Skip to main content
IUCrData logoLink to IUCrData
. 2024 Feb 16;9(Pt 2):x240122. doi: 10.1107/S2414314624001226

Bis[μ-bis­(pyridin-2-yl)methanone oxime-κ3N:,N′,N′′]bis­[di­acetato-κ2O,O′;κO-zinc(II)]

Guy Crundwell a,*, Nigel E Crundwell a, Barry L Westcott a
Editor: M Zellerb
PMCID: PMC10915544  PMID: 38455111

The structure of the title compound is triclinic containing half of the mol­ecule in the asymmetric unit. Each zinc atom is coordinated to a pyridyl and oxime nitro­gen from one ligand and a third nitro­gen from the other dpko pyridyl ring and two acetato anions.

Keywords: crystal structure, dpko, zinc

Abstract

The structure of the title complex, [Zn2(C2H3O2)4(C11H9N3O)2], is triclinic containing half of the mol­ecule in the asymmetric unit. Each zinc atom is coordinated to a pyridyl and oxime nitro­gen from one di-2-pyridyl ketone oxime (dpko) ligand and a third nitro­gen from the other dpko pyridyl ring. Additionally, each zinc is coordinated to two acetato anions, one of which is bidentate and the other monodentate. The uncoordinated oxygen of the monodentate acetato group is involved in a hydrogen bond with the oxime hydrogen. The packing in the crystal is assisted by weak C—H⋯O inter­actions between acetato groups and neighboring pyridyl rings.graphic file with name x-09-x240122-scheme1-3D1.jpg

Structure description

The three N atoms in dpko can act as ligands in a variety of ways. Previous reactions of ZnII with dpko led to mol­ecules of the form Zn(dpko)Cl2 (Alexiou et al., 2003; Gökce et al., 2019) and Zn(dpko)Br2 (Westcott et al., 2016) where both pyridyl N atoms are bonding to the metal and the oxime group is directed away from the metal center. Dpko ligands with zinc have also been shown to retain their bidentate nature, yet they opt to bond via one pyridyl nitro­gen and the oxime nitro­gen (Tarushi et al., 2013). Finally, in this complex a third motif is seen; one where a pyridyl nitro­gen and oxime nitro­gen bond to one zinc and the other pyridyl nitro­gen binds to another. In this case a dimer is made and is analogous to Cu2+ complexes with dpko (Goher & Mautner, 1999) and to Mg2+ complexes with dpko (Milios et al., 2005).

The asymmetric-unit of the the title complex, Fig. 1, comprises one-half molecule with the full molecule generated by inversion symmetry. Two acetate anions are also coordin­ated to the zinc. The first acetato group bonds with both O atoms at bond lengths of 2.1369 (17) and 2.289 (2) Å and the second acetato group coordinates through one oxygen at 2.0513 (14) Å. The second oxygen on the monodentate acetate is hydrogen bonded to the hydrogen on the oxime, Table 1. The packing in the crystal is assisted by weak C—H⋯O inter­actions between acetato groups and neighboring pyridyl rings(Table 1).

Figure 1.

Figure 1

An ORTEP style (Farrugia, 2012) view of the title compound. Displace­ment ellipsoids are drawn at the 50% probability level. All hydrogen atoms not involved in hydrogen bonding have been omitted and non-H atoms generated by the inversion center have not been labeled.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 1.11 (4) 1.32 (4) 2.428 (2) 176 (3)
C2—H2⋯O1ii 0.93 2.34 3.245 (2) 164
C3—H3⋯O3iii 0.93 2.58 3.293 (3) 134
C9—H9⋯03iv 0.93 2.59 3.361 (3) 141
C11—H11⋯O2i 0.93 2.38 2.941 (3) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Synthesis and crystallization

Zinc acetate dihydrate and di-2-pyridyl ketone oxime (dpko) were used as received from Mallinckrodt and Sigma-Aldrich, respectively. A 15 ml solution of 0.3474 g (1.58 mmol) of zinc acetate dihydrate in aceto­nitrile was combined with a 15 ml aceto­nitrile solution of 0.3227 g (1.62 mmol) of dpko and stirred for 10 minutes, producing a colorless solution. Diffraction-quality, colorless crystals formed via slow evaporation of solvent within 24 h. Crystals were harvested from the evaporating solutions and decompose upon heating. IR (cm−1) 1960(wb), 1710(mb), 1590(s), 1560(s), 1480(m), 1420(s), 1300(w), 1210(w), 1110(w), 1080(sb), 1010(s), 789(s), 754(m), 698(m), 675(m), 659(s).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Zn2(C2H3O2)4(C11H9N3O)2]
M r 765.34
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 293
a, b, c (Å) 8.3549 (7), 9.3366 (8), 12.3971 (7)
α, β, γ (°) 69.409 (7), 75.524 (6), 65.217 (8)
V3) 815.88 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.54
Crystal size (mm) 0.35 × 0.32 × 0.31
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
Tmin, Tmax 0.907, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10420, 5737, 4546
R int 0.022
(sin θ/λ)max−1) 0.778
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.03
No. of reflections 5737
No. of parameters 223
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.22

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624001226/zl4065sup1.cif

x-09-x240122-sup1.cif (362.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624001226/zl4065Isup2.hkl

x-09-x240122-Isup2.hkl (456.2KB, hkl)

CCDC reference: 2331143

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank CSU-AAUP for research funding.

full crystallographic data

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] . Crystal data

[Zn2(C2H3O2)4(C11H9N3O)2] Z = 1
Mr = 765.34 F(000) = 392
Triclinic, P1 Dx = 1.558 Mg m3
a = 8.3549 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.3366 (8) Å Cell parameters from 4170 reflections
c = 12.3971 (7) Å θ = 4.5–33.0°
α = 69.409 (7)° µ = 1.54 mm1
β = 75.524 (6)° T = 293 K
γ = 65.217 (8)° Block, colorless
V = 815.88 (13) Å3 0.35 × 0.32 × 0.31 mm

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] . Data collection

Xcalibur, Sapphire3 diffractometer 5737 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4546 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 16.1790 pixels mm-1 θmax = 33.6°, θmin = 4.2°
ω scans h = −11→12
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) k = −13→13
Tmin = 0.907, Tmax = 1.000 l = −18→18
10420 measured reflections

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] . Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1935P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5737 reflections Δρmax = 0.66 e Å3
223 parameters Δρmin = −0.22 e Å3
0 restraints

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms on sp2 and sp3 carbons were placed at calculated positions with a C—H distance of 0.93?Å and 0.96?Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq or 1.5Ueq of the carrier atom, respectively. The position and thermal parameters for the oxime hydrogen were allowed to refine freely.

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.34622 (3) 0.46689 (2) 0.21836 (2) 0.03562 (8)
O1 0.3171 (2) 0.81600 (16) 0.04557 (12) 0.0489 (4)
O2 0.2284 (2) 0.3158 (2) 0.35870 (14) 0.0625 (4)
O3 0.0490 (3) 0.5591 (2) 0.28225 (15) 0.0738 (5)
O4 0.4272 (2) 0.56182 (17) 0.31195 (12) 0.0517 (4)
O5 0.3442 (3) 0.83015 (19) 0.23171 (15) 0.0721 (6)
N1 0.3011 (2) 0.38026 (17) 0.08947 (13) 0.0362 (3)
N2 0.3064 (2) 0.66897 (16) 0.06028 (12) 0.0338 (3)
N3 0.3964 (2) 0.73732 (16) −0.23140 (12) 0.0327 (3)
C1 0.2935 (3) 0.2329 (2) 0.10808 (19) 0.0475 (5)
H1A 0.318212 0.155161 0.179385 0.057*
C2 0.2505 (3) 0.1924 (2) 0.0253 (2) 0.0549 (6)
H2 0.247728 0.088449 0.040771 0.066*
C3 0.2119 (3) 0.3053 (3) −0.0797 (2) 0.0523 (5)
H3 0.180763 0.280147 −0.135924 0.063*
C4 0.2202 (3) 0.4589 (2) −0.10074 (17) 0.0410 (4)
H4 0.194267 0.538517 −0.171163 0.049*
C5 0.2675 (2) 0.49042 (19) −0.01513 (14) 0.0314 (3)
C6 0.2823 (2) 0.64842 (18) −0.03036 (13) 0.0300 (3)
C7 0.2681 (2) 0.77575 (19) −0.14482 (14) 0.0310 (3)
C8 0.1286 (3) 0.9258 (2) −0.15985 (17) 0.0434 (4)
H8 0.042857 0.949951 −0.097911 0.052*
C9 0.1179 (3) 1.0396 (2) −0.26807 (19) 0.0523 (5)
H9 0.025274 1.141321 −0.279936 0.063*
C10 0.2468 (3) 0.9997 (2) −0.35777 (18) 0.0489 (5)
H10 0.241831 1.073160 −0.431699 0.059*
C11 0.3830 (3) 0.8493 (2) −0.33611 (15) 0.0419 (4)
H11 0.470518 0.823590 −0.396915 0.050*
C12 0.0764 (3) 0.4213 (3) 0.35166 (18) 0.0533 (5)
C13 −0.0764 (4) 0.3756 (5) 0.4298 (3) 0.0938 (12)
H13A −0.181804 0.435492 0.391611 0.141*
H13B −0.096138 0.402581 0.501117 0.141*
H13C −0.047996 0.259790 0.446085 0.141*
C14 0.4072 (3) 0.7035 (2) 0.30937 (16) 0.0426 (4)
C15 0.4641 (4) 0.7266 (3) 0.4055 (2) 0.0684 (7)
H15A 0.461453 0.638302 0.474543 0.103*
H15B 0.384817 0.829313 0.420185 0.103*
H15C 0.582636 0.726925 0.383512 0.103*
H1 0.325 (5) 0.821 (4) 0.132 (3) 0.116 (13)*

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.04561 (13) 0.02653 (10) 0.02801 (10) −0.00898 (8) −0.00571 (8) −0.00425 (7)
O1 0.0854 (11) 0.0274 (6) 0.0412 (7) −0.0243 (7) −0.0195 (7) −0.0054 (5)
O2 0.0476 (9) 0.0701 (11) 0.0524 (9) −0.0126 (8) −0.0018 (7) −0.0110 (8)
O3 0.0920 (14) 0.0576 (11) 0.0510 (10) −0.0185 (10) −0.0065 (9) −0.0037 (8)
O4 0.0768 (11) 0.0382 (7) 0.0431 (7) −0.0183 (7) −0.0202 (7) −0.0095 (6)
O5 0.1310 (17) 0.0374 (8) 0.0516 (9) −0.0177 (9) −0.0432 (10) −0.0107 (7)
N1 0.0459 (8) 0.0255 (6) 0.0353 (7) −0.0141 (6) −0.0083 (6) −0.0028 (5)
N2 0.0482 (8) 0.0231 (6) 0.0302 (6) −0.0126 (6) −0.0065 (6) −0.0068 (5)
N3 0.0411 (8) 0.0261 (6) 0.0263 (6) −0.0082 (6) −0.0082 (5) −0.0043 (5)
C1 0.0612 (12) 0.0276 (8) 0.0519 (11) −0.0198 (8) −0.0135 (10) 0.0001 (7)
C2 0.0700 (15) 0.0314 (9) 0.0726 (15) −0.0253 (10) −0.0184 (12) −0.0104 (9)
C3 0.0655 (14) 0.0443 (11) 0.0614 (13) −0.0246 (10) −0.0176 (11) −0.0188 (9)
C4 0.0533 (11) 0.0351 (9) 0.0398 (9) −0.0190 (8) −0.0126 (8) −0.0083 (7)
C5 0.0364 (8) 0.0251 (7) 0.0319 (7) −0.0107 (6) −0.0055 (6) −0.0070 (6)
C6 0.0360 (8) 0.0231 (7) 0.0281 (7) −0.0092 (6) −0.0046 (6) −0.0052 (5)
C7 0.0396 (8) 0.0241 (7) 0.0292 (7) −0.0109 (6) −0.0097 (6) −0.0046 (5)
C8 0.0458 (10) 0.0310 (8) 0.0399 (9) −0.0036 (7) −0.0058 (8) −0.0069 (7)
C9 0.0523 (12) 0.0321 (9) 0.0515 (12) −0.0005 (8) −0.0151 (9) 0.0004 (8)
C10 0.0546 (12) 0.0396 (10) 0.0379 (9) −0.0120 (9) −0.0167 (9) 0.0073 (7)
C11 0.0472 (10) 0.0395 (9) 0.0291 (8) −0.0110 (8) −0.0084 (7) −0.0014 (7)
C12 0.0519 (12) 0.0612 (13) 0.0353 (9) −0.0152 (10) −0.0035 (8) −0.0081 (9)
C13 0.0545 (16) 0.121 (3) 0.0676 (18) −0.0295 (18) 0.0021 (13) 0.0081 (17)
C14 0.0539 (11) 0.0412 (9) 0.0349 (9) −0.0148 (8) −0.0078 (8) −0.0149 (7)
C15 0.107 (2) 0.0603 (14) 0.0537 (13) −0.0356 (15) −0.0343 (14) −0.0118 (11)

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] . Geometric parameters (Å, º)

Zn1—O2 2.1369 (17) C3—H3 0.9300
Zn1—O3 2.289 (2) C3—C4 1.393 (3)
Zn1—O4 2.0513 (14) C4—H4 0.9300
Zn1—N1 2.1944 (16) C4—C5 1.377 (3)
Zn1—N2 2.1702 (14) C5—C6 1.474 (2)
Zn1—N3i 2.1921 (14) C6—C7 1.490 (2)
Zn1—C12 2.538 (2) C7—C8 1.383 (2)
O1—N2 1.3581 (18) C8—H8 0.9300
O1—H1 1.11 (4) C8—C9 1.384 (3)
O2—C12 1.240 (3) C9—H9 0.9300
O3—C12 1.233 (3) C9—C10 1.375 (3)
O4—C14 1.251 (2) C10—H10 0.9300
O5—C14 1.238 (2) C10—C11 1.374 (3)
O5—H1 1.32 (4) C11—H11 0.9300
N1—C1 1.339 (2) C12—C13 1.516 (4)
N1—C5 1.349 (2) C13—H13A 0.9600
N2—C6 1.279 (2) C13—H13B 0.9600
N3—C7 1.343 (2) C13—H13C 0.9600
N3—C11 1.346 (2) C14—C15 1.498 (3)
C1—H1A 0.9300 C15—H15A 0.9600
C1—C2 1.377 (3) C15—H15B 0.9600
C2—H2 0.9300 C15—H15C 0.9600
C2—C3 1.368 (3)
O2—Zn1—O3 58.16 (6) C5—C4—C3 118.68 (18)
O2—Zn1—N1 92.26 (6) C5—C4—H4 120.7
O2—Zn1—N2 146.35 (6) N1—C5—C4 122.62 (15)
O2—Zn1—N3i 89.78 (6) N1—C5—C6 114.95 (14)
O2—Zn1—C12 29.18 (7) C4—C5—C6 122.42 (15)
O3—Zn1—C12 29.01 (7) N2—C6—C5 115.96 (14)
O4—Zn1—O2 99.02 (7) N2—C6—C7 122.71 (14)
O4—Zn1—O3 98.14 (7) C5—C6—C7 121.32 (14)
O4—Zn1—N1 168.00 (6) N3—C7—C6 116.84 (14)
O4—Zn1—N2 98.84 (6) N3—C7—C8 122.22 (15)
O4—Zn1—N3i 88.29 (6) C8—C7—C6 120.94 (16)
O4—Zn1—C12 100.79 (7) C7—C8—H8 120.4
N1—Zn1—O3 91.27 (7) C7—C8—C9 119.26 (18)
N1—Zn1—C12 91.05 (7) C9—C8—H8 120.4
N2—Zn1—O3 91.18 (6) C8—C9—H9 120.6
N2—Zn1—N1 73.40 (5) C10—C9—C8 118.83 (18)
N2—Zn1—N3i 119.03 (6) C10—C9—H9 120.6
N2—Zn1—C12 118.85 (7) C9—C10—H10 120.6
N3i—Zn1—O3 147.87 (6) C11—C10—C9 118.74 (17)
N3i—Zn1—N1 87.66 (6) C11—C10—H10 120.6
N3i—Zn1—C12 118.87 (6) N3—C11—C10 123.36 (18)
N2—O1—H1 107.4 (19) N3—C11—H11 118.3
C12—O2—Zn1 93.65 (15) C10—C11—H11 118.3
C12—O3—Zn1 86.75 (16) O2—C12—Zn1 57.18 (12)
C14—O4—Zn1 134.88 (14) O2—C12—C13 118.1 (2)
C14—O5—H1 120.5 (16) O3—C12—Zn1 64.23 (14)
C1—N1—Zn1 125.79 (13) O3—C12—O2 121.3 (2)
C1—N1—C5 117.95 (16) O3—C12—C13 120.6 (2)
C5—N1—Zn1 116.13 (11) C13—C12—Zn1 173.8 (2)
O1—N2—Zn1 125.25 (11) C12—C13—H13A 109.5
C6—N2—Zn1 119.18 (11) C12—C13—H13B 109.5
C6—N2—O1 115.40 (13) C12—C13—H13C 109.5
C7—N3—Zn1i 127.73 (11) H13A—C13—H13B 109.5
C7—N3—C11 117.57 (15) H13A—C13—H13C 109.5
C11—N3—Zn1i 113.67 (12) H13B—C13—H13C 109.5
N1—C1—H1A 118.9 O4—C14—C15 119.21 (19)
N1—C1—C2 122.28 (18) O5—C14—O4 125.11 (18)
C2—C1—H1A 118.9 O5—C14—C15 115.68 (19)
C1—C2—H2 120.1 C14—C15—H15A 109.5
C3—C2—C1 119.88 (18) C14—C15—H15B 109.5
C3—C2—H2 120.1 C14—C15—H15C 109.5
C2—C3—H3 120.7 H15A—C15—H15B 109.5
C2—C3—C4 118.55 (19) H15A—C15—H15C 109.5
C4—C3—H3 120.7 H15B—C15—H15C 109.5
C3—C4—H4 120.7
Zn1—O2—C12—O3 −3.7 (3) N2—C6—C7—C8 −64.7 (3)
Zn1—O2—C12—C13 175.4 (2) N3—C7—C8—C9 1.3 (3)
Zn1—O3—C12—O2 3.4 (3) C1—N1—C5—C4 2.3 (3)
Zn1—O3—C12—C13 −175.6 (3) C1—N1—C5—C6 −178.61 (17)
Zn1—O4—C14—O5 −10.1 (4) C1—C2—C3—C4 1.0 (4)
Zn1—O4—C14—C15 170.56 (18) C2—C3—C4—C5 0.2 (3)
Zn1—N1—C1—C2 174.66 (17) C3—C4—C5—N1 −2.0 (3)
Zn1—N1—C5—C4 −173.72 (14) C3—C4—C5—C6 179.04 (19)
Zn1—N1—C5—C6 5.3 (2) C4—C5—C6—N2 171.92 (17)
Zn1—N2—C6—C5 5.5 (2) C4—C5—C6—C7 −7.5 (3)
Zn1—N2—C6—C7 −175.07 (12) C5—N1—C1—C2 −1.0 (3)
Zn1i—N3—C7—C6 −14.1 (2) C5—C6—C7—N3 −65.3 (2)
Zn1i—N3—C7—C8 165.91 (14) C5—C6—C7—C8 114.7 (2)
Zn1i—N3—C11—C10 −168.65 (17) C6—C7—C8—C9 −178.66 (19)
O1—N2—C6—C5 −179.02 (15) C7—N3—C11—C10 0.6 (3)
O1—N2—C6—C7 0.4 (3) C7—C8—C9—C10 0.1 (3)
N1—C1—C2—C3 −0.7 (4) C8—C9—C10—C11 −1.1 (4)
N1—C5—C6—N2 −7.1 (2) C9—C10—C11—N3 0.7 (3)
N1—C5—C6—C7 173.44 (16) C11—N3—C7—C6 178.31 (16)
N2—C6—C7—N3 115.34 (19) C11—N3—C7—C8 −1.6 (3)

Symmetry code: (i) −x+1, −y+1, −z.

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O5 1.11 (4) 1.32 (4) 2.428 (2) 176 (3)
C2—H2···O1ii 0.93 2.34 3.245 (2) 164
C3—H3···O3iii 0.93 2.58 3.293 (3) 134
C9—H9···03iv 0.93 2.59 3.361 (3) 141
C11—H11···O2i 0.93 2.38 2.941 (3) 119

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z; (iii) −x, −y+1, −z; (iv) −x, −y+2, −z.

References

  1. Alexiou, M., Dendrinou-Samara, D., Raptopolou, C. P., Terzis, A. & Kessissoglou, D. P. (2003). Inorg. Chem.41, 4732–4738. [DOI] [PubMed]
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  3. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  4. Goher, M. A. S. & Mautner, F. A. (1999). Polyhedron, 18, 3425–3431.
  5. Gökce, H., Alpaslan, G. & Alaşalvar, C. (2019). J. Coord. Chem.72, 1075–1096.
  6. Milios, C. J., Kyritsis, P., Raptopoulou, C. P., Terzis, A., Vicente, R., Escuer, A. & Perlepes, S. P. (2005). Dalton Trans. pp. 501–511. [DOI] [PubMed]
  7. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  10. Tarushi, A., Karaflou, Z., Kljun, J., Turel, I., Psomas, G., Papadopoulos, A. N. & Kessissoglou, D. P. (2013). J. Inorg. Biochem.128, 86–96. [DOI] [PubMed]
  11. Westcott, B. L., Crundwell, G., Remesic, M., Knopf, K., Chandler, K., McMaster, J. & Davies, E. S. (2016). Inorg. Chem. Commun.74, 79–81.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624001226/zl4065sup1.cif

x-09-x240122-sup1.cif (362.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624001226/zl4065Isup2.hkl

x-09-x240122-Isup2.hkl (456.2KB, hkl)

CCDC reference: 2331143

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES