Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Feb 20;80(Pt 3):318–324. doi: 10.1107/S2056989024001543

Synthesis and crystal structures of bis­[1-oxopyridin-2-olato(1−)]bis­(penta­fluoro­phen­yl)silicon(IV)–tetra­hydro­furan–pentane (2/1/1), bis­[1-oxopyridin-2-olato(1−)]bis­(p-tol­yl)silicon(IV), and dimesitylbis[1-oxopyridin-2-olato(1−)]silicon(IV)

Bradley M Kraft a,*, William W Brennessel b, Jordan W Andrews b, Michael T Viggiani a, Nathan F Kittrell a, Matthew T Heckman a
Editor: F F Ferreirac
PMCID: PMC10915655  PMID: 38456051

Three hexa­coordinated bis­(ar­yl)silicon(IV) complexes of 1-oxopyridin-2-one (OPO) are reported, each of which exhibit C/N site disorder in their pyridine rings. In (C6F5)2Si(OPO)2, the equal disorder ratios and solution NMR characterization together indicate the presence of a single totally asymmetric ON-trans-OC isomer. Unequal disorder ratios in p-tol­yl2Si(OPO)2 and in mesit­yl2Si(OPO)2 indicate the presence of up to three isomers.

Keywords: crystal structure, silicon, pyridinone, pyridine N-oxide

Abstract

The neutral organosilicon(IV) complex, (C6F5)2Si(OPO)2 (OPO = 1-oxopyridin-2-one, C5H4NO2), was synthesized from (C6F5)2Si(OCH3)2 and 2 equiv. of 1-hy­droxy­pyridin-2-one in tetra­hydro­furan (THF). Single crystals grown from the diffusion of n-pentane into a THF solution were identified as a THF hemisolvate and an n-pentane hemisolvate, (C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1). p-Tol­yl2Si(OPO)2 (2) and mesit­yl2Si(OPO)2 (3) crystallized directly from reaction mixtures of 2 equiv. of Me3Si(OPO) with p-tol­yl2SiCl2 and mesit­yl2SiCl2, respectively, in aceto­nitrile. The oxygen-bonded carbon and nitro­gen atoms of the OPO ligands in 1, 2, and 3 were modeled as disordered indicating co-crystallization of up to three possible diastereomers in each. Solution NMR studies support the presence of exclusively the all-cis isomer in 1 and multiple isomers in 2. Poor solubility of 3 limited its characterization in solution.

1. Chemical context

The intriguing capacity of 1-hy­droxy­pyridin-2-one (HOPO) to dissolve silica to form [Si(OPO)3]+ in aqueous solution was reported by Weiss & Harvey in 1964. More recently, related ligand derivatives have been utilized as sequestering agents of lead and rare-earth metals, among others (Lewis & Cohen, 2004; Szigethy & Raymond, 2011; Wang, et al., 2019). In order to further study the powerful chelate effect of the OPO ligand, we have examined the solution- and solid-state structures of silicon complexes with varying organo ancillary ligands.

Previously reported hexa­coordinate neutral di­alkyl­silicon 1-oxopyridin-2-one (OPO) complexes, R 2Si(OPO)2 [R = Me, Et, iPr; R 2 = (CH2)3], and one diaryl complex, Ph2Si(OPO)2, each exhibit co-crystallization of up to three possible isomers due, in part, to the isosteric character of the OPO ligand with the coplanar flip of itself (Kraft & Brennessel, 2014). In solution at room temperature, the dialkyl complexes exhibit only five OPO ligand resonances by NMR spectroscopy, indicating rapid inter­conversion of isomers that occurs with concomitant Si←OC bond dissociation. For Me2Si(OPO)2, three isomers were observed at 193 K by 1H NMR spectros­copy. In Ph2Si(OPO)2, the more electron-withdrawing phenyl groups strengthened the OPO ligand chelate inter­action as given by generally shorter Si—O distances, and this resulted also in a slower inter­conversion between isomers relative to the alkyl derivatives (Kraft & Brennessel, 2014).

In all known R 2Si(OPO)2 complexes, the pair of Si—O bond distances trans to alkyl or aryl groups are longer than those cis. This characteristic, together with the observed C/N site disorder, highlights the underlying ambidentate character of the OPO ligand with inter­changeability of canonical structures having either 2-pyridinone or N-oxide electronic forms. In contrast with the four known alkyl R 2Si(OPO)2 complexes in the crystalline state which favored primarily the ON-trans-ON isomer, the aryl derivative, Ph2Si(OPO)2, favored primarily the OC-trans-OC isomer and suggested that electron-withdrawing ancillary ligands might favor structures with primarily N-oxide forms. We report here the crystal structures and solution characterization of three additional aryl-substituted R 2Si(OPO)2 [R = C6F5 (1), p-tolyl (2), mesityl (3)] complexes. 1.

2. Structural commentary

There is one silicon complex in a general position per asymmetric unit for all three structures. In 1, there are also solvents of crystallization (see Refinement). Each of the three complexes is hexa­coordinate in a distorted octa­hedral geometry with cis-aryl groups and two chelating OPO ligands (Figs. 1–3 ). Selected bond lengths and angles are summarized in Tables 1, 2 and 3. In all three complexes, the oxygen-bonded C and N atoms of each pyridine ring are modeled as disordered (see Refinement), which indicates the presence of up to three possible diastereomers in each. In 1, the C1/N1 and C6/N2 disorder ratios indicate approximately equal C/N atom occupancy in both OPO ligand sites. In 2, to an uncertain degree, a larger proportion of the ON-trans-ON arrangement is indicated from the disorder ratios, and in 3, a larger proportion of the OC-trans-OC arrangement is indicated. In our previous work (Kraft & Brennessel, 2014), similarly disordered dialkyl R 2Si(OPO)2 [R = Me, Et, iPr; R 2 = (CH2)3] complexes were found to favor a larger proportion of the ON-trans-ON arrangement, whereas the more electron-withdrawing Ph2Si(OPO)2 favored a larger proportion of the OC-trans-OC arrangement. The structures of 1, 2, and 3 indicate no trend in major isomer preference with ar­yl/electron withdrawing ancillary ligands. As in all other R 2Si(OPO)2 complexes, the Si—O bonds trans to alkyl or aryl groups in 13 are consistently longer than those cis.

Figure 1.

Figure 1

Anisotropic displacement ellipsoid plot of 1 drawn at the 50% probability level with H atoms and solvent omitted. Only the major components of disorder are shown.

Figure 2.

Figure 2

Anisotropic displacement ellipsoid plot of 2 drawn at the 50% probability level with H atoms omitted. Only the major components of disorder are shown.

Figure 3.

Figure 3

Anisotropic displacement ellipsoid plot of 3 drawn at the 50% probability level with H atoms omitted. Only the major components of disorder are shown.

Table 1. Selected geometric parameters (Å, °) for 1 .

Si1—O1 1.7910 (9) Si1—O2 1.8503 (9)
Si1—O4 1.8042 (9) Si1—C11 1.9559 (12)
Si1—O3 1.8480 (9) Si1—C17 1.9683 (12)
       
O1—Si1—O4 166.74 (4) O3—Si1—C11 90.16 (4)
O1—Si1—O3 86.65 (4) O2—Si1—C11 175.99 (5)
O4—Si1—O3 84.60 (4) O1—Si1—C17 99.44 (5)
O1—Si1—O2 85.17 (4) O4—Si1—C17 88.68 (4)
O4—Si1—O2 84.53 (4) O3—Si1—C17 172.66 (4)
O3—Si1—O2 87.56 (4) O2—Si1—C17 88.88 (5)
O1—Si1—C11 91.41 (4) C11—Si1—C17 93.75 (5)
O4—Si1—C11 98.54 (4)    

Table 2. Selected geometric parameters (Å, °) for 2 .

Si1—O3 1.8093 (14) Si1—C11 1.9202 (19)
Si1—O1 1.8097 (14) Si1—O2 1.9290 (15)
Si1—O4 1.9179 (15) Si1—C18 1.9301 (19)
       
O3—Si1—O1 165.96 (7) O4—Si1—O2 83.28 (6)
O3—Si1—O4 83.76 (6) C11—Si1—O2 171.36 (8)
O1—Si1—O4 86.24 (7) O3—Si1—C18 91.04 (7)
O3—Si1—C11 98.02 (8) O1—Si1—C18 97.64 (8)
O1—Si1—C11 91.68 (7) O4—Si1—C18 171.40 (7)
O4—Si1—C11 89.37 (7) C11—Si1—C18 98.16 (8)
O3—Si1—O2 85.72 (6) O2—Si1—C18 89.53 (7)
O1—Si1—O2 83.35 (6)    

Table 3. Selected geometric parameters (Å, °) for 3 .

Si1—O1 1.9291 (16) Si1—O4 1.8096 (15)
Si1—O2 1.7896 (15) Si1—C11 1.975 (2)
Si1—O3 1.9581 (16) Si1—C20 1.955 (2)
       
O1—Si1—O3 80.99 (7) O3—Si1—C11 88.61 (8)
O1—Si1—C11 169.59 (8) O4—Si1—O1 84.30 (7)
O1—Si1—C20 90.09 (8) O4—Si1—O3 81.82 (7)
O2—Si1—O1 83.25 (7) O4—Si1—C11 94.57 (8)
O2—Si1—O3 84.09 (7) O4—Si1—C20 95.73 (8)
O2—Si1—O4 162.48 (8) C20—Si1—O3 170.93 (8)
O2—Si1—C11 95.44 (8) C20—Si1—C11 100.32 (9)
O2—Si1—C20 96.57 (8)    

The 29Si NMR spectrum of 1 in DMSO-d 6 displays a single broadened resonance at −152.5 ppm, consistent with hexa­coordinated silicon. Two sets of sharp OPO ligand resonances in 1:1 ratio are observed in the 13C NMR spectrum, and two sets of C6F5 ligand resonances in 1:1 ratio are observed in the 19F NMR spectrum, pointing to magnetic inequivalence of all four ligands. At 298 K, the ortho and meta 19F NMR resonances are significantly broadened, and each of the ten sharp OPO ligand 13C NMR resonances appears as a pair of closely-spaced peaks (a total of 20 peaks) separated by ≤ 0.2 ppm. Variable temperature NMR studies at 353 K show coalesced and sharpened meta 19F resonances, broadened ortho 19F resonances that approach coalescence, and 1H and 13C resonances of the OPO ligands that remain sharp. These observations are consistent with the absence of evidence of inter­conversion between diastereomers and the presence of two rotamers in 1:1 ratio of the totally asymmetric ON-trans-OC isomer with hindered rotation about the Si–C6F5 bonds. The absence of dynamic stereoisomerism at the observed temperatures is striking in light of that observed with all other known R 2Si(OPO)2 complexes. This may be explained by the markedly stronger chelate inter­action in 1, manifested by its shorter average Si—O bond lengths (Table 1) and larger O—Si—O ‘bite’ angles [84.60 (4) and 85.17 (4)°], which are ∼1–3° larger than those of all known R 2Si(OPO)2 complexes (Kraft & Brennessel, 2014). As a result, Si←OC bond dissociation would be expected to be inhibited as observed, which has been shown as part of the mechanism of isomerization of R 2Si(OPO)2 complexes. Similarly, inter­conversion of fac and mer isomers in the even more strongly chelated [Si(OPO)3]+ cation is not observed for likely the same reason (Kraft et al., 2015). Bite angles in homoleptic [Si(OPO)3]+ silyl cations range from 87.0–87.4° in [Si(OPO)3]Cl·2CDCl3, [Si(OPO)3]Cl·xCH3CN, and [Si(OPO)3]·[CF3SO3]·0.5HOPO [Cambridge Structural Database (CSD; Groom et al., 2016), version 5.45, update Nov. 2023; refcodes RUTQUU, RUTRAB (Kraft et al., 2015) and QOXSIF (Tacke, Willeke, & Penka, 2001)], respectively, indicating even stronger chelate inter­actions in comparison with 1. The presence of only one isomer of 1 in solution is consistent with the crystallographic data having a common disorder ratio of 0.52 (2):0.48 (2) for both C1/N1 and C6/N2. The ON-trans-OC isomer and mol­ecular superimposition of the flip of itself (i.e., a C 2 rotation about the axis bis­ecting the C—Si—C angle) uniquely reverses the positions of C and N atoms in all four oxygen-bonded sites, necessarily resulting in an equal disorder ratio.

The strength of the chelate inter­action increases in the complexes in the order 321 as given by decreasing average Si—O bond distances and increasing O2Si bite angles (Tables 1, 2 and 3). This can be explained by the electron-withdrawing effect of the fluoroaryl groups which strengthens the inter­action in 1 and the increase in steric hindrance from ortho-methyl substitution, which weakens the inter­action in 3. Steric influences in 3 are further evident by the greater deviation of the trans-O—Si—O angle [162.48 (8)°] from ideal (i.e., 180°) versus those in 1 and 2 [166.74 (4) and 165.96 (7)°, respectively] and by the larger C—Si—C angle in 3 versus 2 and 1. The electron-donating p-tolyl groups of 2 appear to increase slightly the chelate strength of the OPO ligand in comparison with that in Ph2Si(OPO)2 given by the comparable Si—O bond lengths and ∼1° larger O2Si bite angles [for Ph2Si(OPO)2: Si—O = 1.9175 (4), 1.8157 (13) Å; O—Si—O = 82.47 (6)°].

For 2 in CDCl3 solution, a single set of OPO and p-tolyl ligand resonances was observed by 1H and 13C NMR spectroscopy with varying extents of broadened OPO ligand and p-tolyl peaks that sharpen further at higher temperature. These observations are consistent with stereodynamic isomerization occurring similar to that observed with Ph2Si(OPO)2 (Kraft & Brennessel, 2014). Complex 3 could not be characterized in solution due to its poor solubility.

Each O2Si chelate ring and planar OPO ligand in 1 forms a relatively large dihedral angle [9.60 (2) and 16.36 (4)°] in comparison with those of other alkyl R 2Si(OPO)2 complexes [R = Me, Et, iPr, tBu; R 2 = (CH2)3, range = 1.78–12.47°), 2 [2.41 (8) and 0.97 (9)°], and 3 [6.68 (11) and 8.41 (9)°]. Larger dihedral angles [both 21.51 (9)°] are also observed in Ph2Si(OPO)2. Unspecific crystal packing effects are likely responsible for these variations as no correlation could be found relating the magnitude of these fold angles with chelate strength or other ancillary ligand characteristics.

3. Supra­molecular features

In 1 there is an offset parallel π–π inter­action between ring C11–C16 from pairs of inverted mol­ecules (Fig. 4), with a centroid–centroid distance of 3.8613 (8) Å and an inter­planar distance of 3.7876 (13) Å. Further π–π inter­actions may have been inhibited during crystal growth by the presence of solvent. There are a few short inter­molecular C—H⋯F—C(aromatic) contacts, the strongest of which are listed in Table 4. However, it should be noted that only two [C2—H2⋯F1( Inline graphic  − x, Inline graphic  + y, Inline graphic  − z)] and C10—H10⋯F8(−1 + x, y, z)] have H⋯F distances of significance compared with the sum of the individual van der Waals radii (2.56 Å; Rowland & Taylor, 1996) and that these attractions tend to be very weak – of the order of the energies of van der Waals complexes (Howard et al., 1996).

Figure 4.

Figure 4

Offset parallel π–π inter­action between inverted pairs of mol­ecules of 1. The second mol­ecule is generated by the symmetry operation 1 − x, 1 − y, 1 − z. Centroid–centroid distance, 3.86 Å.

Table 4. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1i 0.95 2.34 3.2809 (15) 170
C4—H4⋯F6ii 0.95 2.68 3.5757 (16) 158
C5—H5⋯F4iii 0.95 2.59 3.2997 (15) 132
C7—H7⋯F5iv 0.95 2.57 3.2307 (14) 127
C8—H8⋯F6iv 0.95 2.56 3.2230 (15) 127
C10—H10⋯F8v 0.95 2.37 3.0797 (16) 131

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

The packing of 2 features sheets of mol­ecules parallel to the ac plane (Figs. 5 and 6). Inverted pairs of ring N1/C1–C5 alternate with inverted pairs of ring C11–C16 to form staggered, but parallel arene ring alignments along [001] (Fig. 5). The centroid–centroid distances are 3.7548 (14), 4.1725 (12), and 5.0523 (13) Å with inter­planar spacings of 3.588 (2), 3.556 (3), and 3.532 (4) Å, respectively. The alignment of rings at the largest centroid-centroid distance of 5.05 Å is likely a mere consequence of a favorable packing arrangement rather than significant π–π overlap. These sheets are linked in the third dimension by pairs of offset parallel π–π inter­actions involving ring N2/C6–C10 (Fig. 7) with a centroid-centroid distance of 3.5067 (14) Å and an inter­planar spacing of 3.350 (2) Å.

Figure 5.

Figure 5

Packing plot of 2 with H atoms omitted. Rows of inter­locking mol­ecules along the [001] direction create two-dimensional sheets. Centroid–centroid distances are 3.76, 4.17, and 5.05 Å, for which the smaller two may allow for offset parallel π–π inter­actions.

Figure 6.

Figure 6

Packing plot of 2 with H atoms omitted that shows the divisions between the sheets shown in Fig. 5.

Figure 7.

Figure 7

The sheets depicted in Figs. 5 and 6 are connected via additional π–π inter­actions between inverted pairs of mol­ecules. Second mol­ecule generated by 1 − x, −y, 1 − z. Centroid–centroid distance, 3.51 Å.

Mol­ecules of 3 appear linked along [100] via π–π inter­actions between rings N1/C1–C5 and N2/C6–C10 of symmetry-equivalent mol­ecules (Fig. 8). Although the centroid-centroid distance is short at 3.7416 (14) Å, the angle between ring planes is 23.03 (11)°, perhaps limiting the attractive force. The inter­planar spacings range from 3.191 (3) to 4.268 (3) Å, with an average of 3.722 (7) Å. One C—H⋯π inter­action accompanies each π–π inter­action just described (Fig. 8). The distance between H and the midpoint of the C11—C16 bond is 2.50 Å, with a C—H⋯CC(midpoint) angle of 174°. The angle between the plane containing the C—H donor and that of the π-acceptor is 68.27 (7)°.

Figure 8.

Figure 8

Possible π–π inter­action in 3 shown by thick dashes. Centroid–centroid distances, 3.74 Å. Angles between ring planes, 23°. Edge-to-face C—H⋯π inter­actions shown by thin dashes between H atoms and the π systems at the edge of each acceptor ring. Symmetry-equivalent mol­ecules generated by Inline graphic  + x, Inline graphic  − y, 1 − z and Inline graphic  + x, Inline graphic  − y, 1 − z.

4. Database survey

There are currently no reported structures of hexa­coordinate bis­(penta­fluoro­phen­yl)silicon(IV) complexes, nor other hexa­coordinate dimesit­ylsilicon(IV) complexes. The related hexa­coordinate pyri­thione (OPTO) complex, (p-tol­yl)2Si(OPTO)2, crystallizes with cis aryl groups and primarily with two bidentate OPTO ligands in an S-trans-S arrangement with additional disordered monodentate modes (CSD refcode DEWGAR; Tiede et al., 2022). Mesit­yl2Si(OPTO)2 is tetra­coordinate with two monodentate κO OPTO ligands (CSD refcode DEWSUX; Tiede et al., 2022).

There are five entries of hexa­coordinate R 2Si(OPO)2 [R = Me, Et, iPr, Ph; R 2 = (CH2)3] complexes containing two bidentate OPO ligands (CSD refcodes NITSAM, NITSEQ, NITSOA, NISMIN, NITSUG, respectively; Kraft & Brennessel, 2014). Also reported with two bidentate OPO ligands are monoorgano neutral hexa­coordinate complexes, RSi(OPO)2 X (X = Cl, F; CSD refcodes ODEFIP, ODEFOV, ODEFUB, ODEHAJ, and ODEHEN), and cationic penta­coordinate complexes, [RSi(OPO)2]+ X (X = Cl, tri­fluoro­methane­sulfonate; CSD refcodes ODEGAI, ODEGIQ, ODEGOW, and ODEGUC; Koch et al., 2017). Other related entries include [Si(OPO)2(μ-CH2CH2SCH2C(=O)O)]2·2CH3CN and [O(CH2)3]Si(OPO)2 (CSD refcodes UBUWET and UBUWIX, respectively; Tacke, Burschka et al., 2001). Monodentate OPO ligand complexes of any metal are limited to three organosilicon complexes: Me3Si(OPO), tBu2Si(κ 1-OPO)(κ 2-OPO), and Ph3Si(OPO)·Ph3Si(OH)·0.5C5H12 (CSD refcodes NITROZ, NITSOA, and NITRIT, respectively; Kraft & Brennessel, 2014). Upon review of a total of 70 complexes of any metal in the CSD containing the OPO ligand (Groom et al., 2016), complexes with OPO ligand/O2 M dihedral angles deviating more than 15° from coplanarity are relatively rare comprising of seven complexes of Si, V, Cu, Zn, Eu, Gd, and Th (CSD refcodes NISMIN: Kraft & Brennessel, 2014; OJEHOB: Jakusch et al., 2010; HUSHEJ: Peyroux et al., 2009; TADXAY: Puerta & Cohen, 2003; JAFZEW and JAFZIA: Tedeschi et al., 2003; BURPEJ: Casellato et al., 1983).

5. Synthesis and crystallization

(C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1): To a solution of HOPO (0.1508 g, 1.357 mmol) in ∼2 ml of THF was added a solution of (C6F5)2Si(OCH3)2 (0.2883 g, 1.025 mmol) in ∼2 ml THF. The resulting solution was stirred for two days and the solvent removed under vacuum. A portion (0.100 g) was recrystallized by vapor diffusion of n-pentane into a THF solution to yield white crystals of (C6F5)2Si(OPO)2·0.5THF·0.5C5H12. Subsequent washing of the crystals with THF and drying for 3 h under vacuum resulted in partial removal of solvents of crystallization, which analyzed as (C6F5)2Si(OPO)2·0.36C4H8O·0.11C5H12 (0.046 g, 46%) by a qu­anti­tative 1H NMR experiment and by elemental analysis. 1H NMR (DMSO-d 6, 353 K): δ 0.87 (t, penta­ne), 1.28 (penta­ne), 1.77 (THF), 3.62 (THF), 7.10 (m, 3H), 7.35 (ddd, 3 J = 8.6, 3 J = 4.5, 4 J = 1.0 Hz, 1H), 7.88 (m, 2H), 8.41 (ddd, 3 J = 10.6, 3 J = 6.6, 4 J = 1.2 Hz, 1H), 8.64 (m, 1H). 13C NMR (DMSO-d 6, 298 K): δ 13.9 (penta­ne), 21.7 (penta­ne), 25.1 (THF), 33.5 (penta­ne), 67.0 (THF), 112.0, 112.2, 112.2, 114.2, 114.2, 115.5, 115.5, 124.4 (br, Si—C), 132.6, 132.6, 132.7, 132.8, 136.0 (br d, 1 J C—F = 250 Hz), 138.8 (br d, 1 J C—F = 250 Hz), 138.9, 138.9, 139.8, 139.9, 147.7 (br d, 1 J C—F = 230 Hz), 154.5, 154.6, 155.4 (CO), 155.4 (CO). 19F NMR (DMSO-d 6, 298 K, referenced to α,α,α-tri­fluoro­toluene at δ −63.73): δ −167.1 (br, m-C6F5), −166.6 (br, m-C6F5), −160.8 (m, p-C6F5), −160.5 (t, J = 21.1 Hz, p-C6F5), −136.2 (br, o-C6F5), −130.0 (br, o-C6F5), −128.8 (br, o-C6F5). 29Si NMR (DMSO-d 6, 298 K): δ −152.5 (br). Analysis calculated for (C6F5)2Si(OPO)2 0.36·C4H8O 0.11·C5H12: C, 46.72%; H, 1.98%; N, 4.55%. Found: C, 47.09%; H, 1.95%; N, 4.68%.

p-Tol­yl2Si(OPO)2 (2): To a solution of Me3Si(OPO) (0.1243 g, 0.678 mmol) in 7 ml of CH3CN was added dropwise a solution of p-tol­yl2SiCl2 (87.0 µL, d = 1.10 g ml−1, 0.340 mmol) in 2 ml of CH3CN at room temperature. The mixture was allowed to stand undisturbed for nine days. Decantation, washing with ∼1 ml of CH3CN, and drying under vacuum afforded 0.1132 g (75.5%) of a combination of a white powder and crystals used for structure determination. 1H NMR (CDCl3, 333 K): δ 2.24 (s, 6H), 6.61 (m, 2H), 6.82 (br d, 3 J = 7.9 Hz, 2H), 6.96 (d, 3 J = 7.8 Hz, 4H, p-tol­yl), 7.38 (ddd, 3 J = 7.3, 3 J = 8.7, 4 J = 1.7 Hz, 2H), 7.53 (d, 3 J = 7.8 Hz, 4H, p-tol­yl), 8.00 (br d, 3 J = 6.1 Hz, 2H). 13C NMR (CDCl3, 333 K): δ 21.4 (CH3), 111.5 (br), 113.2, 127.5, 132.4, 134.8, 135.1, 136.5 (br), 148.4 (br), 156.8 (CO). 29Si NMR (CDCl3, 333 K): δ −128.3. Analysis calculated for C24H22N2O4Si: C, 66.95; H, 5.15; N, 6.51. Found: C, 66.30; H, 5.09; N, 6.71.

Mesit­yl2Si(OPO)2 (3): To a filtered solution of Me3Si(OPO) (0.0904 g, 0.493 mmol) in 4 ml of CH3CN was added a filtered solution of mesit­yl2SiCl2 (0.0832 g, 0.247 mmol) in 4 ml of CH3CN. Colorless crystals deposited after one day at room temperature. Decantation and drying under vacuum afforded 0.0633 g (52.8%) of product that was insoluble in hot chloro­form and hot aceto­nitrile. An attempt to dissolve 3 in DMSO-d 6 with heating resulted in dissolution with complete decomposition into unidentified products. NMR analysis of a CDCl3 solution prior to precipitation showed severely broadened indecipherable peaks. Analysis calculated for C28H30N2O4Si: C, 69.11; H, 6.21; N, 5.76. Found: C, 68.85; H, 6.16; N, 5.69.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. In all three structures, both bidentate ligands are disordered with the coplanar flips of themselves. For the rings containing C1/N1 and C6/N2, respectively, the disorder ratios are 0.52 (2):0.48 (2) and 0.52 (2):0.48 (2), 0.66 (2):0.34 (2) and 0.61 (2):0.39 (2), and 0.68 (3):0.32 (3) and 0.61 (3):0.39 (3), for structures 1, 2, and 3, respectively. Due to resolution limitations, the disorder model did not include the entire ring, but was modeled by refining the occupancies of the two atoms types (C and N) at the oxygen-coordinating portions of the rings. The occupancies at each site were constrained to sum to one and additionally to sum to one C and one N atom between the two sites on each ring. The positional and anisotropic displacement parameters, respectively, at each site of disorder were constrained to be equivalent. It is understood that this type of disorder model will likely exhibit a weighted average of Si—O bond lengths, trending with the disorder ratios.

Table 5. Experimental details.

  1 2 3
Crystal data
Chemical formula C22H8F10N2O4Si·0.5C5H12·0.5C4H8O C24H22N2O4Si C28H30N2O4Si
M r 654.52 430.52 486.63
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic Orthorhombic, P212121
Temperature (K) 100 100 100
a, b, c (Å) 12.6809 (9), 12.1217 (9), 17.7335 (13) 8.5662 (8), 8.8343 (8), 14.7801 (14) 12.5710 (2), 12.68898 (19), 15.3580 (2)
α, β, γ (°) 90, 105.7674 (15), 90 93.057 (2), 105.3716 (19), 106.7565 (18) 90, 90, 90
V3) 2623.3 (3) 1022.45 (17) 2449.80 (7)
Z 4 2 4
Radiation type Mo Kα Mo Kα Cu Kα
μ (mm−1) 0.20 0.15 1.15
Crystal size (mm) 0.40 × 0.36 × 0.14 0.24 × 0.24 × 0.20 0.09 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker SMART APEXII CCD platform Bruker SMART APEXII CCD platform XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.694, 0.748 0.695, 0.746 0.674, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 97594, 14595, 9977 25883, 6239, 4231 22120, 5138, 4847
R int 0.043 0.065 0.048
(sin θ/λ)max−1) 0.881 0.715 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.163, 1.03 0.054, 0.149, 1.05 0.032, 0.079, 1.05
No. of reflections 14595 6239 5138
No. of parameters 446 284 324
No. of restraints 55 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.58 1.01, −0.44 0.27, −0.25
Absolute structure Flack x determined using 1985 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.034 (17)

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2013), CrysAlis PRO (Rigaku OD, 2019), SHELXT2014/5 and SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2019/3 (Sheldrick, 2015b ), SHELXTL (Sheldrick, 2008), and OLEX2 (Dolomanov et al., 2009).

In 1, the solvent volume contains one each of THF and n-pentane disordered over a crystallographic inversion center (0.50:0.50). Analogous bond lengths and angles in both directions along each solvent mol­ecule were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar.

All H atoms were placed geometrically and treated as riding atoms. Aromatic/sp 2, C–H = 0.95 Å and methyl­ene, C–H = 0.99 Å, with U iso(H) = 1.2U eq(C). Methyl, C–H = 0.98 Å, with U iso(H) = 1.5U eq(C).

For 1 the maximum residual peak of 0.61 e Å−3 and the deepest hole of −0.58 e Å−3 are found 0.69 and 0.35 Å from atoms C21 and C25, respectively.

For 2 the maximum residual peak of 1.01 e Å−3 and the deepest hole of −0.43 e Å−3 are found 0.92 and 0.61 Å from atom Si1.

For 3 the maximum residual peak of 0.27 e Å−3 and the deepest hole of −0.25 e Å−3 are found 0.92 and 0.58 Å from atoms C20 and Si1, respectively.

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3, global. DOI: 10.1107/S2056989024001543/ee2004sup1.cif

e-80-00318-sup1.cif (4.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989024001543/ee20041sup2.hkl

e-80-00318-1sup2.hkl (1.1MB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989024001543/ee20042sup3.hkl

e-80-00318-2sup3.hkl (495.9KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989024001543/ee20043sup4.hkl

e-80-00318-3sup4.hkl (409KB, hkl)

CCDC references: 2333179, 2333178, 2333177

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge St. John Fisher University for support, NSF MRI program award #1828310 for the purchase of an NMR spectrometer, and the University of Rochester X-ray Crystallographic Facility and associated funding from NSF MRI program award CHE-1725028.

supplementary crystallographic information

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1). Crystal data

C22H8F10N2O4Si·0.5C5H12·0.5C4H8O F(000) = 1324
Mr = 654.52 Dx = 1.657 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.6809 (9) Å Cell parameters from 3989 reflections
b = 12.1217 (9) Å θ = 2.3–37.4°
c = 17.7335 (13) Å µ = 0.20 mm1
β = 105.7674 (15)° T = 100 K
V = 2623.3 (3) Å3 Plate, colorless
Z = 4 0.40 × 0.36 × 0.14 mm

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1). Data collection

Bruker SMART APEXII CCD platform diffractometer 9977 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.043
ω scans θmax = 38.8°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −22→22
Tmin = 0.694, Tmax = 0.748 k = −21→21
97594 measured reflections l = −30→30
14595 independent reflections

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.9141P] where P = (Fo2 + 2Fc2)/3
14595 reflections (Δ/σ)max = 0.001
446 parameters Δρmax = 0.61 e Å3
55 restraints Δρmin = −0.58 e Å3

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Both bidentate ligands are disordered with the coplanar flips of themselves (0.524 (16):0.476 (16) and 0.516 (15):0.484 (16) for the rings containing C1/N1 and C6/N2, respectively). Due to resolution limitations, the disorder was modeled by refining the occupancies of the two atoms types (C and N) at the oxygen-coordinating portions of the rings. The occupancies at each site were constrained to sum to one and additionally sum to one C and one N atom between the two sites on each ring. The positional and anisotropic displacement parameters,respectively, at each site of disorder were constrained to be equivalent.The solvent volume contains once each of n-pentane and tetrahydrofuran disordered over a crystallographic inversion center (0.50:0.50). Analogous bond lengths and angles in both directions along each solvent molecule were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar.

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Si1 0.66487 (2) 0.71292 (2) 0.62708 (2) 0.01575 (6)
O1 0.67613 (7) 0.58885 (7) 0.68356 (5) 0.01829 (14)
O2 0.69747 (7) 0.78437 (7) 0.72284 (5) 0.01843 (14)
O3 0.51949 (7) 0.71616 (6) 0.62790 (5) 0.01877 (15)
O4 0.63848 (6) 0.84997 (7) 0.58666 (5) 0.01750 (14)
N1 0.68205 (8) 0.60779 (8) 0.75861 (6) 0.01816 (19) 0.524 (16)
C1 0.69390 (9) 0.71546 (8) 0.78005 (6) 0.01806 (18) 0.524 (16)
N2 0.48096 (8) 0.81844 (9) 0.61909 (7) 0.01913 (19) 0.516 (15)
C6 0.54737 (8) 0.89276 (8) 0.59860 (6) 0.01757 (18) 0.516 (15)
N1' 0.69390 (9) 0.71546 (8) 0.78005 (6) 0.01806 (18) 0.476 (16)
C1' 0.68205 (8) 0.60779 (8) 0.75861 (6) 0.01816 (19) 0.476 (16)
N2' 0.54737 (8) 0.89276 (8) 0.59860 (6) 0.01757 (18) 0.484 (15)
C6' 0.48096 (8) 0.81844 (9) 0.61909 (7) 0.01913 (19) 0.484 (15)
C2 0.70444 (11) 0.74796 (10) 0.85565 (7) 0.0224 (2)
H2 0.713350 0.823669 0.869789 0.027*
C3 0.70189 (12) 0.66902 (12) 0.91066 (8) 0.0259 (2)
H3 0.708483 0.689880 0.963383 0.031*
C4 0.68956 (11) 0.55763 (11) 0.88890 (8) 0.0250 (2)
H4 0.687662 0.503036 0.926946 0.030*
C5 0.68013 (10) 0.52686 (10) 0.81226 (7) 0.0215 (2)
H5 0.672500 0.451465 0.797136 0.026*
C7 0.52081 (10) 1.00284 (9) 0.59067 (7) 0.02030 (19)
H7 0.569884 1.054923 0.578717 0.024*
C8 0.42148 (11) 1.03599 (10) 0.60042 (8) 0.0255 (2)
H8 0.400870 1.111515 0.594537 0.031*
C9 0.35103 (11) 0.95821 (12) 0.61899 (10) 0.0304 (3)
H9 0.281838 0.980781 0.624646 0.036*
C10 0.38159 (10) 0.84898 (11) 0.62913 (9) 0.0258 (2)
H10 0.334779 0.795943 0.642792 0.031*
C11 0.62534 (9) 0.62938 (9) 0.52904 (7) 0.01742 (18)
C12 0.68528 (9) 0.53833 (9) 0.51616 (7) 0.01920 (19)
F1 0.77010 (7) 0.50006 (6) 0.57439 (5) 0.02438 (15)
C13 0.66631 (10) 0.48285 (10) 0.44545 (8) 0.0219 (2)
F2 0.72793 (8) 0.39565 (7) 0.43788 (6) 0.03029 (18)
C14 0.58391 (11) 0.51903 (10) 0.38166 (7) 0.0229 (2)
F3 0.56808 (8) 0.47189 (7) 0.31140 (5) 0.03075 (18)
C15 0.52011 (10) 0.60735 (10) 0.39152 (7) 0.0219 (2)
F4 0.43903 (8) 0.64323 (7) 0.33081 (5) 0.03056 (18)
C16 0.54109 (9) 0.65902 (9) 0.46376 (7) 0.01871 (18)
F5 0.47407 (6) 0.74494 (6) 0.46711 (5) 0.02394 (15)
C17 0.81897 (9) 0.73023 (9) 0.62649 (7) 0.01881 (18)
C18 0.85009 (10) 0.78010 (10) 0.56525 (8) 0.0225 (2)
F6 0.77384 (7) 0.80890 (7) 0.49856 (5) 0.02657 (16)
C19 0.95760 (12) 0.80612 (13) 0.56729 (9) 0.0300 (3)
F7 0.98118 (9) 0.85775 (10) 0.50685 (7) 0.0423 (2)
C20 1.04070 (11) 0.77953 (15) 0.63276 (11) 0.0349 (3)
F8 1.14520 (8) 0.80396 (12) 0.63564 (8) 0.0545 (3)
C21 1.01591 (11) 0.72697 (13) 0.69452 (10) 0.0305 (3)
F9 1.09644 (7) 0.70038 (10) 0.75876 (7) 0.0443 (3)
C22 0.90737 (10) 0.70317 (10) 0.69006 (8) 0.0221 (2)
F10 0.89124 (6) 0.65161 (7) 0.75357 (5) 0.02621 (16)
C23 0.4695 (4) 0.9762 (6) 0.9416 (4) 0.086 (2) 0.5
H23A 0.417411 0.974458 0.973522 0.128* 0.5
H23B 0.511420 1.045096 0.951452 0.128* 0.5
H23C 0.519747 0.913386 0.955440 0.128* 0.5
C24 0.4109 (6) 0.9697 (6) 0.8603 (5) 0.0749 (18) 0.5
H24A 0.464327 0.975185 0.828792 0.090* 0.5
H24B 0.361469 1.034272 0.847065 0.090* 0.5
C25 0.3418 (6) 0.8635 (5) 0.8355 (4) 0.0589 (13) 0.5
H25A 0.296849 0.849535 0.872273 0.071* 0.5
H25B 0.291733 0.873160 0.782364 0.071* 0.5
C26 0.4188 (6) 0.7637 (8) 0.8360 (5) 0.0513 (16) 0.5
H26A 0.457846 0.775760 0.795365 0.062* 0.5
H26B 0.474409 0.761122 0.887388 0.062* 0.5
C27 0.3620 (4) 0.6549 (4) 0.8216 (3) 0.0601 (12) 0.5
H27A 0.325890 0.640356 0.862907 0.090* 0.5
H27B 0.415795 0.596735 0.821837 0.090* 0.5
H27C 0.307168 0.656125 0.770602 0.090* 0.5
O5' 0.4671 (2) 0.8125 (3) 0.79186 (18) 0.0468 (6) 0.5
C23' 0.4719 (4) 0.9254 (4) 0.8165 (3) 0.0516 (10) 0.5
H23D 0.483429 0.974883 0.775048 0.062* 0.5
H23E 0.532101 0.936716 0.864779 0.062* 0.5
C24' 0.3630 (5) 0.9471 (5) 0.8314 (4) 0.0565 (12) 0.5
H24C 0.368106 1.006523 0.870569 0.068* 0.5
H24D 0.307096 0.967374 0.782534 0.068* 0.5
C25' 0.3374 (6) 0.8395 (5) 0.8620 (4) 0.0616 (14) 0.5
H25C 0.257285 0.830186 0.852460 0.074* 0.5
H25D 0.372560 0.833615 0.918975 0.074* 0.5
C26' 0.3826 (7) 0.7550 (8) 0.8179 (6) 0.062 (2) 0.5
H26C 0.414208 0.692110 0.852291 0.075* 0.5
H26D 0.324670 0.726969 0.772589 0.075* 0.5

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.01361 (12) 0.01244 (12) 0.01899 (14) −0.00038 (9) 0.00070 (10) 0.00039 (9)
O1 0.0211 (4) 0.0138 (3) 0.0178 (3) 0.0001 (3) 0.0015 (3) 0.0003 (3)
O2 0.0201 (3) 0.0138 (3) 0.0194 (3) −0.0008 (3) 0.0020 (3) 0.0006 (3)
O3 0.0157 (3) 0.0129 (3) 0.0264 (4) 0.0001 (2) 0.0035 (3) 0.0010 (3)
O4 0.0140 (3) 0.0142 (3) 0.0232 (4) 0.0006 (2) 0.0031 (3) 0.0017 (3)
N1 0.0170 (4) 0.0152 (4) 0.0199 (4) 0.0008 (3) 0.0010 (3) 0.0011 (3)
C1 0.0167 (4) 0.0154 (4) 0.0197 (4) 0.0008 (3) 0.0010 (3) 0.0004 (3)
N2 0.0152 (4) 0.0161 (4) 0.0247 (5) 0.0002 (3) 0.0030 (3) −0.0001 (3)
C6 0.0152 (4) 0.0139 (4) 0.0213 (4) 0.0010 (3) 0.0010 (3) 0.0006 (3)
N1' 0.0167 (4) 0.0154 (4) 0.0197 (4) 0.0008 (3) 0.0010 (3) 0.0004 (3)
C1' 0.0170 (4) 0.0152 (4) 0.0199 (4) 0.0008 (3) 0.0010 (3) 0.0011 (3)
N2' 0.0152 (4) 0.0139 (4) 0.0213 (4) 0.0010 (3) 0.0010 (3) 0.0006 (3)
C6' 0.0152 (4) 0.0161 (4) 0.0247 (5) 0.0002 (3) 0.0030 (3) −0.0001 (3)
C2 0.0239 (5) 0.0188 (4) 0.0224 (5) 0.0009 (4) 0.0026 (4) −0.0029 (4)
C3 0.0283 (6) 0.0269 (6) 0.0205 (5) 0.0035 (5) 0.0034 (4) −0.0001 (4)
C4 0.0272 (6) 0.0237 (5) 0.0225 (5) 0.0021 (4) 0.0041 (4) 0.0045 (4)
C5 0.0226 (5) 0.0168 (4) 0.0227 (5) 0.0008 (4) 0.0020 (4) 0.0025 (4)
C7 0.0212 (5) 0.0145 (4) 0.0227 (5) 0.0008 (3) 0.0017 (4) 0.0009 (3)
C8 0.0228 (5) 0.0176 (5) 0.0334 (6) 0.0050 (4) 0.0031 (5) −0.0002 (4)
C9 0.0215 (5) 0.0236 (5) 0.0466 (8) 0.0046 (4) 0.0103 (5) −0.0014 (5)
C10 0.0187 (5) 0.0209 (5) 0.0390 (7) −0.0003 (4) 0.0097 (5) −0.0008 (5)
C11 0.0169 (4) 0.0134 (4) 0.0203 (5) −0.0006 (3) 0.0023 (3) 0.0006 (3)
C12 0.0189 (4) 0.0148 (4) 0.0225 (5) −0.0003 (3) 0.0033 (4) −0.0002 (3)
F1 0.0220 (3) 0.0197 (3) 0.0281 (4) 0.0055 (3) 0.0010 (3) 0.0004 (3)
C13 0.0233 (5) 0.0162 (4) 0.0265 (5) −0.0019 (4) 0.0072 (4) −0.0028 (4)
F2 0.0306 (4) 0.0221 (3) 0.0392 (5) 0.0028 (3) 0.0114 (4) −0.0084 (3)
C14 0.0280 (6) 0.0193 (5) 0.0212 (5) −0.0071 (4) 0.0061 (4) −0.0031 (4)
F3 0.0402 (5) 0.0288 (4) 0.0235 (4) −0.0098 (3) 0.0091 (3) −0.0074 (3)
C15 0.0243 (5) 0.0183 (4) 0.0194 (5) −0.0047 (4) −0.0005 (4) 0.0016 (4)
F4 0.0353 (4) 0.0258 (4) 0.0218 (4) −0.0030 (3) −0.0073 (3) 0.0025 (3)
C16 0.0185 (4) 0.0136 (4) 0.0213 (5) −0.0014 (3) 0.0007 (4) 0.0007 (3)
F5 0.0221 (3) 0.0171 (3) 0.0266 (4) 0.0040 (2) −0.0036 (3) 0.0004 (3)
C17 0.0155 (4) 0.0165 (4) 0.0233 (5) 0.0000 (3) 0.0033 (4) −0.0009 (3)
C18 0.0184 (4) 0.0215 (5) 0.0267 (6) −0.0011 (4) 0.0049 (4) −0.0008 (4)
F6 0.0240 (4) 0.0300 (4) 0.0250 (4) 0.0003 (3) 0.0054 (3) 0.0031 (3)
C19 0.0229 (5) 0.0334 (7) 0.0362 (7) −0.0040 (5) 0.0124 (5) 0.0005 (5)
F7 0.0343 (5) 0.0526 (6) 0.0457 (6) −0.0077 (4) 0.0206 (4) 0.0073 (5)
C20 0.0165 (5) 0.0425 (8) 0.0457 (9) −0.0052 (5) 0.0086 (5) −0.0013 (7)
F8 0.0186 (4) 0.0766 (9) 0.0686 (8) −0.0104 (5) 0.0126 (5) 0.0092 (7)
C21 0.0151 (5) 0.0373 (7) 0.0359 (7) −0.0003 (5) 0.0012 (5) 0.0014 (6)
F9 0.0162 (4) 0.0625 (7) 0.0466 (6) −0.0005 (4) −0.0046 (4) 0.0081 (5)
C22 0.0148 (4) 0.0221 (5) 0.0274 (6) −0.0001 (4) 0.0022 (4) −0.0001 (4)
F10 0.0193 (3) 0.0278 (4) 0.0277 (4) 0.0008 (3) 0.0001 (3) 0.0045 (3)
C23 0.039 (2) 0.100 (5) 0.120 (6) −0.009 (3) 0.026 (3) −0.029 (4)
C24 0.081 (4) 0.057 (3) 0.095 (5) −0.023 (3) 0.038 (4) −0.016 (3)
C25 0.072 (3) 0.054 (3) 0.060 (3) 0.009 (2) 0.032 (3) 0.015 (2)
C26 0.049 (3) 0.060 (3) 0.050 (4) 0.013 (3) 0.021 (3) 0.014 (3)
C27 0.057 (3) 0.070 (3) 0.053 (3) 0.004 (2) 0.015 (2) −0.018 (2)
O5' 0.0403 (14) 0.0526 (16) 0.0476 (15) 0.0081 (12) 0.0122 (12) −0.0033 (12)
C23' 0.042 (2) 0.064 (3) 0.050 (2) −0.0106 (18) 0.0138 (17) −0.0147 (19)
C24' 0.059 (3) 0.047 (2) 0.075 (3) 0.008 (2) 0.037 (3) 0.001 (2)
C25' 0.071 (3) 0.051 (3) 0.072 (4) 0.003 (2) 0.036 (3) 0.001 (3)
C26' 0.083 (6) 0.053 (3) 0.056 (4) 0.006 (4) 0.026 (4) 0.009 (3)

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1). Geometric parameters (Å, º)

Si1—O1 1.7910 (9) C14—F3 1.3353 (15)
Si1—O4 1.8042 (9) C14—C15 1.3814 (19)
Si1—O3 1.8480 (9) C15—F4 1.3430 (14)
Si1—O2 1.8503 (9) C15—C16 1.3853 (17)
Si1—C11 1.9559 (12) C16—F5 1.3557 (14)
Si1—C17 1.9683 (12) C17—C18 1.3904 (18)
O1—C1' 1.3324 (14) C17—C22 1.3957 (17)
O1—N1 1.3324 (14) C18—F6 1.3543 (15)
O2—N1' 1.3244 (14) C18—C19 1.3903 (18)
O2—C1 1.3244 (14) C19—F7 1.3431 (18)
O3—C6' 1.3263 (13) C19—C20 1.377 (2)
O3—N2 1.3263 (13) C20—F8 1.3452 (17)
O4—N2' 1.3348 (13) C20—C21 1.375 (2)
O4—C6 1.3348 (13) C21—F9 1.3462 (17)
N1—C1 1.3562 (14) C21—C22 1.3874 (18)
N1—C5 1.3714 (16) C22—F10 1.3513 (16)
C1—C2 1.3686 (17) C23—C24 1.434 (10)
N2—C6 1.3487 (15) C23—H23A 0.9800
N2—C10 1.3706 (16) C23—H23B 0.9800
C6—C7 1.3740 (15) C23—H23C 0.9800
N1'—C1' 1.3562 (14) C24—C25 1.553 (8)
N1'—C2 1.3686 (17) C24—H24A 0.9900
C1'—C5 1.3714 (16) C24—H24B 0.9900
N2'—C6' 1.3487 (15) C25—C26 1.552 (10)
N2'—C7 1.3740 (15) C25—H25A 0.9900
C6'—C10 1.3706 (16) C25—H25B 0.9900
C2—C3 1.3732 (19) C26—C27 1.491 (10)
C2—H2 0.9500 C26—H26A 0.9900
C3—C4 1.4013 (19) C26—H26B 0.9900
C3—H3 0.9500 C27—H27A 0.9800
C4—C5 1.3828 (19) C27—H27B 0.9800
C4—H4 0.9500 C27—H27C 0.9800
C5—H5 0.9500 O5'—C23' 1.432 (5)
C7—C8 1.3770 (18) O5'—C26' 1.456 (10)
C7—H7 0.9500 C23'—C24' 1.498 (6)
C8—C9 1.398 (2) C23'—H23D 0.9900
C8—H8 0.9500 C23'—H23E 0.9900
C9—C10 1.3776 (19) C24'—C25' 1.482 (8)
C9—H9 0.9500 C24'—H24C 0.9900
C10—H10 0.9500 C24'—H24D 0.9900
C11—C16 1.3923 (16) C25'—C26' 1.494 (11)
C11—C12 1.3937 (16) C25'—H25C 0.9900
C12—F1 1.3545 (14) C25'—H25D 0.9900
C12—C13 1.3851 (17) C26'—H26C 0.9900
C13—F2 1.3428 (14) C26'—H26D 0.9900
C13—C14 1.3861 (19)
O1—Si1—O4 166.74 (4) C12—C13—C14 119.49 (11)
O1—Si1—O3 86.65 (4) F3—C14—C15 120.33 (12)
O4—Si1—O3 84.60 (4) F3—C14—C13 120.99 (12)
O1—Si1—O2 85.17 (4) C15—C14—C13 118.65 (11)
O4—Si1—O2 84.53 (4) F4—C15—C14 119.78 (11)
O3—Si1—O2 87.56 (4) F4—C15—C16 120.51 (11)
O1—Si1—C11 91.41 (4) C14—C15—C16 119.71 (11)
O4—Si1—C11 98.54 (4) F5—C16—C15 115.00 (10)
O3—Si1—C11 90.16 (4) F5—C16—C11 120.69 (10)
O2—Si1—C11 175.99 (5) C15—C16—C11 124.29 (11)
O1—Si1—C17 99.44 (5) C18—C17—C22 113.39 (11)
O4—Si1—C17 88.68 (4) C18—C17—Si1 122.91 (9)
O3—Si1—C17 172.66 (4) C22—C17—Si1 123.45 (9)
O2—Si1—C17 88.88 (5) F6—C18—C19 115.25 (12)
C11—Si1—C17 93.75 (5) F6—C18—C17 120.49 (11)
C1'—O1—Si1 112.84 (7) C19—C18—C17 124.25 (12)
N1—O1—Si1 112.84 (7) F7—C19—C20 119.76 (13)
N1'—O2—Si1 111.23 (7) F7—C19—C18 120.96 (14)
C1—O2—Si1 111.23 (7) C20—C19—C18 119.28 (13)
C6'—O3—Si1 110.81 (7) F8—C20—C21 120.52 (15)
N2—O3—Si1 110.81 (7) F8—C20—C19 120.04 (15)
N2'—O4—Si1 111.71 (7) C21—C20—C19 119.44 (13)
C6—O4—Si1 111.71 (7) F9—C21—C20 119.99 (13)
O1—N1—C1 114.69 (9) F9—C21—C22 120.74 (14)
O1—N1—C5 124.26 (10) C20—C21—C22 119.27 (13)
C1—N1—C5 121.02 (11) F10—C22—C21 114.91 (11)
O2—C1—N1 114.61 (10) F10—C22—C17 120.77 (10)
O2—C1—C2 123.66 (10) C21—C22—C17 124.32 (13)
N1—C1—C2 121.70 (10) C24—C23—H23A 109.5
O3—N2—C6 114.78 (9) C24—C23—H23B 109.5
O3—N2—C10 124.02 (10) H23A—C23—H23B 109.5
C6—N2—C10 121.20 (10) C24—C23—H23C 109.5
O4—C6—N2 114.45 (9) H23A—C23—H23C 109.5
O4—C6—C7 124.04 (10) H23B—C23—H23C 109.5
N2—C6—C7 121.50 (10) C23—C24—C25 115.3 (6)
O2—N1'—C1' 114.61 (10) C23—C24—H24A 108.4
O2—N1'—C2 123.66 (10) C25—C24—H24A 108.4
C1'—N1'—C2 121.70 (10) C23—C24—H24B 108.4
O1—C1'—N1' 114.69 (9) C25—C24—H24B 108.4
O1—C1'—C5 124.26 (10) H24A—C24—H24B 107.5
N1'—C1'—C5 121.02 (11) C26—C25—C24 109.8 (6)
O4—N2'—C6' 114.45 (9) C26—C25—H25A 109.7
O4—N2'—C7 124.04 (10) C24—C25—H25A 109.7
C6'—N2'—C7 121.50 (10) C26—C25—H25B 109.7
O3—C6'—N2' 114.78 (9) C24—C25—H25B 109.7
O3—C6'—C10 124.02 (10) H25A—C25—H25B 108.2
N2'—C6'—C10 121.20 (10) C27—C26—C25 114.5 (6)
N1'—C2—C3 118.72 (11) C27—C26—H26A 108.6
C1—C2—C3 118.72 (11) C25—C26—H26A 108.6
C1—C2—H2 120.6 C27—C26—H26B 108.6
C3—C2—H2 120.6 C25—C26—H26B 108.6
C2—C3—C4 119.88 (12) H26A—C26—H26B 107.6
C2—C3—H3 120.1 C26—C27—H27A 109.5
C4—C3—H3 120.1 C26—C27—H27B 109.5
C5—C4—C3 120.26 (12) H27A—C27—H27B 109.5
C5—C4—H4 119.9 C26—C27—H27C 109.5
C3—C4—H4 119.9 H27A—C27—H27C 109.5
C1'—C5—C4 118.42 (11) H27B—C27—H27C 109.5
N1—C5—C4 118.42 (11) C23'—O5'—C26' 109.5 (5)
N1—C5—H5 120.8 O5'—C23'—C24' 104.9 (4)
C4—C5—H5 120.8 O5'—C23'—H23D 110.8
N2'—C7—C8 118.54 (11) C24'—C23'—H23D 110.8
C6—C7—C8 118.54 (11) O5'—C23'—H23E 110.8
C6—C7—H7 120.7 C24'—C23'—H23E 110.8
C8—C7—H7 120.7 H23D—C23'—H23E 108.8
C7—C8—C9 119.84 (11) C25'—C24'—C23' 102.3 (4)
C7—C8—H8 120.1 C25'—C24'—H24C 111.3
C9—C8—H8 120.1 C23'—C24'—H24C 111.3
C10—C9—C8 120.24 (12) C25'—C24'—H24D 111.3
C10—C9—H9 119.9 C23'—C24'—H24D 111.3
C8—C9—H9 119.9 H24C—C24'—H24D 109.2
C6'—C10—C9 118.59 (12) C24'—C25'—C26' 105.0 (6)
N2—C10—C9 118.59 (12) C24'—C25'—H25C 110.7
N2—C10—H10 120.7 C26'—C25'—H25C 110.7
C9—C10—H10 120.7 C24'—C25'—H25D 110.7
C16—C11—C12 113.42 (10) C26'—C25'—H25D 110.7
C16—C11—Si1 123.97 (8) H25C—C25'—H25D 108.8
C12—C11—Si1 122.43 (8) O5'—C26'—C25' 104.9 (7)
F1—C12—C13 115.50 (10) O5'—C26'—H26C 110.8
F1—C12—C11 120.11 (10) C25'—C26'—H26C 110.8
C13—C12—C11 124.37 (11) O5'—C26'—H26D 110.8
F2—C13—C12 120.66 (12) C25'—C26'—H26D 110.8
F2—C13—C14 119.84 (11) H26C—C26'—H26D 108.8
O4—Si1—O1—C1' −28.5 (2) O1—C1'—C5—C4 178.47 (11)
O3—Si1—O1—C1' −77.23 (8) N1'—C1'—C5—C4 0.59 (18)
O2—Si1—O1—C1' 10.60 (8) O1—N1—C5—C4 178.47 (11)
C11—Si1—O1—C1' −167.31 (8) C1—N1—C5—C4 0.59 (18)
C17—Si1—O1—C1' 98.65 (8) C3—C4—C5—C1' −0.66 (19)
O4—Si1—O1—N1 −28.5 (2) C3—C4—C5—N1 −0.66 (19)
O3—Si1—O1—N1 −77.23 (8) O4—N2'—C7—C8 176.47 (11)
O2—Si1—O1—N1 10.60 (8) C6'—N2'—C7—C8 −3.09 (18)
C11—Si1—O1—N1 −167.31 (8) O4—C6—C7—C8 176.47 (11)
C17—Si1—O1—N1 98.65 (8) N2—C6—C7—C8 −3.09 (18)
O1—Si1—O2—N1' −10.44 (7) N2'—C7—C8—C9 0.8 (2)
O4—Si1—O2—N1' 161.20 (8) C6—C7—C8—C9 0.8 (2)
O3—Si1—O2—N1' 76.40 (7) C7—C8—C9—C10 1.3 (2)
C17—Si1—O2—N1' −110.02 (8) O3—C6'—C10—C9 179.41 (13)
O1—Si1—O2—C1 −10.44 (7) N2'—C6'—C10—C9 −1.0 (2)
O4—Si1—O2—C1 161.20 (8) O3—N2—C10—C9 179.41 (13)
O3—Si1—O2—C1 76.40 (7) C6—N2—C10—C9 −1.0 (2)
C17—Si1—O2—C1 −110.02 (8) C8—C9—C10—C6' −1.3 (2)
O1—Si1—O3—C6' 154.54 (8) C8—C9—C10—N2 −1.3 (2)
O4—Si1—O3—C6' −15.49 (8) C16—C11—C12—F1 179.86 (10)
O2—Si1—O3—C6' 69.23 (8) Si1—C11—C12—F1 4.45 (15)
C11—Si1—O3—C6' −114.06 (8) C16—C11—C12—C13 1.43 (17)
O1—Si1—O3—N2 154.54 (8) Si1—C11—C12—C13 −173.97 (9)
O4—Si1—O3—N2 −15.49 (8) F1—C12—C13—F2 1.51 (17)
O2—Si1—O3—N2 69.23 (8) C11—C12—C13—F2 180.00 (11)
C11—Si1—O3—N2 −114.06 (8) F1—C12—C13—C14 −177.48 (11)
O1—Si1—O4—N2' −31.6 (2) C11—C12—C13—C14 1.01 (19)
O3—Si1—O4—N2' 17.32 (7) F2—C13—C14—F3 −3.34 (18)
O2—Si1—O4—N2' −70.74 (8) C12—C13—C14—F3 175.65 (11)
C11—Si1—O4—N2' 106.66 (8) F2—C13—C14—C15 178.54 (11)
C17—Si1—O4—N2' −159.74 (8) C12—C13—C14—C15 −2.46 (18)
O1—Si1—O4—C6 −31.6 (2) F3—C14—C15—F4 2.55 (18)
O3—Si1—O4—C6 17.32 (7) C13—C14—C15—F4 −179.32 (11)
O2—Si1—O4—C6 −70.74 (8) F3—C14—C15—C16 −176.71 (11)
C11—Si1—O4—C6 106.66 (8) C13—C14—C15—C16 1.41 (18)
C17—Si1—O4—C6 −159.74 (8) F4—C15—C16—F5 0.51 (16)
Si1—O1—N1—C1 −8.78 (12) C14—C15—C16—F5 179.77 (11)
Si1—O1—N1—C5 173.22 (9) F4—C15—C16—C11 −178.03 (11)
Si1—O2—C1—N1 8.22 (12) C14—C15—C16—C11 1.23 (19)
Si1—O2—C1—C2 −173.65 (9) C12—C11—C16—F5 178.98 (10)
O1—N1—C1—O2 0.12 (14) Si1—C11—C16—F5 −5.70 (16)
C5—N1—C1—O2 178.19 (10) C12—C11—C16—C15 −2.56 (17)
O1—N1—C1—C2 −178.04 (10) Si1—C11—C16—C15 172.76 (9)
C5—N1—C1—C2 0.02 (17) C22—C17—C18—F6 178.41 (11)
Si1—O3—N2—C6 10.62 (12) Si1—C17—C18—F6 −7.13 (16)
Si1—O3—N2—C10 −169.72 (11) C22—C17—C18—C19 −2.95 (19)
Si1—O4—C6—N2 −15.96 (12) Si1—C17—C18—C19 171.50 (11)
Si1—O4—C6—C7 164.44 (9) F6—C18—C19—F7 1.0 (2)
O3—N2—C6—O4 3.27 (15) C17—C18—C19—F7 −177.71 (13)
C10—N2—C6—O4 −176.40 (11) F6—C18—C19—C20 −179.78 (14)
O3—N2—C6—C7 −177.13 (11) C17—C18—C19—C20 1.5 (2)
C10—N2—C6—C7 3.20 (18) F7—C19—C20—F8 −0.9 (3)
Si1—O2—N1'—C1' 8.22 (12) C18—C19—C20—F8 179.89 (15)
Si1—O2—N1'—C2 −173.65 (9) F7—C19—C20—C21 179.80 (15)
Si1—O1—C1'—N1' −8.78 (12) C18—C19—C20—C21 0.6 (2)
Si1—O1—C1'—C5 173.22 (9) F8—C20—C21—F9 0.5 (3)
O2—N1'—C1'—O1 0.12 (14) C19—C20—C21—F9 179.87 (15)
C2—N1'—C1'—O1 −178.04 (10) F8—C20—C21—C22 179.77 (15)
O2—N1'—C1'—C5 178.19 (10) C19—C20—C21—C22 −0.9 (3)
C2—N1'—C1'—C5 0.02 (17) F9—C21—C22—F10 −0.7 (2)
Si1—O4—N2'—C6' −15.96 (12) C20—C21—C22—F10 −179.93 (14)
Si1—O4—N2'—C7 164.44 (9) F9—C21—C22—C17 178.44 (13)
Si1—O3—C6'—N2' 10.62 (12) C20—C21—C22—C17 −0.8 (2)
Si1—O3—C6'—C10 −169.72 (11) C18—C17—C22—F10 −178.32 (11)
O4—N2'—C6'—O3 3.27 (15) Si1—C17—C22—F10 7.26 (17)
C7—N2'—C6'—O3 −177.13 (11) C18—C17—C22—C21 2.58 (19)
O4—N2'—C6'—C10 −176.40 (11) Si1—C17—C22—C21 −171.84 (11)
C7—N2'—C6'—C10 3.20 (18) C23—C24—C25—C26 −72.1 (8)
O2—N1'—C2—C3 −178.57 (11) C24—C25—C26—C27 173.7 (6)
C1'—N1'—C2—C3 −0.58 (18) C26'—O5'—C23'—C24' −20.7 (6)
O2—C1—C2—C3 −178.57 (11) O5'—C23'—C24'—C25' 34.3 (6)
N1—C1—C2—C3 −0.58 (18) C23'—C24'—C25'—C26' −35.2 (7)
N1'—C2—C3—C4 0.5 (2) C23'—O5'—C26'—C25' −1.3 (7)
C1—C2—C3—C4 0.5 (2) C24'—C25'—C26'—O5' 23.2 (8)
C2—C3—C4—C5 0.1 (2)

Bis[1-oxopyridin-2-olato(1-)]bis(pentafluorophenyl)silicon(IV)–tetrahydrofuran–pentane (2/1/1) (1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···F1i 0.95 2.34 3.2809 (15) 170
C3—H3···F7ii 0.95 3.23 3.6665 (18) 110
C4—H4···F6iii 0.95 2.68 3.5757 (16) 158
C5—H5···F4iv 0.95 2.59 3.2997 (15) 132
C7—H7···F5v 0.95 2.57 3.2307 (14) 127
C8—H8···F5v 0.95 2.77 3.3319 (16) 119
C8—H8···F6v 0.95 2.56 3.2230 (15) 127
C8—H8···F9i 0.95 2.81 3.2507 (18) 110
C9—H9···F6v 0.95 3.31 3.6095 (17) 101
C9—H9···F8vi 0.95 2.80 3.2885 (18) 113
C10—H10···F2iv 0.95 2.73 3.3522 (16) 124
C10—H10···F8vi 0.95 2.37 3.0797 (16) 131

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x−1/2, −y+3/2, z+1/2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x−1, y, z.

Bis[1-oxopyridin-2-olato(1-)]bis(4-mwthylphenyl)silicon(IV) (2). Crystal data

C24H22N2O4Si Z = 2
Mr = 430.52 F(000) = 452
Triclinic, P1 Dx = 1.398 Mg m3
a = 8.5662 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.8343 (8) Å Cell parameters from 4074 reflections
c = 14.7801 (14) Å θ = 2.4–30.3°
α = 93.057 (2)° µ = 0.15 mm1
β = 105.3716 (19)° T = 100 K
γ = 106.7565 (18)° Block, colorless
V = 1022.45 (17) Å3 0.24 × 0.24 × 0.20 mm

Bis[1-oxopyridin-2-olato(1-)]bis(4-mwthylphenyl)silicon(IV) (2). Data collection

Bruker SMART APEXII CCD platform diffractometer 4231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.065
ω scans θmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −12→12
Tmin = 0.695, Tmax = 0.746 k = −12→12
25883 measured reflections l = −21→21
6239 independent reflections

Bis[1-oxopyridin-2-olato(1-)]bis(4-mwthylphenyl)silicon(IV) (2). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4958P] where P = (Fo2 + 2Fc2)/3
6239 reflections (Δ/σ)max = 0.001
284 parameters Δρmax = 1.01 e Å3
0 restraints Δρmin = −0.43 e Å3

Bis[1-oxopyridin-2-olato(1-)]bis(4-mwthylphenyl)silicon(IV) (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Both bidentate ligands are disordered with the coplanar flips of themselves (0.658 (19):0.342 (19) and 0.612 (19):0.388 (19) for the rings containing C1/N1 and C6/N2, respectively). Due to resolution limitations, the disorder model did not include the entire ring, but was modeled by refining the occupancies of the two atoms types (C and N) at the oxygen-coordinating portions of the rings. The occupancies at each site were constrained to sum to one and additionally to sum to one C and one N atom between the two sites on each ring. The positional and anisotropic displacement parameters, espectively, at each site of disorder were constrained to be equivalent. It is understood that this type of disorder model will likely exhibit a weighted average of Si–O bond lengths, trending with the disorder ratios.

Bis[1-oxopyridin-2-olato(1-)]bis(4-mwthylphenyl)silicon(IV) (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Si1 0.46085 (7) 0.32324 (6) 0.72662 (4) 0.01840 (13)
O1 0.62723 (17) 0.50446 (16) 0.78902 (10) 0.0207 (3)
O2 0.64598 (17) 0.23371 (16) 0.75110 (10) 0.0219 (3)
O3 0.33449 (17) 0.13549 (16) 0.65212 (9) 0.0202 (3)
O4 0.53005 (18) 0.37788 (16) 0.61623 (10) 0.0225 (3)
N1 0.7819 (2) 0.4865 (2) 0.82216 (12) 0.0200 (4) 0.658 (19)
C1 0.7904 (2) 0.3388 (2) 0.80021 (13) 0.0210 (4) 0.658 (19)
N2 0.3498 (2) 0.1276 (2) 0.56448 (12) 0.0198 (4) 0.612 (19)
C6 0.4563 (2) 0.2595 (2) 0.54532 (13) 0.0211 (4) 0.612 (19)
N1' 0.7904 (2) 0.3388 (2) 0.80021 (13) 0.0210 (4) 0.342 (19)
C1' 0.7819 (2) 0.4865 (2) 0.82216 (12) 0.0200 (4) 0.342 (19)
N2' 0.4563 (2) 0.2595 (2) 0.54532 (13) 0.0211 (4) 0.388 (19)
C6' 0.3498 (2) 0.1276 (2) 0.56448 (12) 0.0198 (4) 0.388 (19)
C2 0.9459 (3) 0.3113 (3) 0.83015 (14) 0.0241 (4)
H2 0.954380 0.208720 0.814746 0.029*
C3 1.0883 (3) 0.4329 (3) 0.88228 (15) 0.0269 (4)
H3 1.195403 0.414653 0.902786 0.032*
C4 1.0749 (3) 0.5832 (3) 0.90496 (15) 0.0283 (5)
H4 1.172679 0.667323 0.941344 0.034*
C5 0.9201 (3) 0.6090 (3) 0.87452 (15) 0.0248 (4)
H5 0.909370 0.710641 0.889705 0.030*
C7 0.4840 (3) 0.2623 (3) 0.45720 (14) 0.0248 (4)
H7 0.558326 0.354501 0.443053 0.030*
C8 0.4013 (3) 0.1286 (3) 0.39071 (15) 0.0282 (5)
H8 0.418987 0.128457 0.329907 0.034*
C9 0.2919 (3) −0.0068 (3) 0.41123 (15) 0.0279 (5)
H9 0.235815 −0.098844 0.364838 0.034*
C10 0.2658 (3) −0.0062 (2) 0.49899 (14) 0.0242 (4)
H10 0.190706 −0.097031 0.513907 0.029*
C11 0.2970 (2) 0.4356 (2) 0.69348 (13) 0.0176 (4)
C12 0.3356 (3) 0.5987 (2) 0.72212 (14) 0.0232 (4)
H12 0.448901 0.656954 0.758615 0.028*
C13 0.2159 (3) 0.6806 (3) 0.69979 (15) 0.0252 (4)
H13 0.249201 0.791922 0.720466 0.030*
C14 0.0474 (3) 0.5988 (3) 0.64712 (15) 0.0256 (4)
C15 0.0053 (3) 0.4365 (3) 0.61821 (16) 0.0280 (5)
H15 −0.108304 0.378531 0.582028 0.034*
C16 0.1265 (3) 0.3562 (3) 0.64118 (15) 0.0255 (4)
H16 0.092432 0.244689 0.620812 0.031*
C17 −0.0844 (3) 0.6841 (3) 0.62348 (18) 0.0337 (5)
H17A −0.124820 0.680593 0.554615 0.051*
H17B −0.033391 0.795498 0.653631 0.051*
H17C −0.180549 0.631563 0.646813 0.051*
C18 0.4015 (2) 0.2402 (2) 0.83540 (13) 0.0176 (4)
C19 0.2635 (3) 0.1029 (2) 0.82682 (15) 0.0261 (4)
H19 0.195061 0.050060 0.765313 0.031*
C20 0.2234 (3) 0.0412 (3) 0.90568 (16) 0.0303 (5)
H20 0.128409 −0.052066 0.896705 0.036*
C21 0.3202 (3) 0.1141 (3) 0.99752 (15) 0.0266 (4)
C22 0.4531 (3) 0.2532 (3) 1.00683 (15) 0.0275 (4)
H22 0.518803 0.308042 1.068349 0.033*
C23 0.4923 (3) 0.3146 (3) 0.92768 (15) 0.0255 (4)
H23 0.584245 0.410556 0.936991 0.031*
C24 0.2834 (3) 0.0407 (3) 1.08269 (17) 0.0371 (6)
H24A 0.163999 −0.026642 1.065461 0.056*
H24B 0.304562 0.125643 1.134065 0.056*
H24C 0.357891 −0.024422 1.103770 0.056*

Bis[1-oxopyridin-2-olato(1-)]bis(4-mwthylphenyl)silicon(IV) (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.0199 (3) 0.0163 (3) 0.0186 (3) 0.00566 (19) 0.0056 (2) 0.00027 (19)
O1 0.0170 (6) 0.0180 (7) 0.0257 (7) 0.0070 (5) 0.0028 (5) −0.0002 (5)
O2 0.0197 (7) 0.0190 (7) 0.0274 (7) 0.0076 (5) 0.0068 (6) −0.0006 (5)
O3 0.0252 (7) 0.0200 (7) 0.0156 (6) 0.0062 (5) 0.0078 (5) −0.0001 (5)
O4 0.0261 (7) 0.0206 (7) 0.0214 (7) 0.0058 (6) 0.0100 (6) 0.0003 (5)
N1 0.0170 (8) 0.0218 (9) 0.0224 (9) 0.0065 (7) 0.0069 (7) 0.0041 (7)
C1 0.0227 (9) 0.0231 (9) 0.0210 (9) 0.0097 (7) 0.0096 (7) 0.0051 (7)
N2 0.0224 (9) 0.0228 (9) 0.0167 (8) 0.0121 (7) 0.0049 (7) 0.0007 (6)
C6 0.0263 (10) 0.0222 (9) 0.0192 (9) 0.0126 (8) 0.0082 (7) 0.0039 (7)
N1' 0.0227 (9) 0.0231 (9) 0.0210 (9) 0.0097 (7) 0.0096 (7) 0.0051 (7)
C1' 0.0170 (8) 0.0218 (9) 0.0224 (9) 0.0065 (7) 0.0069 (7) 0.0041 (7)
N2' 0.0263 (10) 0.0222 (9) 0.0192 (9) 0.0126 (8) 0.0082 (7) 0.0039 (7)
C6' 0.0224 (9) 0.0228 (9) 0.0167 (8) 0.0121 (7) 0.0049 (7) 0.0007 (6)
C2 0.0265 (10) 0.0287 (11) 0.0232 (10) 0.0142 (8) 0.0110 (8) 0.0058 (8)
C3 0.0208 (10) 0.0371 (12) 0.0285 (11) 0.0144 (9) 0.0101 (8) 0.0092 (9)
C4 0.0174 (9) 0.0336 (12) 0.0286 (11) 0.0032 (8) 0.0036 (8) 0.0040 (9)
C5 0.0213 (10) 0.0219 (10) 0.0304 (11) 0.0055 (8) 0.0074 (8) 0.0045 (8)
C7 0.0297 (11) 0.0307 (11) 0.0208 (9) 0.0167 (9) 0.0100 (8) 0.0074 (8)
C8 0.0335 (12) 0.0360 (12) 0.0205 (10) 0.0194 (10) 0.0082 (9) 0.0014 (8)
C9 0.0303 (11) 0.0290 (11) 0.0230 (10) 0.0117 (9) 0.0044 (8) −0.0044 (8)
C10 0.0249 (10) 0.0224 (10) 0.0249 (10) 0.0104 (8) 0.0042 (8) −0.0021 (8)
C11 0.0187 (9) 0.0202 (9) 0.0158 (8) 0.0071 (7) 0.0068 (7) 0.0037 (7)
C12 0.0210 (9) 0.0243 (10) 0.0236 (10) 0.0074 (8) 0.0052 (8) 0.0023 (8)
C13 0.0261 (10) 0.0230 (10) 0.0286 (11) 0.0101 (8) 0.0090 (8) 0.0045 (8)
C14 0.0239 (10) 0.0301 (11) 0.0271 (10) 0.0131 (9) 0.0082 (8) 0.0106 (8)
C15 0.0218 (10) 0.0271 (11) 0.0301 (11) 0.0045 (8) 0.0031 (8) 0.0044 (8)
C16 0.0214 (10) 0.0242 (10) 0.0272 (10) 0.0041 (8) 0.0048 (8) 0.0019 (8)
C17 0.0275 (11) 0.0358 (13) 0.0419 (13) 0.0156 (10) 0.0090 (10) 0.0146 (10)
C18 0.0191 (9) 0.0148 (8) 0.0218 (9) 0.0079 (7) 0.0082 (7) 0.0021 (7)
C19 0.0327 (11) 0.0190 (10) 0.0236 (10) 0.0050 (8) 0.0074 (8) 0.0001 (8)
C20 0.0385 (12) 0.0195 (10) 0.0298 (11) 0.0016 (9) 0.0131 (10) 0.0041 (8)
C21 0.0346 (12) 0.0251 (10) 0.0276 (10) 0.0147 (9) 0.0141 (9) 0.0103 (8)
C22 0.0271 (11) 0.0342 (12) 0.0200 (10) 0.0100 (9) 0.0050 (8) 0.0025 (8)
C23 0.0232 (10) 0.0275 (11) 0.0234 (10) 0.0045 (8) 0.0075 (8) 0.0008 (8)
C24 0.0485 (15) 0.0360 (13) 0.0327 (12) 0.0147 (11) 0.0184 (11) 0.0140 (10)

Bis[1-oxopyridin-2-olato(1-)]bis(4-mwthylphenyl)silicon(IV) (2). Geometric parameters (Å, º)

Si1—O3 1.8093 (14) C7—H7 0.9500
Si1—O1 1.8097 (14) C8—C9 1.395 (3)
Si1—O4 1.9179 (15) C8—H8 0.9500
Si1—C11 1.9202 (19) C9—C10 1.373 (3)
Si1—O2 1.9290 (15) C9—H9 0.9500
Si1—C18 1.9301 (19) C10—H10 0.9500
O1—C1' 1.344 (2) C11—C12 1.396 (3)
O1—N1 1.344 (2) C11—C16 1.406 (3)
O2—N1' 1.307 (2) C12—C13 1.399 (3)
O2—C1 1.307 (2) C12—H12 0.9500
O3—C6' 1.336 (2) C13—C14 1.398 (3)
O3—N2 1.336 (2) C13—H13 0.9500
O4—N2' 1.320 (2) C14—C15 1.387 (3)
O4—C6 1.320 (2) C14—C17 1.508 (3)
N1—C1 1.356 (3) C15—C16 1.400 (3)
N1—C5 1.363 (3) C15—H15 0.9500
C1—C2 1.384 (3) C16—H16 0.9500
N2—C6 1.353 (3) C17—H17A 0.9800
N2—C10 1.367 (3) C17—H17B 0.9800
C6—C7 1.384 (3) C17—H17C 0.9800
N1'—C1' 1.356 (3) C18—C23 1.395 (3)
N1'—C2 1.384 (3) C18—C19 1.401 (3)
C1'—C5 1.363 (3) C19—C20 1.395 (3)
N2'—C6' 1.353 (3) C19—H19 0.9500
N2'—C7 1.384 (3) C20—C21 1.395 (3)
C6'—C10 1.367 (3) C20—H20 0.9500
C2—C3 1.376 (3) C21—C22 1.385 (3)
C2—H2 0.9500 C21—C24 1.511 (3)
C3—C4 1.396 (3) C22—C23 1.395 (3)
C3—H3 0.9500 C22—H22 0.9500
C4—C5 1.372 (3) C23—H23 0.9500
C4—H4 0.9500 C24—H24A 0.9800
C5—H5 0.9500 C24—H24B 0.9800
C7—C8 1.374 (3) C24—H24C 0.9800
O3—Si1—O1 165.96 (7) C8—C7—N2' 118.4 (2)
O3—Si1—O4 83.76 (6) C8—C7—H7 120.8
O1—Si1—O4 86.24 (7) C6—C7—H7 120.8
O3—Si1—C11 98.02 (8) C7—C8—C9 120.9 (2)
O1—Si1—C11 91.68 (7) C7—C8—H8 119.5
O4—Si1—C11 89.37 (7) C9—C8—H8 119.5
O3—Si1—O2 85.72 (6) C10—C9—C8 119.52 (19)
O1—Si1—O2 83.35 (6) C10—C9—H9 120.2
O4—Si1—O2 83.28 (6) C8—C9—H9 120.2
C11—Si1—O2 171.36 (8) C6'—C10—C9 118.8 (2)
O3—Si1—C18 91.04 (7) N2—C10—C9 118.8 (2)
O1—Si1—C18 97.64 (8) N2—C10—H10 120.6
O4—Si1—C18 171.40 (7) C9—C10—H10 120.6
C11—Si1—C18 98.16 (8) C12—C11—C16 115.36 (18)
O2—Si1—C18 89.53 (7) C12—C11—Si1 123.04 (15)
C1'—O1—Si1 114.21 (11) C16—C11—Si1 121.55 (15)
N1—O1—Si1 114.21 (11) C11—C12—C13 123.31 (19)
N1'—O2—Si1 111.83 (12) C11—C12—H12 118.3
C1—O2—Si1 111.83 (12) C13—C12—H12 118.3
C6'—O3—Si1 114.16 (12) C14—C13—C12 120.1 (2)
N2—O3—Si1 114.16 (12) C14—C13—H13 119.9
N2'—O4—Si1 111.43 (12) C12—C13—H13 119.9
C6—O4—Si1 111.43 (12) C15—C14—C13 117.77 (19)
O1—N1—C1 115.44 (16) C15—C14—C17 121.2 (2)
O1—N1—C5 121.98 (17) C13—C14—C17 121.0 (2)
C1—N1—C5 122.57 (17) C14—C15—C16 121.4 (2)
O2—C1—N1 115.09 (16) C14—C15—H15 119.3
O2—C1—C2 125.89 (18) C16—C15—H15 119.3
N1—C1—C2 119.02 (18) C15—C16—C11 122.0 (2)
O3—N2—C6 115.62 (16) C15—C16—H16 119.0
O3—N2—C10 122.21 (18) C11—C16—H16 119.0
C6—N2—C10 122.16 (17) C14—C17—H17A 109.5
O4—C6—N2 115.03 (16) C14—C17—H17B 109.5
O4—C6—C7 124.77 (18) H17A—C17—H17B 109.5
N2—C6—C7 120.18 (18) C14—C17—H17C 109.5
O2—N1'—C1' 115.09 (16) H17A—C17—H17C 109.5
O2—N1'—C2 125.89 (18) H17B—C17—H17C 109.5
C1'—N1'—C2 119.02 (18) C23—C18—C19 115.71 (18)
O1—C1'—N1' 115.44 (16) C23—C18—Si1 121.98 (15)
O1—C1'—C5 121.98 (17) C19—C18—Si1 122.31 (15)
N1'—C1'—C5 122.57 (17) C20—C19—C18 122.1 (2)
O4—N2'—C6' 115.03 (16) C20—C19—H19 118.9
O4—N2'—C7 124.77 (18) C18—C19—H19 118.9
C6'—N2'—C7 120.18 (18) C19—C20—C21 121.1 (2)
O3—C6'—N2' 115.62 (16) C19—C20—H20 119.4
O3—C6'—C10 122.21 (18) C21—C20—H20 119.4
N2'—C6'—C10 122.16 (17) C22—C21—C20 117.22 (19)
C3—C2—C1 119.8 (2) C22—C21—C24 121.8 (2)
C3—C2—N1' 119.8 (2) C20—C21—C24 120.9 (2)
C3—C2—H2 120.1 C21—C22—C23 121.3 (2)
C1—C2—H2 120.1 C21—C22—H22 119.3
C2—C3—C4 119.81 (19) C23—C22—H22 119.3
C2—C3—H3 120.1 C18—C23—C22 122.4 (2)
C4—C3—H3 120.1 C18—C23—H23 118.8
C5—C4—C3 119.8 (2) C22—C23—H23 118.8
C5—C4—H4 120.1 C21—C24—H24A 109.5
C3—C4—H4 120.1 C21—C24—H24B 109.5
C1'—C5—C4 119.0 (2) H24A—C24—H24B 109.5
N1—C5—C4 119.0 (2) C21—C24—H24C 109.5
N1—C5—H5 120.5 H24A—C24—H24C 109.5
C4—C5—H5 120.5 H24B—C24—H24C 109.5
C8—C7—C6 118.4 (2)
O3—Si1—O1—C1' −41.7 (3) C7—N2'—C6'—O3 178.59 (16)
O4—Si1—O1—C1' −86.26 (13) O4—N2'—C6'—C10 −178.92 (17)
C11—Si1—O1—C1' −175.52 (13) C7—N2'—C6'—C10 −0.2 (3)
O2—Si1—O1—C1' −2.61 (12) O2—C1—C2—C3 −179.47 (18)
C18—Si1—O1—C1' 86.02 (13) N1—C1—C2—C3 0.7 (3)
O3—Si1—O1—N1 −41.7 (3) O2—N1'—C2—C3 −179.47 (18)
O4—Si1—O1—N1 −86.26 (13) C1'—N1'—C2—C3 0.7 (3)
C11—Si1—O1—N1 −175.52 (13) C1—C2—C3—C4 0.2 (3)
O2—Si1—O1—N1 −2.61 (12) N1'—C2—C3—C4 0.2 (3)
C18—Si1—O1—N1 86.02 (13) C2—C3—C4—C5 −0.5 (3)
O1—Si1—O3—C6' −44.8 (3) O1—C1'—C5—C4 −179.03 (18)
O4—Si1—O3—C6' −0.04 (12) N1'—C1'—C5—C4 1.2 (3)
C11—Si1—O3—C6' 88.43 (13) O1—N1—C5—C4 −179.03 (18)
O2—Si1—O3—C6' −83.73 (12) C1—N1—C5—C4 1.2 (3)
C18—Si1—O3—C6' −173.18 (13) C3—C4—C5—C1' −0.2 (3)
O1—Si1—O3—N2 −44.8 (3) C3—C4—C5—N1 −0.2 (3)
O4—Si1—O3—N2 −0.04 (12) O4—C6—C7—C8 178.41 (18)
C11—Si1—O3—N2 88.43 (13) N2—C6—C7—C8 −0.1 (3)
O2—Si1—O3—N2 −83.73 (12) O4—N2'—C7—C8 178.41 (18)
C18—Si1—O3—N2 −173.18 (13) C6'—N2'—C7—C8 −0.1 (3)
Si1—O1—N1—C1 2.8 (2) C6—C7—C8—C9 0.1 (3)
Si1—O1—N1—C5 −176.97 (15) N2'—C7—C8—C9 0.1 (3)
Si1—O2—C1—N1 −1.0 (2) C7—C8—C9—C10 0.3 (3)
Si1—O2—C1—C2 179.15 (16) O3—C6'—C10—C9 −178.11 (18)
O1—N1—C1—O2 −1.1 (2) N2'—C6'—C10—C9 0.6 (3)
C5—N1—C1—O2 178.70 (17) O3—N2—C10—C9 −178.11 (18)
O1—N1—C1—C2 178.76 (17) C6—N2—C10—C9 0.6 (3)
C5—N1—C1—C2 −1.5 (3) C8—C9—C10—C6' −0.7 (3)
Si1—O3—N2—C6 0.1 (2) C8—C9—C10—N2 −0.7 (3)
Si1—O3—N2—C10 178.91 (14) C16—C11—C12—C13 −1.1 (3)
Si1—O4—C6—N2 0.1 (2) Si1—C11—C12—C13 −178.69 (16)
Si1—O4—C6—C7 −178.56 (15) C11—C12—C13—C14 0.7 (3)
O3—N2—C6—O4 −0.1 (2) C12—C13—C14—C15 −0.3 (3)
C10—N2—C6—O4 −178.92 (17) C12—C13—C14—C17 179.1 (2)
O3—N2—C6—C7 178.59 (16) C13—C14—C15—C16 0.3 (3)
C10—N2—C6—C7 −0.2 (3) C17—C14—C15—C16 −179.0 (2)
Si1—O2—N1'—C1' −1.0 (2) C14—C15—C16—C11 −0.8 (3)
Si1—O2—N1'—C2 179.15 (16) C12—C11—C16—C15 1.1 (3)
Si1—O1—C1'—N1' 2.8 (2) Si1—C11—C16—C15 178.77 (16)
Si1—O1—C1'—C5 −176.97 (15) C23—C18—C19—C20 −2.3 (3)
O2—N1'—C1'—O1 −1.1 (2) Si1—C18—C19—C20 178.54 (17)
C2—N1'—C1'—O1 178.76 (16) C18—C19—C20—C21 −0.2 (3)
O2—N1'—C1'—C5 178.70 (17) C19—C20—C21—C22 2.5 (3)
C2—N1'—C1'—C5 −1.5 (3) C19—C20—C21—C24 −175.9 (2)
Si1—O4—N2'—C6' 0.1 (2) C20—C21—C22—C23 −2.4 (3)
Si1—O4—N2'—C7 −178.56 (15) C24—C21—C22—C23 176.0 (2)
Si1—O3—C6'—N2' 0.1 (2) C19—C18—C23—C22 2.5 (3)
Si1—O3—C6'—C10 178.91 (14) Si1—C18—C23—C22 −178.35 (16)
O4—N2'—C6'—O3 −0.1 (2) C21—C22—C23—C18 −0.2 (3)

Dimesitylbis[1-oxopyridin-2-olato(1-)]silicon(IV) (3). Crystal data

C28H30N2O4Si Dx = 1.319 Mg m3
Mr = 486.63 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121 Cell parameters from 11827 reflections
a = 12.5710 (2) Å θ = 4.5–76.9°
b = 12.68898 (19) Å µ = 1.15 mm1
c = 15.3580 (2) Å T = 100 K
V = 2449.80 (7) Å3 Block, colourless
Z = 4 0.09 × 0.07 × 0.06 mm
F(000) = 1032

Dimesitylbis[1-oxopyridin-2-olato(1-)]silicon(IV) (3). Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 5138 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 4847 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.048
Detector resolution: 10.0000 pixels mm-1 θmax = 77.7°, θmin = 4.5°
ω scans h = −15→13
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) k = −15→13
Tmin = 0.674, Tmax = 1.000 l = −19→19
22120 measured reflections

Dimesitylbis[1-oxopyridin-2-olato(1-)]silicon(IV) (3). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.5221P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
5138 reflections Δρmax = 0.27 e Å3
324 parameters Δρmin = −0.25 e Å3
0 restraints Absolute structure: Flack x determined using 1985 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dual Absolute structure parameter: −0.034 (17)

Dimesitylbis[1-oxopyridin-2-olato(1-)]silicon(IV) (3). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Both bidentate ligands are disordered with the coplanar flips of themselves (0.68 (3):0.32 (3) and 0.61 (3):0.39 (3) for the rings containing C1/N1 and C6/N2, respectively). Due to resolution limitations, the disorder was modeled by refining the occupancies of the two atoms types (C and N) at the oxygen-coordinating portions of the rings. The occupancies at each site were constrained to sum to one and additionally sum to one C and one N atom between the two sites on each ring. The positional and anisotropic displacement parameters,respectively, at each site of disorder were constrained to be equivalent. It is understood that this type of disorder model will likely exhibit a weighted average of Si–O bond lengths, trending with the disorder ratios.

Dimesitylbis[1-oxopyridin-2-olato(1-)]silicon(IV) (3). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Si1 0.74087 (5) 0.70602 (4) 0.61168 (4) 0.01803 (13)
O1 0.85697 (13) 0.71920 (12) 0.53026 (10) 0.0221 (3)
O2 0.74861 (14) 0.56957 (11) 0.58288 (10) 0.0214 (3)
O3 0.65878 (13) 0.71836 (12) 0.50381 (10) 0.0234 (3)
O4 0.73653 (13) 0.84835 (11) 0.60520 (10) 0.0211 (3)
N1 0.87289 (15) 0.62870 (15) 0.48904 (12) 0.0189 (4) 0.69 (3)
N2 0.65746 (17) 0.81659 (16) 0.47604 (13) 0.0220 (5) 0.62 (3)
C1 0.81438 (17) 0.54657 (16) 0.51912 (13) 0.0188 (5) 0.69 (3)
C2 0.8272 (2) 0.44746 (17) 0.48429 (15) 0.0231 (5)
H2A 0.787040 0.389558 0.505675 0.028* 0.69 (3)
H2B 0.787040 0.389558 0.505675 0.028* 0.31 (3)
C3 0.8994 (2) 0.4339 (2) 0.41775 (17) 0.0285 (5)
H3 0.909972 0.365897 0.393401 0.034*
C4 0.9572 (2) 0.5195 (2) 0.38596 (16) 0.0282 (5)
H4 1.006388 0.509933 0.339691 0.034*
C5 0.94261 (18) 0.61737 (19) 0.42175 (15) 0.0228 (4)
H5A 0.980582 0.676479 0.399952 0.027* 0.69 (3)
H5B 0.980582 0.676479 0.399952 0.027* 0.31 (3)
C6 0.70096 (17) 0.88806 (16) 0.53139 (14) 0.0207 (5) 0.62 (3)
C7 0.7032 (2) 0.99372 (18) 0.51074 (17) 0.0276 (5)
H7A 0.735764 1.043126 0.548819 0.033* 0.62 (3)
H7B 0.735764 1.043126 0.548819 0.033* 0.38 (3)
C8 0.6575 (2) 1.0263 (2) 0.43398 (19) 0.0350 (6)
H8 0.657349 1.098958 0.418960 0.042*
C9 0.6110 (2) 0.9523 (2) 0.37793 (18) 0.0368 (6)
H9 0.578834 0.974765 0.325137 0.044*
C10 0.6121 (2) 0.8479 (2) 0.39921 (16) 0.0297 (5)
H10 0.581545 0.797277 0.361044 0.036* 0.62 (3)
H10A 0.581545 0.797277 0.361044 0.036* 0.38 (3)
C11 0.60545 (17) 0.69383 (16) 0.67607 (13) 0.0181 (4)
C12 0.58361 (19) 0.76268 (17) 0.74716 (14) 0.0205 (4)
C13 0.48283 (19) 0.76687 (19) 0.78479 (14) 0.0234 (5)
H13 0.471010 0.814780 0.831333 0.028*
C14 0.39920 (19) 0.70421 (19) 0.75726 (15) 0.0253 (5)
C15 0.42009 (19) 0.63418 (18) 0.68986 (16) 0.0240 (5)
H15 0.364703 0.589014 0.670402 0.029*
C16 0.51939 (18) 0.62777 (17) 0.64974 (14) 0.0211 (4)
C17 0.6651 (2) 0.83405 (19) 0.79019 (15) 0.0250 (5)
H17A 0.716867 0.791058 0.822061 0.038*
H17B 0.629070 0.881774 0.830772 0.038*
H17C 0.701983 0.875357 0.745519 0.038*
C18 0.2900 (2) 0.7130 (2) 0.7976 (2) 0.0367 (6)
H18A 0.296947 0.733539 0.858907 0.055*
H18B 0.253707 0.644859 0.793814 0.055*
H18C 0.248598 0.766439 0.766425 0.055*
C19 0.5262 (2) 0.54616 (18) 0.57768 (16) 0.0258 (5)
H19A 0.556781 0.578532 0.525422 0.039*
H19B 0.454824 0.519629 0.564472 0.039*
H19C 0.571523 0.487629 0.596638 0.039*
C20 0.84221 (17) 0.70007 (16) 0.70814 (13) 0.0187 (4)
C21 0.83877 (18) 0.61468 (17) 0.76842 (14) 0.0194 (4)
C22 0.90158 (19) 0.61500 (17) 0.84337 (15) 0.0218 (4)
H22 0.895115 0.558090 0.883212 0.026*
C23 0.97317 (18) 0.69527 (18) 0.86195 (14) 0.0229 (4)
C24 0.98178 (18) 0.77565 (19) 0.80091 (15) 0.0222 (4)
H24 1.032215 0.830141 0.810637 0.027*
C25 0.91924 (17) 0.77949 (18) 0.72584 (14) 0.0198 (4)
C26 0.77207 (19) 0.51561 (17) 0.75647 (15) 0.0226 (5)
H26A 0.699209 0.535362 0.740715 0.034*
H26B 0.771184 0.475396 0.810947 0.034*
H26C 0.802884 0.472274 0.710061 0.034*
C27 1.0393 (2) 0.6943 (2) 0.94376 (16) 0.0335 (6)
H27A 0.997851 0.723939 0.991945 0.050*
H27B 1.103527 0.736728 0.934811 0.050*
H27C 1.059530 0.621677 0.957731 0.050*
C28 0.9418 (2) 0.87384 (18) 0.66723 (16) 0.0252 (5)
H28A 0.934572 0.852709 0.606139 0.038*
H28B 1.014281 0.899187 0.677740 0.038*
H28C 0.890940 0.930276 0.680135 0.038*
C1' 0.87289 (15) 0.62870 (15) 0.48904 (12) 0.0189 (4) 0.31 (3)
N1' 0.81438 (17) 0.54657 (16) 0.51912 (13) 0.0188 (5) 0.31 (3)
C6' 0.65746 (17) 0.81659 (16) 0.47604 (13) 0.0220 (5) 0.38 (3)
N2' 0.70096 (17) 0.88806 (16) 0.53139 (14) 0.0207 (5) 0.38 (3)

Dimesitylbis[1-oxopyridin-2-olato(1-)]silicon(IV) (3). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.0229 (3) 0.0143 (2) 0.0169 (3) −0.0010 (2) 0.0020 (2) −0.0006 (2)
O1 0.0290 (8) 0.0170 (7) 0.0204 (7) −0.0031 (7) 0.0052 (6) −0.0021 (6)
O2 0.0268 (8) 0.0173 (6) 0.0203 (7) −0.0016 (6) 0.0064 (7) −0.0020 (5)
O3 0.0298 (8) 0.0212 (7) 0.0193 (7) −0.0037 (7) −0.0015 (6) 0.0004 (6)
O4 0.0277 (8) 0.0169 (6) 0.0188 (7) −0.0001 (6) −0.0014 (7) 0.0020 (6)
N1 0.0214 (10) 0.0185 (9) 0.0169 (9) −0.0006 (7) −0.0006 (7) 0.0000 (7)
N2 0.0218 (10) 0.0240 (10) 0.0202 (9) −0.0007 (8) 0.0016 (8) 0.0022 (8)
C1 0.0206 (10) 0.0207 (10) 0.0150 (9) 0.0002 (8) −0.0008 (8) 0.0006 (8)
C2 0.0282 (12) 0.0185 (10) 0.0226 (10) 0.0010 (9) −0.0038 (9) −0.0003 (8)
C3 0.0327 (13) 0.0271 (11) 0.0256 (11) 0.0085 (10) −0.0041 (10) −0.0088 (9)
C4 0.0259 (12) 0.0384 (12) 0.0204 (11) 0.0056 (10) 0.0030 (10) −0.0043 (10)
C5 0.0207 (10) 0.0312 (11) 0.0165 (10) −0.0019 (9) 0.0002 (9) 0.0029 (9)
C6 0.0198 (10) 0.0216 (10) 0.0208 (10) 0.0005 (8) 0.0014 (8) 0.0033 (8)
C7 0.0265 (12) 0.0221 (11) 0.0341 (13) 0.0003 (9) 0.0049 (10) 0.0044 (10)
C8 0.0319 (13) 0.0321 (13) 0.0412 (14) 0.0058 (11) 0.0074 (12) 0.0170 (11)
C9 0.0332 (14) 0.0477 (15) 0.0295 (13) 0.0075 (12) 0.0003 (11) 0.0172 (12)
C10 0.0256 (12) 0.0430 (14) 0.0204 (11) −0.0024 (10) 0.0001 (9) 0.0031 (10)
C11 0.0202 (10) 0.0169 (10) 0.0172 (9) 0.0027 (8) −0.0003 (8) 0.0007 (8)
C12 0.0257 (11) 0.0185 (10) 0.0171 (10) 0.0051 (8) −0.0025 (8) 0.0025 (8)
C13 0.0300 (12) 0.0222 (11) 0.0181 (10) 0.0072 (9) 0.0005 (9) 0.0005 (8)
C14 0.0241 (11) 0.0255 (11) 0.0261 (11) 0.0051 (10) 0.0037 (9) 0.0066 (9)
C15 0.0246 (11) 0.0213 (11) 0.0260 (12) −0.0012 (9) −0.0015 (9) 0.0030 (9)
C16 0.0251 (11) 0.0177 (10) 0.0204 (11) −0.0004 (9) −0.0004 (9) 0.0027 (8)
C17 0.0270 (12) 0.0266 (11) 0.0216 (10) 0.0020 (9) 0.0004 (9) −0.0076 (9)
C18 0.0287 (12) 0.0378 (14) 0.0436 (15) 0.0028 (12) 0.0109 (11) 0.0019 (13)
C19 0.0280 (12) 0.0222 (11) 0.0273 (11) −0.0060 (9) 0.0010 (10) −0.0035 (9)
C20 0.0216 (10) 0.0158 (9) 0.0186 (9) 0.0015 (9) 0.0034 (8) −0.0011 (8)
C21 0.0205 (10) 0.0166 (9) 0.0210 (10) 0.0026 (8) 0.0056 (8) −0.0005 (8)
C22 0.0249 (11) 0.0182 (10) 0.0223 (11) 0.0044 (9) 0.0037 (9) 0.0023 (8)
C23 0.0235 (11) 0.0237 (11) 0.0215 (10) 0.0026 (9) 0.0029 (8) 0.0003 (9)
C24 0.0225 (11) 0.0202 (10) 0.0237 (10) −0.0018 (9) 0.0035 (8) −0.0030 (9)
C25 0.0220 (10) 0.0163 (10) 0.0211 (10) 0.0008 (8) 0.0040 (8) −0.0007 (8)
C26 0.0276 (12) 0.0168 (10) 0.0232 (11) −0.0015 (9) 0.0029 (9) 0.0027 (8)
C27 0.0375 (13) 0.0348 (13) 0.0281 (12) −0.0056 (12) −0.0054 (11) 0.0063 (11)
C28 0.0287 (12) 0.0208 (11) 0.0260 (12) −0.0055 (9) −0.0026 (10) 0.0025 (9)
C1' 0.0214 (10) 0.0185 (9) 0.0169 (9) −0.0006 (7) −0.0006 (7) 0.0000 (7)
N1' 0.0206 (10) 0.0207 (10) 0.0150 (9) 0.0002 (8) −0.0008 (8) 0.0006 (8)
C6' 0.0218 (10) 0.0240 (10) 0.0202 (9) −0.0007 (8) 0.0016 (8) 0.0022 (8)
N2' 0.0198 (10) 0.0216 (10) 0.0208 (10) 0.0005 (8) 0.0014 (8) 0.0033 (8)

Dimesitylbis[1-oxopyridin-2-olato(1-)]silicon(IV) (3). Geometric parameters (Å, º)

Si1—O1 1.9291 (16) C11—C12 1.425 (3)
Si1—O2 1.7896 (15) C11—C16 1.427 (3)
Si1—O3 1.9581 (16) C12—C13 1.394 (3)
Si1—O4 1.8096 (15) C12—C17 1.519 (3)
Si1—C11 1.975 (2) C13—H13 0.9500
Si1—C20 1.955 (2) C13—C14 1.384 (4)
O1—N1 1.326 (2) C14—C15 1.389 (4)
O1—C1' 1.326 (2) C14—C18 1.510 (3)
O2—C1 1.314 (3) C15—H15 0.9500
O2—N1' 1.314 (3) C15—C16 1.395 (3)
O3—N2 1.317 (3) C16—C19 1.518 (3)
O3—C6' 1.317 (3) C17—H17A 0.9800
O4—C6 1.319 (3) C17—H17B 0.9800
O4—N2' 1.319 (3) C17—H17C 0.9800
N1—C1 1.357 (3) C18—H18A 0.9800
N1—C5 1.363 (3) C18—H18B 0.9800
N2—C6 1.358 (3) C18—H18C 0.9800
N2—C10 1.369 (3) C19—H19A 0.9800
C1—C2 1.376 (3) C19—H19B 0.9800
C2—H2A 0.9500 C19—H19C 0.9800
C2—H2B 0.9500 C20—C21 1.426 (3)
C2—C3 1.378 (4) C20—C25 1.424 (3)
C2—N1' 1.376 (3) C21—C22 1.396 (3)
C3—H3 0.9500 C21—C26 1.522 (3)
C3—C4 1.394 (4) C22—H22 0.9500
C4—H4 0.9500 C22—C23 1.389 (3)
C4—C5 1.371 (3) C23—C24 1.390 (3)
C5—H5A 0.9500 C23—C27 1.507 (3)
C5—H5B 0.9500 C24—H24 0.9500
C5—C1' 1.363 (3) C24—C25 1.396 (3)
C6—C7 1.378 (3) C25—C28 1.524 (3)
C7—H7A 0.9500 C26—H26A 0.9800
C7—H7B 0.9500 C26—H26B 0.9800
C7—C8 1.375 (4) C26—H26C 0.9800
C7—N2' 1.378 (3) C27—H27A 0.9800
C8—H8 0.9500 C27—H27B 0.9800
C8—C9 1.402 (4) C27—H27C 0.9800
C9—H9 0.9500 C28—H28A 0.9800
C9—C10 1.365 (4) C28—H28B 0.9800
C10—H10 0.9500 C28—H28C 0.9800
C10—H10A 0.9500 C1'—N1' 1.357 (3)
C10—C6' 1.369 (3) C6'—N2' 1.358 (3)
O1—Si1—O3 80.99 (7) C14—C13—C12 122.8 (2)
O1—Si1—C11 169.59 (8) C14—C13—H13 118.6
O1—Si1—C20 90.09 (8) C13—C14—C15 116.8 (2)
O2—Si1—O1 83.25 (7) C13—C14—C18 121.5 (2)
O2—Si1—O3 84.09 (7) C15—C14—C18 121.7 (2)
O2—Si1—O4 162.48 (8) C14—C15—H15 118.8
O2—Si1—C11 95.44 (8) C14—C15—C16 122.4 (2)
O2—Si1—C20 96.57 (8) C16—C15—H15 118.8
O3—Si1—C11 88.61 (8) C11—C16—C19 124.4 (2)
O4—Si1—O1 84.30 (7) C15—C16—C11 121.3 (2)
O4—Si1—O3 81.82 (7) C15—C16—C19 114.4 (2)
O4—Si1—C11 94.57 (8) C12—C17—H17A 109.5
O4—Si1—C20 95.73 (8) C12—C17—H17B 109.5
C20—Si1—O3 170.93 (8) C12—C17—H17C 109.5
C20—Si1—C11 100.32 (9) H17A—C17—H17B 109.5
N1—O1—Si1 110.40 (13) H17A—C17—H17C 109.5
C1'—O1—Si1 110.40 (13) H17B—C17—H17C 109.5
C1—O2—Si1 115.67 (13) C14—C18—H18A 109.5
N1'—O2—Si1 115.67 (13) C14—C18—H18B 109.5
N2—O3—Si1 110.86 (13) C14—C18—H18C 109.5
C6'—O3—Si1 110.86 (13) H18A—C18—H18B 109.5
C6—O4—Si1 116.03 (13) H18A—C18—H18C 109.5
N2'—O4—Si1 116.03 (13) H18B—C18—H18C 109.5
O1—N1—C1 114.88 (18) C16—C19—H19A 109.5
O1—N1—C5 123.39 (19) C16—C19—H19B 109.5
C1—N1—C5 121.73 (19) C16—C19—H19C 109.5
O3—N2—C6 115.09 (18) H19A—C19—H19B 109.5
O3—N2—C10 123.9 (2) H19A—C19—H19C 109.5
C6—N2—C10 120.9 (2) H19B—C19—H19C 109.5
O2—C1—N1 115.10 (18) C21—C20—Si1 120.11 (16)
O2—C1—C2 124.5 (2) C25—C20—Si1 124.08 (16)
N1—C1—C2 120.4 (2) C25—C20—C21 115.75 (19)
C1—C2—H2A 120.7 C20—C21—C26 124.5 (2)
C1—C2—C3 118.6 (2) C22—C21—C20 121.1 (2)
C3—C2—H2A 120.7 C22—C21—C26 114.42 (19)
C3—C2—H2B 120.7 C21—C22—H22 118.7
N1'—C2—H2B 120.7 C23—C22—C21 122.6 (2)
N1'—C2—C3 118.6 (2) C23—C22—H22 118.7
C2—C3—H3 119.8 C22—C23—C24 116.8 (2)
C2—C3—C4 120.4 (2) C22—C23—C27 121.5 (2)
C4—C3—H3 119.8 C24—C23—C27 121.7 (2)
C3—C4—H4 120.1 C23—C24—H24 118.7
C5—C4—C3 119.7 (2) C23—C24—C25 122.6 (2)
C5—C4—H4 120.1 C25—C24—H24 118.7
N1—C5—C4 119.0 (2) C20—C25—C28 124.7 (2)
N1—C5—H5A 120.5 C24—C25—C20 121.1 (2)
C4—C5—H5A 120.5 C24—C25—C28 114.2 (2)
C4—C5—H5B 120.5 C21—C26—H26A 109.5
C1'—C5—C4 119.0 (2) C21—C26—H26B 109.5
C1'—C5—H5B 120.5 C21—C26—H26C 109.5
O4—C6—N2 114.80 (18) H26A—C26—H26B 109.5
O4—C6—C7 124.2 (2) H26A—C26—H26C 109.5
N2—C6—C7 120.9 (2) H26B—C26—H26C 109.5
C6—C7—H7A 120.6 C23—C27—H27A 109.5
C8—C7—C6 118.8 (2) C23—C27—H27B 109.5
C8—C7—H7A 120.6 C23—C27—H27C 109.5
C8—C7—H7B 120.6 H27A—C27—H27B 109.5
C8—C7—N2' 118.8 (2) H27A—C27—H27C 109.5
N2'—C7—H7B 120.6 H27B—C27—H27C 109.5
C7—C8—H8 120.0 C25—C28—H28A 109.5
C7—C8—C9 119.9 (2) C25—C28—H28B 109.5
C9—C8—H8 120.0 C25—C28—H28C 109.5
C8—C9—H9 120.0 H28A—C28—H28B 109.5
C10—C9—C8 120.0 (2) H28A—C28—H28C 109.5
C10—C9—H9 120.0 H28B—C28—H28C 109.5
N2—C10—H10 120.3 O1—C1'—C5 123.39 (19)
C9—C10—N2 119.4 (2) O1—C1'—N1' 114.88 (18)
C9—C10—H10 120.3 N1'—C1'—C5 121.73 (19)
C9—C10—H10A 120.3 O2—N1'—C2 124.5 (2)
C9—C10—C6' 119.4 (2) O2—N1'—C1' 115.10 (18)
C6'—C10—H10A 120.3 C1'—N1'—C2 120.4 (2)
C12—C11—Si1 120.12 (16) O3—C6'—C10 123.9 (2)
C12—C11—C16 115.5 (2) O3—C6'—N2' 115.09 (18)
C16—C11—Si1 123.89 (16) N2'—C6'—C10 120.9 (2)
C11—C12—C17 124.7 (2) O4—N2'—C7 124.2 (2)
C13—C12—C11 121.1 (2) O4—N2'—C6' 114.80 (18)
C13—C12—C17 114.21 (19) C6'—N2'—C7 120.9 (2)
C12—C13—H13 118.6
Si1—O1—N1—C1 −7.0 (2) C3—C4—C5—N1 1.1 (4)
Si1—O1—N1—C5 173.30 (17) C3—C4—C5—C1' 1.1 (4)
Si1—O1—C1'—C5 173.30 (17) C4—C5—C1'—O1 177.0 (2)
Si1—O1—C1'—N1' −7.0 (2) C4—C5—C1'—N1' −2.8 (3)
Si1—O2—C1—N1 4.9 (2) C5—N1—C1—O2 −178.44 (19)
Si1—O2—C1—C2 −176.23 (18) C5—N1—C1—C2 2.6 (3)
Si1—O2—N1'—C2 −176.23 (18) C5—C1'—N1'—O2 −178.44 (19)
Si1—O2—N1'—C1' 4.9 (2) C5—C1'—N1'—C2 2.6 (3)
Si1—O3—N2—C6 −7.2 (2) C6—N2—C10—C9 0.3 (4)
Si1—O3—N2—C10 175.59 (18) C6—C7—C8—C9 −0.9 (4)
Si1—O3—C6'—C10 175.59 (18) C7—C8—C9—C10 −0.6 (4)
Si1—O3—C6'—N2' −7.2 (2) C8—C7—N2'—O4 −175.9 (2)
Si1—O4—C6—N2 9.7 (2) C8—C7—N2'—C6' 2.0 (4)
Si1—O4—C6—C7 −172.30 (18) C8—C9—C10—N2 0.9 (4)
Si1—O4—N2'—C7 −172.30 (18) C8—C9—C10—C6' 0.9 (4)
Si1—O4—N2'—C6' 9.7 (2) C9—C10—C6'—O3 177.3 (2)
Si1—C11—C12—C13 169.91 (16) C9—C10—C6'—N2' 0.3 (4)
Si1—C11—C12—C17 −12.0 (3) C10—N2—C6—O4 176.3 (2)
Si1—C11—C16—C15 −170.09 (17) C10—N2—C6—C7 −1.8 (3)
Si1—C11—C16—C19 9.9 (3) C10—C6'—N2'—O4 176.3 (2)
Si1—C20—C21—C22 −172.32 (16) C10—C6'—N2'—C7 −1.8 (3)
Si1—C20—C21—C26 10.1 (3) C11—Si1—O2—C1 162.73 (15)
Si1—C20—C25—C24 173.31 (16) C11—Si1—O2—N1' 162.73 (15)
Si1—C20—C25—C28 −6.9 (3) C11—Si1—O4—C6 −98.55 (16)
O1—Si1—O2—C1 −6.88 (15) C11—Si1—O4—N2' −98.55 (16)
O1—Si1—O2—N1' −6.88 (15) C11—C12—C13—C14 1.2 (3)
O1—Si1—O4—C6 71.06 (15) C12—C11—C16—C15 2.2 (3)
O1—Si1—O4—N2' 71.06 (15) C12—C11—C16—C19 −177.9 (2)
O1—N1—C1—O2 1.8 (3) C12—C13—C14—C15 0.9 (3)
O1—N1—C1—C2 −177.11 (19) C12—C13—C14—C18 −178.1 (2)
O1—N1—C5—C4 177.0 (2) C13—C14—C15—C16 −1.4 (3)
O1—C1'—N1'—O2 1.8 (3) C14—C15—C16—C11 −0.2 (3)
O1—C1'—N1'—C2 −177.11 (19) C14—C15—C16—C19 179.8 (2)
O2—Si1—O4—C6 26.2 (4) C16—C11—C12—C13 −2.7 (3)
O2—Si1—O4—N2' 26.2 (4) C16—C11—C12—C17 175.4 (2)
O2—C1—C2—C3 −179.6 (2) C17—C12—C13—C14 −177.1 (2)
O3—Si1—O2—C1 74.71 (15) C18—C14—C15—C16 177.6 (2)
O3—Si1—O2—N1' 74.71 (15) C20—Si1—O2—C1 −96.19 (16)
O3—Si1—O4—C6 −10.62 (15) C20—Si1—O2—N1' −96.19 (16)
O3—Si1—O4—N2' −10.62 (15) C20—Si1—O4—C6 160.58 (15)
O3—N2—C6—O4 −1.0 (3) C20—Si1—O4—N2' 160.58 (15)
O3—N2—C6—C7 −179.0 (2) C20—C21—C22—C23 −2.5 (3)
O3—N2—C10—C9 177.3 (2) C21—C20—C25—C24 −3.9 (3)
O3—C6'—N2'—O4 −1.0 (3) C21—C20—C25—C28 175.9 (2)
O3—C6'—N2'—C7 −179.0 (2) C21—C22—C23—C24 −1.4 (3)
O4—Si1—O2—C1 38.1 (4) C21—C22—C23—C27 179.4 (2)
O4—Si1—O2—N1' 38.1 (4) C22—C23—C24—C25 2.6 (3)
O4—C6—C7—C8 −175.9 (2) C23—C24—C25—C20 0.2 (3)
N1—C1—C2—C3 −0.8 (3) C23—C24—C25—C28 −179.6 (2)
N2—C6—C7—C8 2.0 (4) C25—C20—C21—C22 5.0 (3)
C1—N1—C5—C4 −2.8 (3) C25—C20—C21—C26 −172.6 (2)
C1—C2—C3—C4 −0.8 (4) C26—C21—C22—C23 175.3 (2)
C2—C3—C4—C5 0.6 (4) C27—C23—C24—C25 −178.2 (2)
C3—C2—N1'—O2 −179.6 (2) N1'—C2—C3—C4 −0.8 (4)
C3—C2—N1'—C1' −0.8 (3) N2'—C7—C8—C9 −0.9 (4)

Funding Statement

Funding for this research was provided by: National Science Foundation (grant No. CHE-1828310; grant No. CHE-1725028).

References

  1. Bruker (2013). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Bruker (2016). APEX3. Bruker AXS, Inc., Madison, Wisconsin, USA.
  3. Casellato, U., Vigato, P. A., Tamburini, S., Vidali, M. & Graziani, R. (1983). Inorg. Chim. Acta, 69, 77–82.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Howard, J. A. K., Hoy, V. J., O’Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613–12622.
  7. Jakusch, T., Dean, A., Oncsik, T., Bényei, A. C., Di Marco, V. & Kiss, T. (2010). Dalton Trans. 39, 212–220. [DOI] [PubMed]
  8. Koch, J. G., Brennessel, W. W. & Kraft, B. M. (2017). Organometallics, 36, 594–604.
  9. Kraft, B. M. & Brennessel, W. W. (2014). Organometallics, 33, 158–171.
  10. Kraft, B. M., Brennessel, W. W., Ryan, A. E. & Benjamin, C. K. (2015). Acta Cryst. E71, 1531–1535. [DOI] [PMC free article] [PubMed]
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Lewis, J. A. & Cohen, S. M. (2004). Inorg. Chem. 43, 6534–6536. [DOI] [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Peyroux, E., Ghattas, W., Hardré, R., Giorgi, M., Faure, B., Simaan, A. J., Belle, C. & Réglier, M. (2009). Inorg. Chem. 48, 10874–10876. [DOI] [PubMed]
  15. Puerta, D. T. & Cohen, S. M. (2003). Inorg. Chem. 42, 3423–3430. [DOI] [PubMed]
  16. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  17. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Szigethy, G. & Raymond, K. N. (2011). J. Am. Chem. Soc. 133, 7942–7956. [DOI] [PubMed]
  22. Tacke, R., Burschka, C., Willeke, M. & Willeke, R. (2001). Eur. J. Inorg. Chem. pp. 1671–1674.
  23. Tacke, R., Willeke, M. & Penka, M. (2001). Z. Anorg. Allg. Chem. 627, 1236–1240.
  24. Tedeschi, C., Azéma, J., Gornitzka, H., Tisnès, P. & Picard, C. (2003). Dalton Trans. pp. 1738–1745.
  25. Tiede, E. R., Heckman, M. T., Brennessel, W. W. & Kraft, B. M. (2022). Organometallics, 41, 3522–3537.
  26. Wang, X., Dai, X., Shi, C., Wan, J., Silver, M. A., Zhang, L., Chen, L., Yi, X., Chen, B., Zhang, D., Yang, K., Diwu, J., Wang, J., Xu, Y., Zhou, R., Chai, Z. & Wang, S. (2019). Nat. Commun. 10, article No. 2570. https://www.nature.com/articles/s41467-019-10276-z [DOI] [PMC free article] [PubMed]
  27. Weiss, A. & Harvey, D. R. (1964). Angew. Chem. Int. Ed. Engl. 3, 698–699.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3, global. DOI: 10.1107/S2056989024001543/ee2004sup1.cif

e-80-00318-sup1.cif (4.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989024001543/ee20041sup2.hkl

e-80-00318-1sup2.hkl (1.1MB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989024001543/ee20042sup3.hkl

e-80-00318-2sup3.hkl (495.9KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989024001543/ee20043sup4.hkl

e-80-00318-3sup4.hkl (409KB, hkl)

CCDC references: 2333179, 2333178, 2333177

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES