed] [Google Scholar]
  • 58.Radke MH, et al. Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proc. Natl. Acad. Sci. USA. 2007;104(9):3444–3449. doi: 10.1073/pnas.0608543104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Lahmers S, Wu Y, Call DR, Labeit S, Granzier H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ. Res. 2004;94:505–513. doi: 10.1161/01.RES.0000115522.52554.86. [DOI] [PubMed] [Google Scholar]
  • 60.Hidalgo C, Granzier H. Tuning the molecular giant titin through phosphorylation: Role in health and disease. Trends Cardiovasc. Med. 2013;23(5):165–171. doi: 10.1016/j.tcm.2012.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Opitz CA, et al. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ. Res. 2004;94(7):967–975. doi: 10.1161/01.RES.0000124301.48193.E1. [DOI] [PubMed] [Google Scholar]
  • 62.Nagueh SF, et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation. 2004;110(2):155–162. doi: 10.1161/01.CIR.0000135591.37759.AF. [DOI] [PubMed] [Google Scholar]
  • 63.Opitz CA, et al. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ. Res. 2004;94(7):967–975. doi: 10.1161/01.RES.0000124301.48193.E1. [DOI] [PubMed] [Google Scholar]
  • 64.Ahmed SH, Lindsey ML. Titin phosphorylation: Myocardial passive stiffness regulated by the intracellular giant. Circ. Res. 2009;105(7):611–613. doi: 10.1161/CIRCRESAHA.109.206912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Kellermayer D, Smith JE, 3rd, Granzier H. Novex-3, the tiny titin of muscle. Biophys. Rev. 2017;9(3):201–206. doi: 10.1007/s12551-017-0261-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Chen Z, et al. Characterization of TTN novex splicing variants across species and the role of RBM20 in novex-specific exon splicing. Genes (Basel) 2018;9(2):86. doi: 10.3390/genes9020086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.View, A. Homo sapiens complex locus CCDC141andTTN, encoding titin and coiled-coil domain containing 141. . 2010; Available from: https://www.ncbi.nlm.nih.gov/ieb/research/acembly/av.cgi?db=human&term=ttn&submit=Go.
  • 68.Legnini I, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell. 2017;66(1):22–37. doi: 10.1016/j.molcel.2017.02.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Khan MA, et al. RBM20 regulates circular RNA production from the titin gene. Circ. Res. 2016;119(9):996–1003. doi: 10.1161/CIRCRESAHA.116.309568. [DOI] [PubMed] [Google Scholar]
  • 70.Czubak K, et al. Global increase in circular RNA levels in myotonic dystrophy. Front. Genet. 2019;10:649. doi: 10.3389/fgene.2019.00649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Ellepola CD, et al. Genetic testing in pediatric cardiomyopathy. Pediatr. Cardiol. 2018;39(3):491–500. doi: 10.1007/s00246-017-1779-2. [DOI] [PubMed] [Google Scholar]
  • 72.Waldmuller S, et al. Targeted 46-gene and clinical exome sequencing for mutations causing cardiomyopathies. Mol. Cell Probes. 2015;29(5):308–314. doi: 10.1016/j.mcp.2015.05.004. [DOI] [PubMed] [Google Scholar]
  • 73.Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc. Res. 2020;116(9):1600–1619. doi: 10.1093/cvr/cvaa116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Monserrat L, et al. Genetics of cardiomyopathies: Novel perspectives with next generation sequencing. Curr. Pharm. Des. 2015;21(4):418–430. doi: 10.2174/138161282104141204123748. [DOI] [PubMed] [Google Scholar]
  • 75.Schultheiss HP, et al. Dilated cardiomyopathy. Nat. Rev. Dis. Primers. 2019;5(1):32. doi: 10.1038/s41572-019-0084-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. The Lancet. 2017;390(10092):400–414. doi: 10.1016/S0140-6736(16)31713-5. [DOI] [PubMed] [Google Scholar]
  • 77.Roberts AM, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 2015;7(270):270ra6. doi: 10.1126/scitranslmed.3010134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Akinrinade O, et al. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur. Heart J. 2015;36(34):2327–2337. doi: 10.1093/eurheartj/ehv253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.van Spaendonck-Zwarts KY, et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur. Heart J. 2014;35(32):2165–2173. doi: 10.1093/eurheartj/ehu050. [DOI] [PubMed] [Google Scholar]
  • 80.Pugh TJ, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet. Med. 2014;16(8):601–608. doi: 10.1038/gim.2013.204. [DOI] [PubMed] [Google Scholar]
  • 81.Fatkin D, et al. Titin truncating mutations: A rare cause of dilated cardiomyopathy in the young. Progress Pediatr. Cardiol. 2016;40:41–45. doi: 10.1016/j.ppedcard.2016.01.003. [DOI] [Google Scholar]
  • 82.Herman DS, et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012;366(7):619–628. doi: 10.1056/NEJMoa1110186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Fatkin D, Huttner IG. Titin-truncating mutations in dilated cardiomyopathy: The long and short of it. Curr. Opin. Cardiol. 2017;32(3):232–238. doi: 10.1097/HCO.0000000000000382. [DOI] [PubMed] [Google Scholar]
  • 84.Akinrinade O, Koskenvuo JW, Alastalo TP. Prevalence of titin truncating variants in general population. PLoS One. 2015;10(12):e0145284. doi: 10.1371/journal.pone.0145284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Fang HJ, Liu BP. Prevalence of TTN mutations in patients with dilated cardiomyopathy: A meta-analysis. Herz. 2020;45(Suppl 1):29–36. doi: 10.1007/s00059-019-4825-4. [DOI] [PubMed] [Google Scholar]
  • 86.Akinrinade O, Alastalo TP, Koskenvuo JW. Relevance of truncating titin mutations in dilated cardiomyopathy. Clin. Genet. 2016;90(1):49–54. doi: 10.1111/cge.12741. [DOI] [PubMed] [Google Scholar]
  • 87.Schafer S, et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 2017;49(1):46–53. doi: 10.1038/ng.3719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Yoskovitz G, et al. A novel titin mutation in adult-onset familial dilated cardiomyopathy. Am. J. Cardiol. 2012;109(11):1644–1650. doi: 10.1016/j.amjcard.2012.01.392. [DOI] [PubMed] [Google Scholar]
  • 89.Herrero-Galán, E., et al., Conserved cysteines in titin sustain the mechanical function of cardiomyocytes. bioRxiv, (2020).
  • 90.Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 2017;121(7):749–770. doi: 10.1161/CIRCRESAHA.117.311059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Ingles J, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genom. Precis. Med. 2019;12(2):e002460. doi: 10.1161/CIRCGEN.119.002460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Van Driest, S.L., et al. Sarcomeric genotyping in hypertrophic cardiomyopathy. in Mayo Clinic Proceedings. 2005. Elsevier. [DOI] [PubMed]
  • 93.Van Driest SL, et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2004;44(9):1903–1910. doi: 10.1016/j.jacc.2004.07.045. [DOI] [PubMed] [Google Scholar]
  • 94.Richard P, et al. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227–2232. doi: 10.1161/01.CIR.0000066323.15244.54. [DOI] [PubMed] [Google Scholar]
  • 95.Van Driest SL, et al. Comprehensive analysis of the beta-myosin heavy chain gene in 389 unrelated patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2004;44(3):602–610. doi: 10.1016/j.jacc.2004.04.039. [DOI] [PubMed] [Google Scholar]
  • 96.Satoh M, et al. Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene. Biochem. Biophys. Res. Commun. 1999;262(2):411–417. doi: 10.1006/bbrc.1999.1221. [DOI] [PubMed] [Google Scholar]
  • 97.Itoh-Satoh M, et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 2002;291(2):385–393. doi: 10.1006/bbrc.2002.6448. [DOI] [PubMed] [Google Scholar]
  • 98.Matsumoto Y, et al. Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J. Muscle Res. Cell Motil. 2005;26(6–8):367. doi: 10.1007/s10974-005-9018-5. [DOI] [PubMed] [Google Scholar]
  • 99.Arimura T, et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2009;54(4):334–342. doi: 10.1016/j.jacc.2008.12.082. [DOI] [PubMed] [Google Scholar]
  • 100.Lopes LR, et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet. 2013;50(4):228–239. doi: 10.1136/jmedgenet-2012-101270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Andersen PS, et al. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum. Mutat. 2009;30(3):363–370. doi: 10.1002/humu.20862. [DOI] [PubMed] [Google Scholar]
  • 102.Bos JM, et al. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol. Genet. Metab. 2006;88(1):78–85. doi: 10.1016/j.ymgme.2005.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Lewis AB. Clinical profile and outcome of restrictive cardiomyopathy in children. Am. Heart J. 1992;123(6):1589–1593. doi: 10.1016/0002-8703(92)90814-C. [DOI] [PubMed] [Google Scholar]
  • 104.Muchtar E, Blauwet LA, Gertz MA. Restrictive cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 2017;121(7):819–837. doi: 10.1161/CIRCRESAHA.117.310982. [DOI] [PubMed] [Google Scholar]
  • 105.Sayegh ALC, et al. Cardiac and peripheral autonomic control in restrictive cardiomyopathy. ESC Heart Fail. 2017;4(3):341–350. doi: 10.1002/ehf2.12142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Yang Z, et al. Genotype-phenotype associations with restrictive cardiomyopathy induced by pathogenic genetic mutations. Rev. Cardiovasc. Med. 2022;23(6):185. doi: 10.31083/j.rcm2306185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Pereira NL, Grogan M, Dec GW. Spectrum of restrictive and infiltrative cardiomyopathies: Part 1 of a 2-part series. J. Am. College Cardiol. 2018;71(10):1130–1148. doi: 10.1016/j.jacc.2018.01.016. [DOI] [PubMed] [Google Scholar]
  • 108.Peled Y, et al. Titin mutation in familial restrictive cardiomyopathy. Int. J. Cardiol. 2014;171(1):24–30. doi: 10.1016/j.ijcard.2013.11.037. [DOI] [PubMed] [Google Scholar]
  • 109.Neiva-Sousa M, et al. Titin mutations: The fall of Goliath. Heart Fail. Rev. 2015;20(5):579–588. doi: 10.1007/s10741-015-9495-6. [DOI] [PubMed] [Google Scholar]
  • 110.Kizawa M, et al. Identification of a novel titin variant underlying myocardial involvement in neurofibromatosis type 1. Can J Cardiol. 2018;34(10):1369 e5–1369 e7. doi: 10.1016/j.cjca.2018.07.473. [DOI] [PubMed] [Google Scholar]
  • 111.Groeneweg JA, et al. Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members. Circ. Cardiovasc. Genet. 2015;8(3):437–446. doi: 10.1161/CIRCGENETICS.114.001003. [DOI] [PubMed] [Google Scholar]
  • 112.Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: Clinical impact of molecular genetic studies. Circulation. 2006;113(13):1634–1637. doi: 10.1161/CIRCULATIONAHA.105.616490. [DOI] [PubMed] [Google Scholar]
  • 113.McKenna WJ, Judge DP. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 2021;18(1):22–36. doi: 10.1038/s41569-020-0428-2. [DOI] [PubMed] [Google Scholar]
  • 114.Marrone, D., et al., History of the discovery of Arrhythmogenic Cardiomyopathy: The history of arrhythmogenic cardiomyopathy (AC) is a paradigm in the progress of Cardiovascular Medicine knowledge, from nosology to diagnosis, treatment, and prevention. In this review, we focus on the discovery of this heart muscle disease at the beginning of Modern Medicine, something you cannot find on the Internet or PubMed. 2019, Oxford University Press.
  • 115.Basso C, et al. Arrhythmogenic right ventricular cardiomyopathy. Lancet. 2009;373(9671):1289–1300. doi: 10.1016/S0140-6736(09)60256-7. [DOI] [PubMed] [Google Scholar]
  • 116.Sen-Chowdhry S, et al. Arrhythmogenic right ventricular cardiomyopathy: Clinical presentation, diagnosis, and management. Am. J. Med. 2004;117(9):685–695. doi: 10.1016/j.amjmed.2004.04.028. [DOI] [PubMed] [Google Scholar]
  • 117.Corrado D, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J. Am. Coll. Cardiol. 1997;30(6):1512–1520. doi: 10.1016/S0735-1097(97)00332-X. [DOI] [PubMed] [Google Scholar]
  • 118.Towbin JA, et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019;16(11):e301–e372. doi: 10.1016/j.hrthm.2019.05.007. [DOI] [PubMed] [Google Scholar]
  • 119.List, P.G. and D. CTNNA, Arrhythmogenic Right Ventricular Cardiomyopathy Panel. 2021.
  • 120.Calabrese F, et al. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: Is there a role for viruses? Cardiovasc. Pathol. 2006;15(1):11–17. doi: 10.1016/j.carpath.2005.10.004. [DOI] [PubMed] [Google Scholar]
  • 121.Taylor M, et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation. 2011;124(8):876–885. doi: 10.1161/CIRCULATIONAHA.110.005405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Sen-Chowdhry S, Syrris P, McKenna WJ. Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Am. Coll. Cardiol. 2007;50(19):1813–1821. doi: 10.1016/j.jacc.2007.08.008. [DOI] [PubMed] [Google Scholar]
  • 123.Brun F, et al. Titin and desmosomal genes in the natural history of arrhythmogenic right ventricular cardiomyopathy. J. Med. Genet. 2014;51(10):669–676. doi: 10.1136/jmedgenet-2014-102591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Chen Z, et al. Characterization of TTN novex splicing variants across species and the role of RBM20 in novex-specific exon splicing. Genes. 2018;9(2):86. doi: 10.3390/genes9020086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Savarese M, et al. Increasing role of titin mutations in neuromuscular disorders. J. Neuromuscul. Dis. 2016;3(3):293–308. doi: 10.3233/JND-160158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Martinez JA, et al. Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis. 2010;15(12):1480–1493. doi: 10.1007/s10495-010-0526-4. [DOI] [PubMed] [Google Scholar]
  • 127.Ji XY, et al. Sustained over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice through aberrant autophagy. Acta Pharmacol. Sin. 2022;43(11):2873–2884. doi: 10.1038/s41401-022-00965-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Kartkaya K, et al. Protective effect of calpain inhibitor N-acetyl-L-leucyl-L-leucyl-L-norleucinal on acute alcohol consumption related cardiomyopathy. Mol. Biol. Rep. 2014;41(10):6743–6753. doi: 10.1007/s11033-014-3560-4. [DOI] [PubMed] [Google Scholar]
  • 129.Ng, R., et al., Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation. JCI Insight, 2019. 5(14). [DOI] [PMC free article] [PubMed]
  • 130.Ni R, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: A novel mechanism contributing to diabetic cardiomyopathy. Diabetes. 2016;65(1):255–268. doi: 10.2337/db15-0963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Zuo S, et al. CRTH2 promotes endoplasmic reticulum stress-induced cardiomyocyte apoptosis through m-calpain. EMBO Mol. Med. 2018;10(3):e8237. doi: 10.15252/emmm.201708237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Willis MS, et al. Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem. Funct. 2014;32(1):39–50. doi: 10.1002/cbf.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Su M, et al. Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int. J. Mol. Sci. 2014;15(6):9302–9313. doi: 10.3390/ijms15069302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Gilbert CJ, Longenecker JZ, Accornero F. ERK1/2: An integrator of signals that alters cardiac homeostasis and growth. Biology (Basel) 2021;10(4):346. doi: 10.3390/biology10040346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Gallo S, et al. ERK: A key player in the pathophysiology of cardiac hypertrophy. Int. J. Mol. Sci. 2019;20(9):2164. doi: 10.3390/ijms20092164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Mutlak M, Kehat I. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Front. Pharmacol. 2015;6:149. doi: 10.3389/fphar.2015.00149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Bueno OF, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 2000;19(23):6341–6350. doi: 10.1093/emboj/19.23.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 2006;7(8):589–600. doi: 10.1038/nrm1983. [DOI] [PubMed] [Google Scholar]
  • 139.Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem. Biophys. Res. Commun. 2004;322(4):1178–1191. doi: 10.1016/j.bbrc.2004.07.121. [DOI] [PubMed] [Google Scholar]
  • 140.Bourajjaj M, et al. NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J. Biol. Chem. 2008;283(32):22295–22303. doi: 10.1074/jbc.M801296200. [DOI] [PubMed] [Google Scholar]
  • 141.He X, et al. Cardiac CIP protein regulates dystrophic cardiomyopathy. Mol. Ther. 2022;30(2):898–914. doi: 10.1016/j.ymthe.2021.08.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Kura B, et al. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int J Mol Sci. 2020;21(1):358. doi: 10.3390/ijms21010358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Windpassinger C, et al. An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed XMPMA, is caused by mutations in FHL1. Am. J. Hum. Genet. 2008;82(1):88–99. doi: 10.1016/j.ajhg.2007.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Liang Y, et al. Four and a half LIM domain protein signaling and cardiomyopathy. Biophys. Rev. 2018;10(4):1073–1085. doi: 10.1007/s12551-018-0434-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Chu PH, et al. Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech. Dev. 2000;95(1–2):259–265. doi: 10.1016/S0925-4773(00)00341-5. [DOI] [PubMed] [Google Scholar]
  • 146.Schessl J, et al. Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1. Brain. 2009;132(Pt 2):452–464. doi: 10.1093/brain/awn325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Selcen D, et al. Reducing bodies and myofibrillar myopathy features in FHL1 muscular dystrophy. Neurology. 2011;77(22):1951–1959. doi: 10.1212/WNL.0b013e31823a0ebe. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.San Roman I, et al. Unclassifiable arrhythmic cardiomyopathy associated with Emery-Dreifuss caused by a mutation in FHL1. Clin. Genet. 2016;90(2):171–176. doi: 10.1111/cge.12760. [DOI] [PubMed] [Google Scholar]
  • 149.Bang ML, et al. The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload. PLoS One. 2014;9(4):e93638. doi: 10.1371/journal.pone.0093638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Aihara Y, et al. Doxorubicin represses CARP gene transcription through the generation of oxidative stress in neonatal rat cardiac myocytes: Possible role of serine/threonine kinase-dependent pathways. J. Mol. Cell Cardiol. 2000;32(8):1401–1414. doi: 10.1006/jmcc.2000.1173. [DOI] [PubMed] [Google Scholar]
  • 151.Wei YJ, et al. Upregulated expression of cardiac ankyrin repeat protein in human failing hearts due to arrhythmogenic right ventricular cardiomyopathy. Eur. J. Heart Fail. 2009;11(6):559–566. doi: 10.1093/eurjhf/hfp049. [DOI] [PubMed] [Google Scholar]
  • 152.Zolk O, et al. Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression, is augmented in human heart failure. Biochem. Biophys. Res. Commun. 2002;293(5):1377–1382. doi: 10.1016/S0006-291X(02)00387-X. [DOI] [PubMed] [Google Scholar]
  • 153.Duboscq-Bidot L, et al. Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy. Eur. Heart J. 2009;30(17):2128–2136. doi: 10.1093/eurheartj/ehp225. [DOI] [PubMed] [Google Scholar]
  • 154.Moulik M, et al. ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J. Am. Coll. Cardiol. 2009;54(4):325–333. doi: 10.1016/j.jacc.2009.02.076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Kuo H, et al. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development. 1999;126(19):4223–4234. doi: 10.1242/dev.126.19.4223. [DOI] [PubMed] [Google Scholar]
  • 156.Marsh T, Debnath J. Autophagy suppresses breast cancer metastasis by degrading NBR1. Autophagy. 2020;16(6):1164–1165. doi: 10.1080/15548627.2020.1753001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Bogomolovas J, et al. Induction of Ankrd1 in dilated cardiomyopathy correlates with the heart failure progression. Biomed. Res. Int. 2015;2015:273936. doi: 10.1155/2015/273936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Harris MP, et al. Perinatal versus adult loss of ULK1 and ULK2 distinctly influences cardiac autophagy and function. Autophagy. 2022;18(9):2161–2177. doi: 10.1080/15548627.2021.2022289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Radke MH, et al. Deleting full length titin versus the Titin M-band region leads to differential mechanosignaling and cardiac phenotypes. Circulation. 2019;139(15):1813–1827. doi: 10.1161/CIRCULATIONAHA.118.037588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Parlakian A, et al. Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation. 2005;112(19):2930–2939. doi: 10.1161/CIRCULATIONAHA.105.533778. [DOI] [PubMed] [Google Scholar]
  • 161.Miano JM. Serum response factor: Toggling between disparate programs of gene expression. J. Mol. Cell. Cardiol. 2003;35(6):577–593. doi: 10.1016/S0022-2828(03)00110-X. [DOI] [PubMed] [Google Scholar]
  • 162.Kuwahara K, et al. Myocardin-related transcription factor A is a common mediator of mechanical stress-and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol. Cell. Biol. 2010;30(17):4134–4148. doi: 10.1128/MCB.00154-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Knoll R, Hoshijima M, Chien K. Cardiac mechanotransduction and implications for heart disease. J. Mol. Med. (Berl) 2003;81(12):750–756. doi: 10.1007/s00109-003-0488-x. [DOI] [PubMed] [Google Scholar]
  • 164.Arber S, et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 1997;88(3):393–403. doi: 10.1016/S0092-8674(00)81878-4. [DOI] [PubMed] [Google Scholar]
  • 165.Ehler E, Perriard JC. Cardiomyocyte cytoskeleton and myofibrillogenesis in healthy and diseased heart. Heart Fail. Rev. 2000;5(3):259–269. doi: 10.1023/A:1009861504264. [DOI] [PubMed] [Google Scholar]
  • 166.Geier C, et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum. Mol. Genet. 2008;17(18):2753–2765. doi: 10.1093/hmg/ddn160. [DOI] [PubMed] [Google Scholar]
  • 167.Karsai A, Kellermayer MS, Harris SP. Mechanical unfolding of cardiac myosin binding protein-C by atomic force microscopy. Biophys. J. 2011;101(8):1968–1977. doi: 10.1016/j.bpj.2011.08.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: Clinical perspectives. J. Am. Coll. Cardiol. 2012;60(8):705–715. doi: 10.1016/j.jacc.2012.02.068. [DOI] [PubMed] [Google Scholar]
  • 169.Harris SP, et al. Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ. Res. 2002;90(5):594–601. doi: 10.1161/01.RES.0000012222.70819.64. [DOI] [PubMed] [Google Scholar]
  • 170.Agarkova I, Perriard J-C. The M-band: An elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol. 2005;15(9):477–485. doi: 10.1016/j.tcb.2005.07.001. [DOI] [PubMed] [Google Scholar]
  • 171.Forleo C, et al. Targeted next-generation sequencing detects novel gene-phenotype associations and expands the mutational spectrum in cardiomyopathies. PLoS One. 2017;12(7):e0181842. doi: 10.1371/journal.pone.0181842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Lange S, et al. Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Mol. Biol. Cell. 2012;23(13):2490–504. doi: 10.1091/mbc.e12-01-0052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Krishnamoorthy S, et al. A novel phosphopeptide microarray based interactome map in breast cancer cells reveals phosphoprotein-GRB2 cell signaling networks. PLoS One. 2013;8(6):e67634. doi: 10.1371/journal.pone.0067634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Vatta M, et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol. 2003;42(11):2014–2027. doi: 10.1016/j.jacc.2003.10.021. [DOI] [PubMed] [Google Scholar]
  • 175.Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Heart Circ. Physiol. 2006;290(4):H1313–H1325. doi: 10.1152/ajpheart.00816.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer. 2011;11(11):761–774. doi: 10.1038/nrc3106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Sussman MA, et al. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J. Clin. Invest. 2000;105(7):875–886. doi: 10.1172/JCI8497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Yamaguchi K, et al. A spin correction procedure for unrestricted Hartree-Fock and Møller-Plesset wavefunctions for singlet diradicals and polyradicals. Chem. Phys. Lett. 1988;149(5–6):537–542. doi: 10.1016/0009-2614(88)80378-6. [DOI] [Google Scholar]
  • 179.Wellbrock C, Hurlstone A. BRAF as therapeutic target in melanoma. Biochem. Pharmacol. 2010;80(5):561–567. doi: 10.1016/j.bcp.2010.03.019. [DOI] [PubMed] [Google Scholar]
  • 180.Harris IS, et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation. 2004;110(6):718–723. doi: 10.1161/01.CIR.0000138190.50127.6A. [DOI] [PubMed] [Google Scholar]
  • 181.Haywood NJ, et al. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation. Biochem. J. 2016;473(16):2485–2493. doi: 10.1042/BCJ20160421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Girolami F, et al. Novel alpha-actinin 2 variant associated with familial hypertrophic cardiomyopathy and juvenile atrial arrhythmias: A massively parallel sequencing study. Circ. Cardiovasc. Genet. 2014;7(6):741–750. doi: 10.1161/CIRCGENETICS.113.000486. [DOI] [PubMed] [Google Scholar]
  • 183.Prondzynski M, et al. Disease modeling of a mutation in alpha-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol. Med. 2019;11(12):e11115. doi: 10.15252/emmm.201911115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Chiu C, et al. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: A genome-wide analysis. J. Am. Coll. Cardiol. 2010;55(11):1127–1135. doi: 10.1016/j.jacc.2009.11.016. [DOI] [PubMed] [Google Scholar]
  • 185.Maiweilidan Y, Klauza I, Kordeli E. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C. Exp. Cell Res. 2011;317(6):724–736. doi: 10.1016/j.yexcr.2011.01.002. [DOI] [PubMed] [Google Scholar]
  • 186.Song S, et al. Filamin C in cardiomyopathy: From physiological roles to DNA variants. Heart Fail. Rev. 2022;27(4):1373–1385. doi: 10.1007/s10741-021-10172-z. [DOI] [PubMed] [Google Scholar]
  • 187.Bang ML, Chen J. Roles of nebulin family members in the heart. Circ. J. 2015;79(10):2081–2087. doi: 10.1253/circj.CJ-15-0854. [DOI] [PubMed] [Google Scholar]
  • 188.Voelkel T, Linke WA. Conformation-regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Arch. 2011;462(1):143–154. doi: 10.1007/s00424-011-0938-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Sheikh F, et al. An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J. Clin. Invest. 2008;118(12):3870–3880. doi: 10.1172/JCI34472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.El-Bizri N, et al. Abstract 13402: FHL-1 contributes to and colocalizes with titin in cardiac hypertrophy. Circulation. 2020;142(Suppl_3):A13402–A13402. doi: 10.1161/circ.142.suppl_3.13402. [DOI] [Google Scholar]
  • 191.Lange S, et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science. 2005;308(5728):1599–1603. doi: 10.1126/science.1110463. [DOI] [PubMed] [Google Scholar]
  • 192.Bogomolovas J, et al. Titin kinase ubiquitination aligns autophagy receptors with mechanical signals in the sarcomere. EMBO Rep. 2021;22(10):e48018. doi: 10.15252/embr.201948018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Bogomolovas J, et al. Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line. Open Biol. 2014;4(5):140041. doi: 10.1098/rsob.140041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Yang, K., et al., Clinical efficacy and safety of atorvastatin for chronic subdural hematoma: A randomized controlled trial.
  • 195.Campuzano O, et al. Rare titin (TTN) variants in diseases associated with sudden cardiac death. Int. J. Mol. Sci. 2015;16(10):25773–25787. doi: 10.3390/ijms161025773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Evila A, et al. Targeted next-generation sequencing reveals novel TTN mutations causing recessive distal titinopathy. Mol. Neurobiol. 2017;54(9):7212–7223. doi: 10.1007/s12035-016-0242-3. [DOI] [PubMed] [Google Scholar]
  • 197.Lahrouchi N, et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J. Am. Coll. Cardiol. 2017;69(17):2134–2145. doi: 10.1016/j.jacc.2017.02.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Hackman P, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 2002;71(3):492–500. doi: 10.1086/342380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Herman DS, et al. Truncations of titin causing dilated cardiomyopathy. New Engl. J. Med. 2012;366(7):619–628. doi: 10.1056/NEJMoa1110186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Krenn M, et al. Genotype-guided diagnostic reassessment after exome sequencing in neuromuscular disorders: Experiences with a two-step approach. Eur. J. Neurol. 2020;27(1):51–61. doi: 10.1111/ene.14033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Harris E, et al. A ‘second truncation’in TTN causes early onset recessive muscular dystrophy. Neuromusc. Disord. 2017;27(11):1009–1017. doi: 10.1016/j.nmd.2017.06.013. [DOI] [PubMed] [Google Scholar]
  • 202.Roberts AM, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 2015;7(270):270ra6. doi: 10.1126/scitranslmed.3010134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Schultze-Berndt A, et al. Reduced systolic function and not genetic variants determine outcome in pediatric and adult left ventricular noncompaction cardiomyopathy. Front. Pediatr. 2021;9:722926. doi: 10.3389/fped.2021.722926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Chauveau C, et al. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum. Mol. Genet. 2014;23(4):980–991. doi: 10.1093/hmg/ddt494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Haas J, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 2015;36(18):1123–1135. doi: 10.1093/eurheartj/ehu301. [DOI] [PubMed] [Google Scholar]
  • 206.De Cid R, et al. A new titinopathy: Childhood-juvenile onset Emery-Dreifuss–like phenotype without cardiomyopathy. Neurology. 2015;85(24):2126–2135. doi: 10.1212/WNL.0000000000002200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Deo RC. Alternative splicing, internal promoter, nonsense-mediated decay, or all three: explaining the distribution of truncation variants in titin. Circ. Cardiovasc. Genet. 2016;9(5):419–425. doi: 10.1161/CIRCGENETICS.116.001513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Mukhtar, M.M. and M.A. Salih, C-Terminal Titin Deletions Cause a Novel Early-Onset Myopathy with Fatal Cardiomyopathy. 2007, University of Khartoum. [DOI] [PubMed]
  • 209.Savarese M, et al. Genotype-phenotype correlations in recessive titinopathies. Genet. Med. 2020;22(12):2029–2040. doi: 10.1038/s41436-020-0914-2. [DOI] [PubMed] [Google Scholar]
  • 210.Ceyhan-Birsoy O, et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology. 2013;81(14):1205–1214. doi: 10.1212/WNL.0b013e3182a6ca62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Fattori F, et al. Centronuclear myopathies: genotype-phenotype correlation and frequency of defined genetic forms in an Italian cohort. J. Neurol. 2015;262(7):1728–1740. doi: 10.1007/s00415-015-7757-9. [DOI] [PubMed] [Google Scholar]
  • 212.Hackman, P., et al., Salih myopathy. 2019.
  • 213.Evila A, et al. Atypical phenotypes in titinopathies explained by second titin mutations. Ann. Neurol. 2014;75(2):230–240. doi: 10.1002/ana.24102. [DOI] [PubMed] [Google Scholar]
  • 214.Witting, N., et al., Phenotypes, genotypes, and prevalence of congenital myopathies older than 5 years in Denmark. Neurology Genetics, 2017. 3(2). [DOI] [PMC free article] [PubMed]
  • 215.Rich KA, et al. Novel heterozygous truncating titin variants affecting the A-band are associated with cardiomyopathy and myopathy/muscular dystrophy. Mol. Genet. Genomic. Med. 2020;8(10):e1460. doi: 10.1002/mgg3.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Hackman P, et al. Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD) Neuromuscul. Disord. 2008;18(12):922–928. doi: 10.1016/j.nmd.2008.07.010. [DOI] [PubMed] [Google Scholar]
  • 217.Marschall C, Moscu-Gregor A, Klein HG. Variant panorama in 1,385 index patients and sensitivity of expanded next-generation sequencing panels in arrhythmogenic disorders. Cardiovasc. Diagn. Ther. 2019;9(Suppl 2):S292–S298. doi: 10.21037/cdt.2019.06.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Laquerriere A, et al. Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects. Hum. Mol. Genet. 2014;23(9):2279–2289. doi: 10.1093/hmg/ddt618. [DOI] [PubMed] [Google Scholar]
  • 219.Enriquez A, et al. Substrate characterization and outcomes of ventricular tachycardia ablation in TTN (Titin) cardiomyopathy: A multicenter study. Circ. Arrhythm. Electrophysiol. 2021;14(9):e010006. doi: 10.1161/CIRCEP.121.010006. [DOI] [PubMed] [Google Scholar]
  • 220.Perić S, et al. A novel recessive TTN founder variant is a common cause of distal myopathy in the Serbian population. Eur. J. Hum. Genet. 2017;25(5):572–581. doi: 10.1038/ejhg.2017.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Haskell GT, et al. Whole exome sequencing identifies truncating variants in nuclear envelope genes in patients with cardiovascular disease. Circ. Cardiovasc. Genet. 2017;10(3):e001443. doi: 10.1161/CIRCGENETICS.116.001443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Nykamp K, et al. Sherloc: A comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 2017;19(10):1105–1117. doi: 10.1038/gim.2017.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Dalin MG, et al. Massive parallel sequencing questions the pathogenic role of missense variants in dilated cardiomyopathy. Int. J. Cardiol. 2017;228:742–748. doi: 10.1016/j.ijcard.2016.11.066. [DOI] [PubMed] [Google Scholar]
  • 224.Walsh R, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 2017;19(2):192–203. doi: 10.1038/gim.2016.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Choi SH, et al. Association between titin loss-of-function variants and early-onset atrial fibrillation. Jama. 2018;320(22):2354–2364. doi: 10.1001/jama.2018.18179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Taylor M, et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy–overlap syndromes. Circulation. 2011;124(8):876–885. doi: 10.1161/CIRCULATIONAHA.110.005405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Ware JS, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N. Engl. J. Med. 2016;374(3):233–241. doi: 10.1056/NEJMoa1505517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Gigli M, et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 2019;74(11):1480–1490. doi: 10.1016/j.jacc.2019.06.072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Goli R, et al. Genetic and phenotypic landscape of peripartum cardiomyopathy. Circulation. 2021;143(19):1852–1862. doi: 10.1161/CIRCULATIONAHA.120.052395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Sevy A, et al. Improving molecular diagnosis of distal myopathies by targeted next-generation sequencing. J. Neurol. Neurosurg. Psychiatry. 2016;87(3):340–342. doi: 10.1136/jnnp-2014-309663. [DOI] [PubMed] [Google Scholar]
  • 231.Pfeffer, G. and P.F. Chinnery, Hereditary myopathy with early respiratory failure. GeneReviews®[Internet], 2020.
  • 232.Augusto JB, et al. Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: A comprehensive genotype-imaging phenotype study. Eur. Heart J. Cardiovasc. Imaging. 2020;21(3):326–336. doi: 10.1093/ehjci/jez188. [DOI] [PubMed] [Google Scholar]
  • 233.van Waning JI, et al. Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J. Am. Coll. Cardiol. 2018;71(7):711–722. doi: 10.1016/j.jacc.2017.12.019. [DOI] [PubMed] [Google Scholar]
  • 234.Norton N, et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2013;6(2):144–153. doi: 10.1161/CIRCGENETICS.111.000062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Cowan JR, et al. SOS1 gain-of-function variants in dilated cardiomyopathy. Circ. Genom. Precis. Med. 2020;13(4):e002892. doi: 10.1161/CIRCGEN.119.002892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236.Kostareva A, et al. Genetic spectrum of idiopathic restrictive cardiomyopathy uncovered by next-generation sequencing. PLoS One. 2016;11(9):e0163362. doi: 10.1371/journal.pone.0163362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Song JS, et al. Identification of pathogenic variants in genes related to channelopathy and cardiomyopathy in Korean sudden cardiac arrest survivors. J. Hum. Genet. 2017;62(6):615–620. doi: 10.1038/jhg.2017.8. [DOI] [PubMed] [Google Scholar]
  • 238.Gerull B, et al. Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with dilated cardiomyopathy. J. Mol. Med. (Berl) 2006;84(6):478–483. doi: 10.1007/s00109-006-0060-6. [DOI] [PubMed] [Google Scholar]
  • 239.Verdonschot JAJ, et al. Implications of genetic testing in dilated cardiomyopathy. Circ. Genom. Precis. Med. 2020;13(5):476–487. doi: 10.1161/CIRCGEN.120.003031. [DOI] [PubMed] [Google Scholar]
  • 240.Herkert, J.C., Paediatric cardiomyopathies: an evolving landscape of genetic aetiology and diagnostic applications. 2019.
  • 241.Vissing CR, et al. Dilated cardiomyopathy caused by truncating titin variants: Long-term outcomes, arrhythmias, response to treatment and sex differences. J. Med. Genet. 2021;58(12):832–841. doi: 10.1136/jmedgenet-2020-107178. [DOI] [PubMed] [Google Scholar]
  • 242.Morales A, et al. Variant interpretation for dilated cardiomyopathy: Refinement of the american college of medical genetics and genomics/clingen guidelines for the DCM precision medicine study. Circ. Genom. Precis. Med. 2020;13(2):e002480. doi: 10.1161/CIRCGEN.119.002480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Akinrinade O, et al. Genetics and genotype–phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur. Heart J. 2015;36(34):2327–2337. doi: 10.1093/eurheartj/ehv253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 244.Klauke B, et al. High proportion of genetic cases in patients with advanced cardiomyopathy including a novel homozygous Plakophilin 2-gene mutation. PLoS One. 2017;12(12):e0189489. doi: 10.1371/journal.pone.0189489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Franaszczyk M, et al. Titin truncating variants in dilated cardiomyopathy–prevalence and genotype-phenotype correlations. PLoS One. 2017;12(1):e0169007. doi: 10.1371/journal.pone.0169007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Kuhnisch J, et al. Targeted panel sequencing in pediatric primary cardiomyopathy supports a critical role of TNNI3. Clin. Genet. 2019;96(6):549–559. doi: 10.1111/cge.13645. [DOI] [PubMed] [Google Scholar]
  • 247.Hancks DC, Kazazian HH., Jr Active human retrotransposons: Variation and disease. Curr. Opin. Genet. Dev. 2012;22(3):191–203. doi: 10.1016/j.gde.2012.02.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Chami N, et al. Nonsense mutations in BAG3 are associated with early-onset dilated cardiomyopathy in French Canadians. Can. J. Cardiol. 2014;30(12):1655–1661. doi: 10.1016/j.cjca.2014.09.030. [DOI] [PubMed] [Google Scholar]
  • 249.Al-Shamsi A, et al. Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab Emirates. Orphanet. J. Rare Dis. 2016;11(1):94. doi: 10.1186/s13023-016-0474-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.LaDuca H, et al. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels. PLoS One. 2017;12(2):e0170843. doi: 10.1371/journal.pone.0170843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Anderson JL, et al. Discovery of TITIN Gene truncating variant mutations and 5-Year outcomes in patients with nonischemic dilated cardiomyopathy. Am. J. Cardiol. 2020;137:97–102. doi: 10.1016/j.amjcard.2020.09.026. [DOI] [PubMed] [Google Scholar]
  • 252.Cuenca S, et al. Genetic basis of familial dilated cardiomyopathy patients undergoing heart transplantation. J. Heart Lung Transplant. 2016;35(5):625–635. doi: 10.1016/j.healun.2015.12.014. [DOI] [PubMed] [Google Scholar]
  • 253.Kolokotronis K, et al. New insights on genetic diagnostics in cardiomyopathy and arrhythmia patients gained by stepwise exome data analysis. J. Clin. Med. 2020;9(7):2168. doi: 10.3390/jcm9072168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Minoche AE, et al. Genome sequencing as a first-line genetic test in familial dilated cardiomyopathy. Genet. Med. 2019;21(3):650–662. doi: 10.1038/s41436-018-0084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Fokstuen S, et al. Experience of a multidisciplinary task force with exome sequencing for Mendelian disorders. Hum. Genomics. 2016;10(1):24. doi: 10.1186/s40246-016-0080-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Campuzano Larrea O, et al. Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Sci. Int. 2014;245:30–37. doi: 10.1016/j.forsciint.2014.10.004. [DOI] [PubMed] [Google Scholar]
  • 257.van Lint FHM, et al. Large next-generation sequencing gene panels in genetic heart disease: Yield of pathogenic variants and variants of unknown significance. Neth. Heart J. 2019;27(6):304–309. doi: 10.1007/s12471-019-1250-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Yang Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. Jama. 2014;312(18):1870–1879. doi: 10.1001/jama.2014.14601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Mazzarotto F, et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation. 2020;141(5):387–398. doi: 10.1161/CIRCULATIONAHA.119.037661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Cowan JR, et al. Multigenic disease and bilineal inheritance in dilated cardiomyopathy is illustrated in nonsegregating LMNA pedigrees. Circ. Genomic Precis. Med. 2018;11(7):e002038. doi: 10.1161/CIRCGEN.117.002038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261.Brown EE, et al. Genetic dilated cardiomyopathy due to TTN variants without known familial disease. Circ. Genomic Precis. Med. 2020;13(6):e003082. doi: 10.1161/CIRCGEN.120.003082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Ceyhan-Birsoy O, et al. Next generation sequencing-based copy number analysis reveals low prevalence of deletions and duplications in 46 genes associated with genetic cardiomyopathies. Mol. Genet. Genomic Med. 2016;4(2):143–151. doi: 10.1002/mgg3.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Peat RA, et al. Diagnosis and etiology of congenital muscular dystrophy. Neurology. 2008;71(5):312–321. doi: 10.1212/01.wnl.0000284605.27654.5a. [DOI] [PubMed] [Google Scholar]
  • 264.Lu C, et al. Molecular analysis of inherited cardiomyopathy using next generation semiconductor sequencing technologies. J. Transl. Med. 2018;16(1):241. doi: 10.1186/s12967-018-1605-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Bryen SJ, et al. Recurrent TTN metatranscript-only c.39974–11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy. Hum. Mutat. 2020;41(2):403–411. doi: 10.1002/humu.23938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Cummings BB, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 2017;9(386):eaal5209. doi: 10.1126/scitranslmed.aal5209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Hershberger, R.E., Exome Sequencing and Genome-Wide Linkage Analysis in 17 Families Illustrates the Complex Contribution of TTN Truncating Variants to Dilated Cardiomyopathy. [DOI] [PMC free article] [PubMed]
  • 268.Hazebroek MR, et al. Prevalence of pathogenic gene mutations and prognosis do not differ in isolated left ventricular dysfunction compared with dilated cardiomyopathy. Circ. Heart Fail. 2018;11(3):e004682. doi: 10.1161/CIRCHEARTFAILURE.117.004682. [DOI] [PubMed] [Google Scholar]
  • 269.Hoorntje ET, et al. The first titin (c.59926 + 1G > A) founder mutation associated with dilated cardiomyopathy. Eur. J. Heart Fail. 2018;20(4):803–806. doi: 10.1002/ejhf.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Miszalski-Jamka K, et al. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ. Cardiovasc. Genet. 2017;10(4):e001763. doi: 10.1161/CIRCGENETICS.117.001763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Fan LL, et al. Whole-exome sequencing reveals doubly novel heterozygous Myosin Binding Protein C and Titin mutations in a Chinese patient with severe dilated cardiomyopathy. Cardiol. Young. 2018;28(12):1410–1414. doi: 10.1017/S1047951118001403. [DOI] [PubMed] [Google Scholar]
  • 272.Jansweijer JA, et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur. J. Heart Fail. 2017;19(4):512–521. doi: 10.1002/ejhf.673. [DOI] [PubMed] [Google Scholar]
  • 273.Wu L, et al. Next-generation sequencing to diagnose muscular dystrophy, rhabdomyolysis, and HyperCKemia. Can. J. Neurol. Sci. 2018;45(3):262–268. doi: 10.1017/cjn.2017.286. [DOI] [PubMed] [Google Scholar]
  • 274.Yavarna T, et al. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum. Genet. 2015;134(9):967–980. doi: 10.1007/s00439-015-1575-0. [DOI] [PubMed] [Google Scholar]
  • 275.Tester DJ, et al. Cardiac genetic predisposition in sudden infant death syndrome. J. Am. Coll. Cardiol. 2018;71(11):1217–1227. doi: 10.1016/j.jacc.2018.01.030. [DOI] [PubMed] [Google Scholar]
  • 276.Carnevale A, et al. Genomic study of dilated cardiomyopathy in a group of Mexican patients using site-directed next generation sequencing. Mol. Genet. Genomic. Med. 2020;8(11):e1504. doi: 10.1002/mgg3.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Cambon-Viala M, et al. Phenotype/genotype relationship in left ventricular noncompaction: Ion channel gene mutations are associated with preserved left ventricular systolic function and biventricular noncompaction: Phenotype/genotype of noncompaction. J. Card. Fail. 2021;27(6):677–681. doi: 10.1016/j.cardfail.2021.01.007. [DOI] [PubMed] [Google Scholar]
  • 278.Bell CJ, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 2011;3(65):65ra4. doi: 10.1126/scitranslmed.3001756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Willsey AJ, et al. De Novo coding variants are strongly associated with tourette disorder. Neuron. 2017;94(3):486–499 e9. doi: 10.1016/j.neuron.2017.04.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280.Arimura T, et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J. Am. College Cardiol. 2009;54(4):334–342. doi: 10.1016/j.jacc.2008.12.082. [DOI] [PubMed] [Google Scholar]
  • 281.Liu JS, et al. Whole-exome sequencing identifies two novel TTN mutations in Chinese families with dilated cardiomyopathy. Cardiology. 2017;136(1):10–14. doi: 10.1159/000447422. [DOI] [PubMed] [Google Scholar]
  • 282.Posey JE, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N. Engl. J. Med. 2017;376(1):21–31. doi: 10.1056/NEJMoa1516767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Golbus JR, et al. Targeted analysis of whole genome sequence data to diagnose genetic cardiomyopathy. Circ. Cardiovasc. Genet. 2014;7(6):751–759. doi: 10.1161/CIRCGENETICS.113.000578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Campuzano O, et al. Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Sci. Int. 2014;245:30–37. doi: 10.1016/j.forsciint.2014.10.004. [DOI] [PubMed] [Google Scholar]
  • 285.Gerull B, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 2002;30(2):201–204. doi: 10.1038/ng815. [DOI] [PubMed] [Google Scholar]
  • 286.Hastings R, et al. Combination of whole genome sequencing, linkage, and functional studies implicates a missense mutation in titin as a cause of autosomal dominant cardiomyopathy with features of left ventricular noncompaction. Circ. Cardiovasc. Genet. 2016;9(5):426–435. doi: 10.1161/CIRCGENETICS.116.001431. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets generated and/or analyzed during the current study are available in the the public archive of interpretations of clinically relevant variants (ClinVar) repository, (https://www.ncbi.nlm.nih.gov/clinvar/?term=TTN%5Bgene%5D&redir=gene).


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES